Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;5(4):355–366. doi: 10.1111/j.1582-4934.2001.tb00170.x

Gap junction remodeling and cardiac arrhythmogenesis: cause or coincidence?

Nicholas J Severs 1,
PMCID: PMC6740299  PMID: 12067469

Abstract

Gap junctions, clusters of transmembrane channels that link adjoining cells, mediate myocyte‐to‐myocyte electrical coupling and communication. The component proteins of gap junction channels are termed connexins and, in in vitro expression systems, gap‐junctional channels composed of different connexin types exhibit different biophysical properties. In common with other tissues, the heart expresses multiple connexin isoforms. Spatially defined patterns of expression of three connexin isoforms ‐ connexin43, connexin40 and connexin45 ‐ form the cell‐to‐cell conduction pathways responsible for the orderly spread of current flow that governs the normal cardiac rhythm. Remodeling of gap junction organization and connexin expression is a common feature of human heart disease conditions in which there is an arrhythmic tendency. This remodeling may take the form of disturbances in the distribution of gap junctions and/or quantitative alterations in connexin expression, notably reduced ventricular connexin43 levels. The idea that such changes may contribute to the development of a pro‐arrhythmic substrate in the diseased heart has gained ground over the last decade. Recent studies using transgenic mice models have raised new opportunities to explore the significance of gap junction remodeling in the diseased heart.

Keywords: cardiomyocyte, gap junctions, connexins, intercellular communication

References

  • 1. Cardew G.. Ed. Gap Junction‐Mediated Intercellular Signalling in Health and Disease. John Wiley & Son Ltd., New York , 1999. [Google Scholar]
  • 2. Scherer S.S., Bone, L.J. , Deschenes, S.M. , Abel, A. , Balice‐Gordon, R.J. , Fischbeck, K.H. . The role of the gap junction protein connexin32 in the pathogenesis of X‐linked Charcot‐Marie‐Tooth disease. Novartis Found Symp, 219:175–185, 1999. [DOI] [PubMed] [Google Scholar]
  • 3. Cohn E.S., Kelley, P.M. Clinical phenotype and mutations in connexin 26 (DFNB1/GJB2), the most common cause of childhood hearing loss. Am. J. Med. Genet., 89:130–136, 1999. [PubMed] [Google Scholar]
  • 4. Mackay D., Ionides, A. , Kibar, Z. , Rouleau, G. , Berry, V. , Moore, A. , Shiels, A. , Bhattacharya, S. Connexin46 mutations in autosomal dominant congenital cataract. Am. J. Hum. Genet., 64:1357–1364, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Dasgupta C., Escobar‐Poni, B. , Shah, M. , Duncan, J. , Fletcher, W.H. . Misregulation of connexin43 gap junction channels and congenital heart defects In: Cardew G., ed., Gap Junction‐Mediated Intercellular Signalling in Health and Disease. John Wiley & Sons Ltd., New York , 1999, pp. 212–221. [DOI] [PubMed] [Google Scholar]
  • 6. Green C.R., Severs, N.J. . Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease. Histochemistry, 99:105–120, 1993. [DOI] [PubMed] [Google Scholar]
  • 7. Severs N.J., Gourdie, R.G. , Harfst, E. , Peters, N.S. , Green, C.R. . Review. Intercellular junctions and the application of microscopical techniques: the cardiac gap junction as a case model. J. Microsc., 169:299–328, 1993. [DOI] [PubMed] [Google Scholar]
  • 8. Severs N.J., Dupont, E. , Kaprielian, R.R. , Yeh, H.‐I. , Rothery, S. . Gap junctions and connexins in the cardiovascular system In: Yacoub M.H., Carpentier A., Pepper J., Fabiani J.‐N., eds., Annual of Cardiac Surgery 1996: 9th edition Current Science, London , 1996, pp. 31–44. [Google Scholar]
  • 9. Severs N.J.. Gap junctions and coronary heart disease In: De Mello W.C., Janse M.J., eds., Heart Cell Communication in Health and Disease. Kluwer, Boston , 1998, pp. 175–194. [Google Scholar]
  • 10. Severs N.J.. Cardiovascular disease In: Cardew G., ed., Gap Junction‐Mediated Intercellular Signalling in Health and Disease. John Wiley & Sons Ltd., New York , 1999, pp. 188–206. [Google Scholar]
  • 11. Severs N.J., Rothery, S. , Dupont, E. , Coppen, S.R. , Yeh, H.‐I. , Ko, Y.‐S. , Matsushita, T. , Kaba, R. , Halliday, D. . Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech, 52:301–322, 2001. [DOI] [PubMed] [Google Scholar]
  • 12. Jongsma H.J., Wilders, R. . Gap junctions in cardiovascular disease. Circ Res, 86:1193–1197, 2000. [DOI] [PubMed] [Google Scholar]
  • 13. Willecke K., Eiberger J., Degen J., Eckardt D., Romualdi A., Gueldenagel M., Deutsch U. and Soehl. G. Structural and functional diversity of connexin genes in the mouse and human genome. Biol.Chem. in press: 2002. [DOI] [PubMed]
  • 14. Beyer E., Seul, K.H. , Larson, D.M. . Cardiovascular gap junction proteins: molecular characterization and biochemical regulation In: De Mello W.C., Janse M.J., Norwell M.A., eds., Heart Cell Communication in Health and Disease. Klewer Academic Publications, New York , 1997, pp. 45–51. [Google Scholar]
  • 15. Paul D.L., Ebihara, L. , Takemoto, L.J. , Swenson, K.I. , Goodenough, D.A. . Connexin46, a novel lens gap junction protein, induces voltage‐ gated currents in nonjunctional plasma membrane of Xenopus oocytes . J. Cell Biol., 115:1077–1089, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Manthey D., Bukauskas, F. , Lee, C.G. , Kozak, C.A. , Willecke, K. . Molecular cloning and functional expression of the mouse gap junction gene connexin‐57 in human HeLa cells. J. Biol. Chem., 274:14716–14723, 1999. [DOI] [PubMed] [Google Scholar]
  • 17. Bruzzone R., White, T.W. , Paul, D.L. . Connections with connexins: The molecular basis of direct intercellular signaling. Eur. J. Biochem., 238:1–27, 1996. [DOI] [PubMed] [Google Scholar]
  • 18. Tamaddon H.S., Vaidya, D. , Simon, A.M. , Paul, D.L. , Jalife, J. , Morley, G.E. . High‐resolution optical mapping of the right bundle branch in connexin40 knockout mice reveals slow conduction in the specialized conduction system. Circ Res, 87:929–936, 2000. [DOI] [PubMed] [Google Scholar]
  • 19. Krüger O., Plum, A. , Kim, J.‐S. , Winterhager, E. , Maxeiner, S. , Hallas, G. , Kirchhoff, S. , Traub, O. , Lamers, W.H. , Willecke, K. . Defective vascular development in connexin 45‐deficient mice. Development, 127:4179–4193, 2000. [DOI] [PubMed] [Google Scholar]
  • 20. Plum A., Hallas, G. , Magin, T. , Dombrowski, F. , Hagendorff, A. , Schumacher, B. , Wolpert, C. , Kim, J.‐S. , Lamers, W.H. , Evert, M. , Meda, P. , Traub, O. , Willecke, K. . Unique and shared functions of different connexins in mice. Curr. Biol., 10:1083–1091, 2000. [DOI] [PubMed] [Google Scholar]
  • 21. van Rijen H.V.M., van Veen, T.A.B. , van Kempen, M.J.A. , Wilms‐Schopman, F.J.G. , Poste, M. , Krueger, O. , Willecke, K. , Opthof, T. , Jongsma, H.J. , de Bakker, J.M.T. . Impaired conduction in the bundle branches of mouse hearts lacking the gap junction protein connexin40. Circulation, 103:1591–1598, 2001. [DOI] [PubMed] [Google Scholar]
  • 22. Beyer E.C., Kistler, J. , Paul, D.L. , Goodenough, D.A. . Antisera directed against connexin43 peptides react with a 43‐kd protein localized to gap junctions in myocardium and other tissues. J. Cell Biol., 108:595–605, 1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Severs N.J.. The cardiac muscle cell. BioEssays, 22:188–199, 2000. [DOI] [PubMed] [Google Scholar]
  • 24. Gourdie R.G., Severs, N.J. , Green, C.R. , Rothery, S. , Germroth, P. , Thompson, R.P. . The spatial distribution and relative abundance of gap‐junctional connexin40 and connexin43 correlate to functional properties of the cardiac atrioventricular conduction system. J. Cell Sci., 105:985–991, 1993. [DOI] [PubMed] [Google Scholar]
  • 25. Coppen S.R., Dupont, E. , Rothery, S. , Severs, N.J. . Connexin45 expression is preferentially associated with the ventricular conduction system in mouse and rat heart. Circ. Res., 82:232–243, 1998. [DOI] [PubMed] [Google Scholar]
  • 26. Vozzi C., Dupont, E. , Coppen, S.R. , Yeh, H.‐I. , Severs, N.J. . Chamber‐related differences in connexin expression in the human heart. J. Mol. Cell. Cardiol., 31:991–1003, 1999. [DOI] [PubMed] [Google Scholar]
  • 27. Severs N.J.. Constituent cells of the heart and isolated cell models in cardiovascular research In: Piper H.M., Isenberg G., eds., Isolated Adult Cardiomyocytes. volume 1 CRC Press Inc., Boca Raton , 1989, pp. 3–41. [Google Scholar]
  • 28. Saffitz J.E., Beyer, E.C. , Darrow, B.J. , Guerrero, P.A. , Beardslee, M.A. , Dodge, S.M. . Gap junction structure, conduction, and arrhhythmogenesis: direction for future research In: Spooner P.M., Joyner R.W., Jalife J., eds., Discontinuous Conduction in the Heart. Futura Publishing Company, New York , 1997, pp. 89–105. [Google Scholar]
  • 29. Gourdie R.G., Green, C.R. , Severs, N.J. . Gap junction distribution in adult mammalian myocardium revealed by an antipeptide antibody and laser scanning confocal microscopy. J. Cell Sci., 99:41–55, 1991. [DOI] [PubMed] [Google Scholar]
  • 30. Dupont E., Ko, Y.S. , Rothery, S. , Coppen, S.R. , Baghai, M. , Haw, M. , Severs, N.J. . The gapjunctional protein, connexin40, is elevated in patients susceptible to post‐operative atrial fibrillation. Circulation, 103:842–849, 2001. [DOI] [PubMed] [Google Scholar]
  • 31. Coppen S.R., Severs, N.J. , Gourdie, R.G. . Connexin45 (α6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev. Genet., 24:82–90, 1999. [DOI] [PubMed] [Google Scholar]
  • 32. Coppen S.R., Kodama, I. , Boyett, M.R. , Dobrzynski, H. , Takagishi, Y. , Honjo, H. , Yeh, H.‐I. , Severs, N.J. . Connexin45, a major connexin of the rabbit sinoatrial node, is co‐expressed with connexin43 in a restricted zone at the nodal‐crista terminalis border. J. Histochem. Cytochem., 47:907–918, 1999. [DOI] [PubMed] [Google Scholar]
  • 33. Honjo H., Boyett, M.R. , Coppen, S.R. , Takagishi, Y. , Severs, N.J. , Kodama, I. . Heterogeneous expression of connexins in rabbit sinoatrial node cells: correlation between connexin isoform and cell size. Cardiovasc. Res., in press: 2002. [DOI] [PubMed]
  • 34. Moreno A.L., Laing, J.G. , Beyer, E.C. , Spray, D.C. . Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells. Am. J. Physiol., 268:C356–C365, 1995. [DOI] [PubMed] [Google Scholar]
  • 35. Gros D., Jarry‐Guichard, T. , Ten Velde, I. , De Mazière, A.M.G.L. , van Kempen, M.J.A. , Davoust, J. , Briand, J.P. , Moorman, A.F.M. , Jongsma, H.J. . Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ. Res., 74:839–851, 1994. [DOI] [PubMed] [Google Scholar]
  • 36. Coppen S.R., Gourdie, R.G. , Severs, N.J. . Connexin45 is the first connexin to be expressed in the central conduction system of the mouse heart. Exp. Clin. Cardiol., 6:17–23, 2001. [PMC free article] [PubMed] [Google Scholar]
  • 37. Bastide B., Neyses, L. , Ganten, D. , Paul, M. , Willecke, K. , Traub, O. . Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions. Circ. Res., 73:1138–1149, 1993. [DOI] [PubMed] [Google Scholar]
  • 38. Bukauskas F.F., Elfgang, C. , Willecke, K. , Weingart, R. . Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys. J., 68:2289–2298, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Kirchhoff S., Nelles, E. , Hagendorff, A. , Krüger, O. , Traub, O. , Willecke, K. . Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40‐deficient mice. Curr. Biol., 8:299–302, 1998. [DOI] [PubMed] [Google Scholar]
  • 40. Simon A.M., Goodenough, D.A. , Paul, D.L. . Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr. Biol., 8:295–298, 1998. [DOI] [PubMed] [Google Scholar]
  • 41. Hagendorff A., Schumacher, B. , Kirchhoff, S. , Lüderitz, B. , Willecke, K. . Conduction disturbances and increased atrial vulnerability in connexin40‐defficient mice analyzed by transesophageal stimilation. Circulation, 99:1508–1515, 1999. [DOI] [PubMed] [Google Scholar]
  • 42. Smith J.H., Green, C.R. , Peters, N.S. , Rothery, S. , Severs, N.J. . Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am. J. Pathol., 139:801–821, 1991. [PMC free article] [PubMed] [Google Scholar]
  • 43. Shaw R.M., Rudy, Y. . Ionic mechanisms of propagation in cardiac tissue ‐ Roles of the sodium and L‐type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res., 81:727–741, 1997. [DOI] [PubMed] [Google Scholar]
  • 44. Rohr S., Kucera, J.P. , Fast, V.G. , Kleber, A.G. . Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling. Science, 275:841–844, 1997. [DOI] [PubMed] [Google Scholar]
  • 45. Spach M.S., Heidlage J.F., Dolber P.C. and Barr. R.C. 2000. Electrophysiological effects of remodelling cardiac gap junctions and cell size. Circ. Res. 86:302–311.(Abstract). [DOI] [PubMed] [Google Scholar]
  • 46. Matsushita T., Oyamada, M. , Fujimoto, K. , Yasuda, Y. , Masuda, S. , Wada, Y. , Oka, T. , Takamatsu, T. . Remodelling of cell‐cell and cell‐extracellular mtrix interactions at the border zone of rat myocardial infarcts. Circ. Res., 85:1046–1055, 1999. [DOI] [PubMed] [Google Scholar]
  • 47. Uzzaman M., Honjo, H. , Takagishi, Y. , Emdad, L. , Magee, A.I. , Severs, N.J. , Kodama, I. . Remodeling of gap‐junctional coupling in hypertrophied right ventricles of rats with monocrotaline‐induced pulmonary hypertension. Circ. Res., 86:871–878, 2000. [DOI] [PubMed] [Google Scholar]
  • 48. Emdad L., Uzzaman, M. , Takagishi, Y. , Honjo, H. , Uchida, T. , Severs, N.J. , Kodama, I. , Murata, Y. . Gap junction remodelling in hypertrophied left ventricles of aortic‐banded rats: prevention by angiotensin II type1 receptor blockade. J. Mol. Cell. Cardiol., 33:219–231, 2001. [DOI] [PubMed] [Google Scholar]
  • 49. Kaprielian R.R., Gunning, M. , Dupont, E. , Sheppard, M.N. , Rothery, S.M. , Underwood, R. , Pennell, D.J. , Fox, K. , Pepper, J. , Poole‐Wilson, P.A. , Severs, N.J. . Down‐regulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation, 97:651–660, 1998. [DOI] [PubMed] [Google Scholar]
  • 50. Dupont E., Matsushita, T. , Kaba, R. , Vozzi, C. , Coppen, S.R. , Khan, N. , Kaprielian, R. , Yacoub, M.H. , Severs, N.J. . Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol, 33:359–371, 2001. [DOI] [PubMed] [Google Scholar]
  • 51. Gutstein D.E., Morley, G.E. , Vaidya, D. , Liu, F. , Chen, F.L. , Stuhlmann, H. , Fishman, G.I. . Heterogeneous expression of gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation, 104:1194–1199, 2001. [DOI] [PubMed] [Google Scholar]
  • 52. Rudy Y., Shaw, R.M. . Cardiac excitation: an interactive process of ion channels and gap junctions. Adv. Exp. Med. Biol., 430:269–279, 1997. [DOI] [PubMed] [Google Scholar]
  • 53. Viswanathan P.C., Shaw, R.M. , Rudy, Y. . Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation, 99:2466–2474, 1999. [DOI] [PubMed] [Google Scholar]
  • 54. Lerner D.L., Yamada, K.A. , Schuessler, R.B. , Saffitz, J.E. . Accelerated onset and increased incidence of ventricular arrhythmias induced by ischaemia in Cx43‐deficient mice. Circulation, 101:547–552, 2000. [DOI] [PubMed] [Google Scholar]
  • 55. Gutstein D.E., Morley, G.E. , Tamaddon, H. , Vaidya, D. , Schneider, M.D. , Chen, J. , Chien, K.R. , Stuhlmann, H. , Fishman, G.I. . Conduction slowing and sudden arrhythmic death in mice with cardiac‐restricted inactivation of connexin43. Circ. Res., 88:333–339, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES