Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(1):57–66. doi: 10.1111/j.1582-4934.2003.tb00203.x

Phospholipase A2 modulates respiratory burst developed by neutrophils in patients with rheumatoid arthritis

Marinela Bostan 1,, C Galatiuc 1, M Hirt 1, MC Constantin 1, LI Brasoveanu 1, Dana Iordachescu 2
PMCID: PMC6740302  PMID: 12767262

Abstract

Activated by bacterial peptides, phorbol esters, calcium ionophores and other agonists, neutrophils (PMNs) release the proinflammatory mediator, arachidonic acid (AA) via the intervention of phospholipase A2 (PLA2). AA may play an essential role in activation of NADPH‐oxidase, which is involved in the generation of superoxide anion by neutrophils. The present study is focused on the involvement of PLA2 in the respiratory burst developed by PMNs isolated from patients with rheumatoid arthritis (RA). PLA2 exists in very high levels in diseases such as rheumatoid arthritis and may cause acute inflammatory and proliferative changes in synovial structures. The respiratory burst was evaluated as superoxide anion release, using an amplified chemiluminiscence method. The assays were performed using PMNs untreated or treated with different doses of stimulatory reagents (phorbol 12‐myristate‐13‐acetate (PMA), calcium ionophore (A23187)). Our data suggested that PMA stimulated the production of superoxid anion in a dose‐response manner, as compared with A23187, which did not induce a significant release of superoxide anion in PMNs‐RA. The exogenous addition of AA significantly amplified the superoxide anion release by PMNs‐RA stimulated with PMA and to a lesser extent, by PMNs stimulated with A23187. AA has also reversed the inhibitory effect of arachidonyl‐trifluorometylketone and E‐6‐(bromomethylene)tetrahydro‐3‐(1‐naph‐thalenyl)2H‐pyran‐2‐one (BEL) on the superoxide anion release by PMNs‐RA. In conclusion, the differential responses to these two agents suggested that different isoforms of PLA2 were activated by A23187 or PMA, and support the idea that activation of these different PLA2 served distinct functions of PMNs. Therefore, the inhibition of PLA2 enzymes might be of great importance in the immunotherapy of rheumatoid arthritis.

Keywords: rheumatoid arthritis, neutrophils, phospholipase A2, calcium ionophore, phorbol 12‐myristate‐13‐acetate, superoxide anion

References

  • 1. Harris E.D. Jr., The rationale for combination therapy of rheumatoid arthritis based on pathophysiology, J. Rheumatol., 44 (Suppl.):2–4, 1996. [PubMed] [Google Scholar]
  • 2. Okamoto Y., Nishida M., Cytokine balance in the pathogenesis of rheumatoid arthritis, Yakugaku Zasshi - J. Pharmaceutical Soc. Japan, 121: 131–138, 2001. [DOI] [PubMed] [Google Scholar]
  • 3. Gay S., Rheumatoid arthritis: editorial overview, Curr. Opin. Rheum., 12: 179–180, 2000. [DOI] [PubMed] [Google Scholar]
  • 4. Srednikenigsbuch D., Kambayashi T., Stassmann G., Neutrophils augment the release of TNFα from LPS‐stimulated macrophages via hydrogen peroxide. Immunol. Lett., 71: 119, 2000. [DOI] [PubMed] [Google Scholar]
  • 5. Lang M.L., Kerr M. A., Neutrophil NADPH oxidase does not assemble on macropinocytic vacuole membranes, Immunol. Lett., 72: 1–6, 2000. [DOI] [PubMed] [Google Scholar]
  • 6. Shatwell K., Segal A., NADPH oxidase, Int. J. Biochem. Cell Biol., 28: 1191–1195, 1996. [DOI] [PubMed] [Google Scholar]
  • 7. Kobayashi T., Robinson J.M., Seguchi H., Identification of intracellular sites of superoxide production in stimulated neutrophils, J. Cell Sci., 111: 81–91, 1998. [DOI] [PubMed] [Google Scholar]
  • 8. Bodolay E., Koch A.E., Kim J., Szegedi G., Szekanecz Z., Angiogenesis and chemokines in rheumatoid arthritis and other systemic inflammatory rheumatic diseases, J. Cell. Mol. Med., 6: 357–376, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Leusen J., Verhoeven A., Roos D., Interactions between the components of the human NADPH oxidase: intrigues in the phox family, J.Lab. Clin. Med., 128: 461–476, 1996. [DOI] [PubMed] [Google Scholar]
  • 10. Serhan C.N., Haeggstrom J.Z., Leslie C.C., Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J., 10: 1147, 1996. [DOI] [PubMed] [Google Scholar]
  • 11. Bostan M., Brasoveanu L.I., Livescu A., Manda G., Neagu M., Iordachescu D., Effects of synovial fluid on the respiratory burst of granulocytes in rheumatoid arthritis, J. Cell. Mol. Med., 5: 188–194, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Blobe G.C., Khan W.A., Hannun Y.A., Protein kinase C: cellular target of the second messenger arachidonic acid. Prostaglandins Leukot. Essent. Fatty Acids, 52: 129, 1995. [DOI] [PubMed] [Google Scholar]
  • 13. Rao G., Baas A., Glasgow W., Eling T., Runge M., Alexander R., Activation of mitogen‐activated protein kinases by arachidonic acid and its metabolits in vascular smooth muscle cells. J. Biol. Chem., 269: 32586, 1994. [PubMed] [Google Scholar]
  • 14. Gubitosi‐Klug R.A., Yu S.P., Choi D.W., Gross R.W., Concomitant acceleration of the activation and inactivation kinetics of the human delayed rectifier K+ channel (KVI.1) by Ca+2 ‐ independent phospholipase A2 . J. Biol. Chem., 270: 2885, 1995. [DOI] [PubMed] [Google Scholar]
  • 15. Dana R., Malech H.L., Levy R., The requirement fo phospholipase A2 for activation of the assembled NADPH‐oxidase in human neutrophils. Biochem. J., 297: 317, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Henderson L.M., Moule S.K., Chappell J.B., The immediate activator of NADPH oxidase is arachidonate not phosphorylation. Eur. J. Biochem., 211: 157, 1993. [DOI] [PubMed] [Google Scholar]
  • 17. Matés José M., Pérez‐Gómez C., De Castro I.N., Antioxidant enzymes and human diseases, Clinical Biochemistry, 32: 595–603, 1999. [DOI] [PubMed] [Google Scholar]
  • 18. Seilhamer Jeffrey J., Pruzanski Waldemar, Vadas P., Plant S., Miller J.A., Kloss J., Johnson L.K., Cloning and recombinant expression of phosphplipase A2 present in rheumatoid arhritic synovial fluid, J. Biol. Chem., 264: 5335–5338, 1989. [PubMed] [Google Scholar]
  • 19. Poliot M., Mc Donald P.P., Krump E., Mancini J.A., Mc Coll S.R., Weech P.K., Borgeat P., Co‐ localization of cytosolic phospholipase A2, 5‐lipoxygenase and 5‐lipoxygenase activating protein at the nuclear membrane of A23187 ‐ stimulated human neutrophils. Eur. J. Biochem., 238: 250, 1996. [DOI] [PubMed] [Google Scholar]
  • 20. Balanescu A., Radu E., Nat R., Regalia T., Bojinca V., Predescu V., Predeteanu D., Co‐stimulatory and adhesion molecules of dendritic cells in rheumatoid arthritis, J. Cell. Mol. Med., 6: 415–425, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Marshall J., Krump E., Lindsay T., Downey G., Ford D.A., Zhu P., Walker P., Rubin B., Involvement of cytosolic phosphplipase A2 and secretory phospholipase A2 in arachidonic acid release from human neutrophils, J. Immunol., 164: 2084–2091, 2000. [DOI] [PubMed] [Google Scholar]
  • 22. Tithof P. K., Schimberg E., Peters‐Golden M., Ganey P.E., Phospholipase A2 is involved in the mecanism of activation of neutrophils by polychlorinated biphenyls. Environ. Health Perspect, 104: 52, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Harbecke O., Lundqvist H., Dahlgren C., Okadaic acid inhibits the signal responsible for activation of the NADPH‐oxidase in neutrophils stimulated with serum‐opsonized yeast, J. Leukocyte Biology, 59: 754–761, 1996. [DOI] [PubMed] [Google Scholar]
  • 24. DeLeo, F.R. , Goedken M., McCormick S.J., Nauseef W.M., A novel form of myeloperoxidase deficiency linked to endoplasmatic reticulum/proteasome degradation. J. Clin. Invest., 101: 2900, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Dennis, E.A. , Rhee S.G., Billah M.M., Hannun Y.A., Role of Phospholipase in generating lipid second messengers in signal transduction. FASEB J., 5: 2068, 1991. [DOI] [PubMed] [Google Scholar]
  • 26. Kramer R., Roberts E., Manetta J., Putnam J., The calcium (2+) sensitive cytosolic phospholipase A2 is a 100‐kDa protein in human monoblast U937 cells. J. Biol. Chem., 266: 5268, 1991. [PubMed] [Google Scholar]
  • 27. Murthy K.S., Makhlouf G. M., Differential regulation of phospholipase A2‐dependent Ca+2 signaling in smooth muscle by cAMP and cGMP‐dependent protein kinases, J. Biol. Chem., 273 (51):34519–34526, 1998. [DOI] [PubMed] [Google Scholar]
  • 28. Marshall L., Roshak A., Coexistence of two biochemically distinct phospholipase A2 activities in human platelet, monocyte and neutrophil. Biochem. Cell. Biol., 71: 331, 1993. [DOI] [PubMed] [Google Scholar]
  • 29. Arnett F.C., Edworthy S.M., Bloch D.A., McShane D.J., Fries J.F., Cooper N.S., The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis, Arthritis Rheum., 31: 315–324, 1988. [DOI] [PubMed] [Google Scholar]
  • 30. Hochberg M.C., Chang R.W., Dwosh I., Lindsey S., Pincus T., Wolfe F., The American College of Rheumatology 1991 Revised Criteria for the Classification of Global Functional Status in Rheumatoid Arthritis, Arthritis Rheum., 35: 498–502, 1992. [DOI] [PubMed] [Google Scholar]
  • 31. Boyum A., Isolation of mononuclear cells and granulocytes from human blood. J. Clin. Lab. Invest., 21: 77, 1968. [PubMed] [Google Scholar]
  • 32. Higgins G.C., Postlethwaite A.E., Synovial fluid from patients with rheumatoid arthritis contains a unique inhibitor of Interleukin 1α, J. Rheumatol., 23: 965–973, 1996. [PubMed] [Google Scholar]
  • 33. Kharazmi A., Nielsen H., Rechnitzer C., Bendtzen K., Interleukin 6 primes human neutrophil and monocyte oxidative burst response, Immunol. Lett., 21: 177–184, 1989. [DOI] [PubMed] [Google Scholar]
  • 34. Scott K.F, Bryant J., Bidgood M.J., Functional coupling and differential regulation of the phospholipase A2‐cyclooxygenase pathways in inflammation, J. Leukoc. Biol., 66:535–541; 1999. [DOI] [PubMed] [Google Scholar]
  • 35. Leslie C. C., Properties and regulation of cytosolic phospholipase A2 , J. Biol. Chem., 272:16709–16712, 1997. [DOI] [PubMed] [Google Scholar]
  • 36. Ackermann E., Kempner E., Dennis E., Ca+2‐independent cytosolic phospholipase A2 from macrophage‐like P388D1 cells: isolation and characterization. J. Biol. Chem., 269: 9227, 1994. [PubMed] [Google Scholar]
  • 37. Ackermann E., Conde‐Friebos K., Dennis E.A., Inhibition of macrophage Ca+2‐independent cytosolic phospholipase A2 by bromenol lactone and trifluoromethyl letones. J. Biol. Chem., 270: 445, 1995. [DOI] [PubMed] [Google Scholar]
  • 38. Balsinde J., Dennis E.A., Function and inhibition of intracellular calcium‐independet phospholipase A2 , J. Biol. Chem., 272: 16069–16072, 1997. [DOI] [PubMed] [Google Scholar]
  • 39. Underwood K.W., Song C., Kriz R.W., Chang X.J., Knopf J. L., Lin L., A novel calcium‐independent phospholipase A2, cPLA2‐, that is prenylated and contains homology to cPLA2 . J. Biol. Chem., 273: 21926, 1998. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES