Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play an integral role in the modulation of several physiological functions but can also be potentially destructive if produced in excessive amounts. Protein cysteinyl thiols appear especially sensitive to ROS/RNS attack. Experimental evidence started to accumulate recently, documenting that S‐glutathionylation occurs in a number of physiologically relevant situations, where it can produce discrete modulatory effects on protein function. The increasing evidence of functional changes resulting from this modification, and the growing number of proteins shown to be S‐glutathionylated both in vitro and in vivo support this contention, and confirm this as an attractive area of research. S‐glutathionylated proteins are now actively investigated with reference to problems of biological interest and as possible biomarkers of human diseases associated with oxidative/nitrosative stress.
Keywords: protein thiols, S‐glutathionylated proteins, oxidative/nitrosative stress, redox proteomics
References
- 1. Hensley K., Robinson K. A., Gabbita S. P., Salsman S., Floyd R. A., Reactive oxygen species, cell signaling, and cell injury, Free Radic. Biol. Med., 28: 1456–1462, 2000. [DOI] [PubMed] [Google Scholar]
- 2. Stadtman E. R., Berlett B. S., Reactive oxygen‐mediated protein oxidation in aging and disease, Drug Metab. Rev., 30: 225–243, 1998. [DOI] [PubMed] [Google Scholar]
- 3. Davies M. J., Fu S., Wang H., Dean R. T., Stable markers of oxidant damage to proteins and their application in study of human disease, Free Radic. Biol. Med., 27: 1151–1161, 1999. [DOI] [PubMed] [Google Scholar]
- 4. Dalle‐Donne I., Giustarini D., Colombo R., Rossi R., Milzani A., Protein carbonylation in human diseases, Trends Mol. Med., 9: 169–176, 2003. [DOI] [PubMed] [Google Scholar]
- 5. Dalle‐Donne I., Scaloni A., Giustarini D., Cavarra E., Tell G., Lungarella G., Colombo R., Rossi R., Milzani A., Proteins as biomarkers of oxidative/nitrosative stress in diseases. The contribution of redox proteomics, Mass Spectrom. Rev., 2004, in press. [DOI] [PubMed]
- 6. Giasson B. I., Ischiropoulos H., Lee V. M., Trojanowski J. Q., The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's diseases, Free Radic. Biol. Med., 32: 1264–1275, 2002. [DOI] [PubMed] [Google Scholar]
- 7. Davies M. J., Dean R. T., Radical‐mediated protein oxidation. From chemistry to medicine The pathology of protein oxidation. New York : Oxford University Press Inc, 1997, p. 443. [Google Scholar]
- 8. Grune T., Merker K., Sandig G., Davies K. J., Selective degradation of oxidatively modified protein substrates by the proteasome, Biochem. Biophys. Res. Commun., 305: 709–718, 2003. [DOI] [PubMed] [Google Scholar]
- 9. Klatt P., Lamas S., Regulation of protein function by S‐glutathiolation in response to oxidative and nitrosative stress, Eur. J. Biochem., 267: 4928–4944, 2000. [DOI] [PubMed] [Google Scholar]
- 10. Borges C. R., Geddes T., Watson J. T., Kuhn D. M., Dopamine biosynthesis is regulated by S‐glutathionylation. Potential mechanism of tyrosine hydroxylase inhibition during oxidative stress, J. Biol. Chem., 277: 48295–48302, 2002. [DOI] [PubMed] [Google Scholar]
- 11. Eaton P., Wright N., Hearse D. J., Shattock M. J., Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion, J. Mol. Cell. Cardiol., 34: 1549–1560, 2002. [DOI] [PubMed] [Google Scholar]
- 12. Demasi M., Silva G. M., Netto L. E., 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S‐glutathionylated, J. Biol. Chem., 278: 679–685, 2003. [DOI] [PubMed] [Google Scholar]
- 13. Nulton‐Persson A. C., Starke D. W, Mieyal J. J., Szweda L. I., Reversible inactivation of alpha‐ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status, Biochemistry, 42: 4235–4242, 2003. [DOI] [PubMed] [Google Scholar]
- 14. Woo H. A., Chae H. Z., Hwang S. C., Yang K. S., Kang S. W., Kim K., Rhee S. G., Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation, Science, 300: 653–656, 2003. [DOI] [PubMed] [Google Scholar]
- 15. Woo H. A., Kang S. W., Kim H. K., Yang K. S., Chae H. Z., Rhee S. G., Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine‐containing sequence, J. Biol. Chem., 278: 47361–7364, 2003. [DOI] [PubMed] [Google Scholar]
- 16. Wang J., Boja E. S., Tan W., Tekle E., Fales H. M., English S., Mieyal J. J., Chock P. B., Reversible glutathionylation regulates actin polymerization in A431 cells, J. Biol. Chem., 276: 47763–47766, 2001. [DOI] [PubMed] [Google Scholar]
- 17. Starke D. W., Boon Chock P., Mieyal J. J., Glutathionethiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase) ‐ potential role in redox signal transduction, J. Biol. Chem., 278: 14607–14613, 2003. [DOI] [PubMed] [Google Scholar]
- 18. Okamoto T., Akaike T., Sawa T., Miyamoto Y., van der Vliet A., Maeda H., Activation of matrix metalloproteinases by peroxynitrite‐induced protein S‐glutathiolation via disulfide S‐oxide formation, J. Biol. Chem., 276: 29596–29602, 2001. [DOI] [PubMed] [Google Scholar]
- 19. Rossi R., Milzani A., Dalle‐Donne I., Giustarini D., Lusini L., Colombo R., DiSimplicio P., Blood glutathione disulfide: in vivo factor or in vitro artifact?, Clin. Chem., 48: 742–753, 2002. [PubMed] [Google Scholar]
- 20. Giustarini D., Dalle‐Donne I., Colombo R., Petralia S., Giampaoletti S., Milzani A., Rossi R., Protein glutathionylation in erythrocytes, Clin. Chem., 49: 327–330, 2003. [DOI] [PubMed] [Google Scholar]
- 21. Giustarini D., Dalle‐Donne I., Colombo R., Milzani A., Rossi R., An improved HPLC mesurement for GSH and GSSG in human blood, Free Radic. Biol. Med., 35: 1365–1372, 2003. [DOI] [PubMed] [Google Scholar]
- 22. Dalle‐Donne I., Giustarini D., Rossi R., Colombo R., Milzani A., Reversible S‐glutathionylation of Cys (374) regulates actin filament formation by inducing structural changes in the actin molecule, Free Radic. Biol. Med., 34: 23–32, 2003. [DOI] [PubMed] [Google Scholar]
- 23. Dalle‐Donne I., Rossi R., Giustarini D., Colombo R., Milzani A., Actin S‐glutathionylation: evidence against a role for glutathione disulfide, Free Radic. Biol. Med., 35: 1185–1193, 2003. [DOI] [PubMed] [Google Scholar]
- 24. Klatt P., Molina P., Peres Sala D., Lamas S., Novel application of S‐nitrosoglutathione‐Sepharose to identify proteins that are potential targets for S‐nitrosoglutathione‐induced mixed‐disulphideformation, Biochem. J., 349: 567–578, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Barrett W. C., DeGnore J. P., Keng Y. F., Zhang Z. Y., Yim M. B., Chock P. B., Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein‐tyrosine phosphatase 1B, J. Biol. Chem., 274: 34543–34546, 1999. [DOI] [PubMed] [Google Scholar]
- 26. Fratelli M., Demol H., Puype M., Casagrande S., Eberini I., Salmona M., Bonetto V., Mengozzi M., Duffieux F., Miclet E., Bachi A., Vandekerckhove J., Gianazza E., Ghezzi P., Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes, Proc. Natl. Acad. Sci. USA, 99: 3505–3510, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Sullivan D. M., Wehr N. B., Fergisspm M. M., Levine R. L., Finkel T., Identification of oxidant‐sensitive proteins: TNF‐a induces protein glutathiolation, Biochemistry, 39: 11121–11128, 2000. [DOI] [PubMed] [Google Scholar]
- 28. Eaton P., Fuller W., Shattock M. J., S‐Thiolation of HSP27 regulates its multimeric aggregate size independently of phosphorylation, J. Biol. Chem., 277: 21189–21196, 2002. [DOI] [PubMed] [Google Scholar]
- 29. Eaton P., Jones M. E., McGregor E., Dunn M. J., Leeds N., Byers H. L., Leung K. ‐I., Ward M. A., Pratt J. R., Shattock M. J., Reversible cysteine‐targeted oxidation of proteins during renal oxidative stress, J. Am. Soc. Nephrol., 14: S290–S296, 2003. [DOI] [PubMed] [Google Scholar]
- 30. Ghezzi P., Bonetto V., Redox proteomics: identification of oxidatively modified proteins, Proteomics, 3: 1145–1153, 2003. [DOI] [PubMed] [Google Scholar]
- 31. Barrett W. C., DeGore J. P., König S., Fales H. M., Keng Y. ‐F., Zhang Z. ‐Y., Yim M. B., Chock P. B., Regulation of PTPIB via glutathionylatio of the active site cysteine 215, Biochemistry, 3: 6699–6705, 1999. [DOI] [PubMed] [Google Scholar]
- 32. Mohr S., Hallak H., de Boitte A., Lapetina E. G., Brune B., Nitric oxide‐induced S‐glutathionylation and inactivation of glyceraldehyde‐3‐phosphate dehydrogenase, J. Biol. Chem., 274: 9427–9430, 1999. [DOI] [PubMed] [Google Scholar]
- 33. Ward N. E., Stewart J. R., Ioannides C. G., O'Brian C. A., Oxidant‐induced S‐glutathiolation inactivates protein kinase C‐alpha (PKC‐alpha): a potential mechanism of PKC isozyme regulation, Biochemistry, 39: 10319–10329, 2000. [DOI] [PubMed] [Google Scholar]
- 34. Reddy S., Jones A. D., Cross C. E., Wong P. S. Y., van der Vliet A., Inactivation of creatine kinase by S‐glutathionylation of the active‐site cysteine residue, Biochem. J., 347: 821–827, 2000. [PMC free article] [PubMed] [Google Scholar]
- 35. Humphries K. M., Juliano C., Taylor S. S.S, Regulation of cAMPdependent protein kinase activity by glutathionylation, J. Biol. Chem., 277: 43505–43511, 2002. [DOI] [PubMed] [Google Scholar]
- 36. Konorev E. A., Kalyanaraman B., Hogg N., Modification of creatine kinase by S‐nitrosothiols: S‐nitrosation vs. S‐thiolation, Free Radic. Biol. Med., 28: 1671–1678, 2000. [DOI] [PubMed] [Google Scholar]
- 37. Davis D. A., Dorsey K., Wingfield P. T., Stahl S. J., Kaufman J., Fales H. M., Levine R. L., Regulation of HIV‐1 protease activity through cysteine modification, Biochemistry, 35: 2482–2488, 1996. [DOI] [PubMed] [Google Scholar]
- 38. Lind C., Gerdes R., Hamnell Y., Schuppe‐Koistinen I., von Lowenhielm H. B., Holmgren A., Cotgreave I. A., Identification of S‐glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis, Arch. Biochem. Biophys., 406: 229–240, 2002. [DOI] [PubMed] [Google Scholar]
- 39. Pastore A., Tozzi G., Gaeta L. M., Bertini E., Serafini V., Di Cesare S., Bonetto V., Casoni F., Carrozzo R., Federici G., Piemonte F., Actin glutathionylation increases in fibroblasts of patients with Friedreich's ataxia: A potential role in the pathogenesis of the disease, J. Biol. Chem., 43: 42588–42595, 2003. [DOI] [PubMed] [Google Scholar]
- 40. Rossi R., Milzani A., Dalle‐Donne I., Giannerini F., Giustarini D., Lusini L., Colombo R., DiSimplicio P., Different metabolizing ability of thiol reactants in human and rat blood: biochemical and pharmacological implications, J. Biol. Chem., 276: 7004–7010, 2001. [DOI] [PubMed] [Google Scholar]
- 41. Schafer F. Q., Buettner G. R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radic. Biol. Med., 30: 1191–1212, 2001. [DOI] [PubMed] [Google Scholar]
- 42. Dominici S., Valentini M., Maellaro E., Del Bello B., Paolicchi A., Lorenzini E., Tongiani R., Comporti M., Pompella A., Redox modulation of cell surface protein thiols in U937 lymphoma cells: the role of gammaglutamyl transpeptidase‐dependent H2O2 production and S‐thiolation, Free Radic. Biol. Med., 27: 623–635, 1999. [DOI] [PubMed] [Google Scholar]
- 43. Manevich Y., Feinstein S. I., Fisher A. B., Activation of the antioxidant enzyme 1‐CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pGST, Proc. Natl. Acad. Sci. USA, 101: 3780–3785, 2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Davis D. A., Newcomb F. M., Starke D. W., Ott D. E., Mieyal J. J., Yarchoan R., Thioltransferase (glutaredoxin) is detected within HIV‐1 and can regulate the activity of glutathionylated HIV‐1 protease in vitro , J. Biol. Chem., 272: 25935–25940, 1997. [DOI] [PubMed] [Google Scholar]
- 45. Davis D. A., Brown C. A., Newcomb F. M., Boja E. S., Fales H. M., Kaufman J., Stahl S. J., Wingfield P., Yarchoan R., Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation, J. Virol., 77: 3319–3325, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Mallis R.J., Buss J. E., Thomas J. A., Oxidative modification of H‐ras: S‐thiolation and S‐nitrosylation of reactive cysteines, Biochem. J., 355: 145–153, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Klatt P., Molina E. S., Lacoba M. C., Padilla C. A., Martinez‐Glaisteo E., Barcena J. A., Lamas S., Redox regulation of c‐Jun DNA binding by reversible S‐glutathiolation, FASEB J., 13: 1481–1490, 1999. [DOI] [PubMed] [Google Scholar]
- 48. Pineda‐Molina E., Klatt P., Vazquez J., Marina A., Garcia de Lacoba M., Perez‐Sala D., Lamas S., Glutathionylation of the p50 subunit of NF‐kB: a mechanism for redox‐induced inhibition of DNA binding, Biochemistry, 40: 14134–14142, 2001. [DOI] [PubMed] [Google Scholar]
- 49. Demasi M., Shringarpure R., Davies K. J. A., Glutathiolation of the proteosome is enhanced by proteolytic inhibitors, Arch. Biochem. Biophys., 389: 254–263, 2001. [DOI] [PubMed] [Google Scholar]
- 50. Landino L. M., Moynihan K. L., Todd J. V., Kennett K. L., Modulation of the redox state of tubulin by the glutathione/glutaredoxin reductase system, Biochem. Biophys. Res. Commun., 314: 555–560, 2004. [DOI] [PubMed] [Google Scholar]
- 51. Eaton P., Byers H. L., Leeds N., Ward M. A., Shattock M. J., Detection, quantitation, purification, and identification of cardiac proteins S‐thiolated during ischemia and reperfusion, J. Biol. Chem., 277: 9806–9811, 2002. [DOI] [PubMed] [Google Scholar]
- 52. Ghezzi P., Romines B., Fratelli M., Eberini I., Gianazza E., Casagrande S., Laragione T., Mengozzi M., Herzenberg L. A., Herzenberg L. A., Protein glutathionylation: coupling and uncoupling of glutathione to protein thiol groups in lymphocytes under oxidative stress and HIV infection, Mol. Immunol., 38: 773–780, 2002. [DOI] [PubMed] [Google Scholar]
- 53. Wang J., Tekle E., Oubrahim H., Mieyal J. J., Stadtman E. R., Chock P. B., Stable and controllable RNA interference: Investigating the physiological function of glutathionylated actin, Proc. Natl. Acad. Sci. USA, 100: 5103–5106, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Caplan J. F., Filipenko N. R., Fitzpatrick S. L., Waisman D. M., Regulation of annexin A2 by reversible glutathionylation, J. Biol. Chem., 279: 7740–7750, 2004. [DOI] [PubMed] [Google Scholar]
- 55. Lambert H., Charette S. J., Bernier A. F., Guimond A., Landry J., HSP27 multimerization mediated by phosphorylation‐sensitive intermolecular interactions at the amino terminus, J. Biol. Chem., 274: 9378–9385, 1999. [DOI] [PubMed] [Google Scholar]
- 56. Dalle‐Donne I., Rossi R., Milzani A., Di Simplicio P., Colombo R., The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic. Biol. Med., 31: 1624–1632, 2001. [DOI] [PubMed] [Google Scholar]
- 57. Hoppe G., Chai Y. C., Crabb J. W., Sears J. E., Protein Sglutathionylation in retinal pigment epithelium converts heat shock protein 70 to an active chaperone, Exp. Eye Res., 78: 1085–1092, 2004. [DOI] [PubMed] [Google Scholar]
- 58. Piemonte F., Pastore A., Tozzi G., Tagliacozzi D., Santorellli F. M., Carrozzo R., Casali C., Damiano M., Federici G., Bertini E., Glutathione in blood of patients with Friedreich's ataxia, Eur. J. Clin. Invest., 31: 1007–1011, 2001. [DOI] [PubMed] [Google Scholar]
- 59. Muscat J. E., Kleinman W., Colosimo S., Muir A., Lazarus P., Park J., Richie J. P. Jr., Enhanced prote glutathiolation and oxidative stress in cigarette smokers, Free Radic. Biol. Med., 36: 464–470, 2004. [DOI] [PubMed] [Google Scholar]
- 60. Herzenberg L. A., De Rosa S. C., Dubs J. G., Roederer M., Anderson M. T., Ela S. W., Deresinski S. C., Glutathione deficiency is associated with impaired survival in HIV disease, Proc. Natl. Acad. Sci. USA, 94: 1967–1972, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61. Niwa T., Naito C., Mawjood A. H. M., Imai K., Increased glutathionyl hemoglobin in diabetes mellitus and hyperlipidemia demonstrated by liquid chromatography/electrospray ionization‐mass spectrometry, Clin. Chem., 46: 82–88, 2000. [PubMed] [Google Scholar]
- 62. Al‐Abed Y., VanPatten S., Li H., Lawson J. A., Fitzgerald G. A., Manogue K. R., Bucala R., Characterization of a novel hemoglobin‐glutathione adduct that is elevated in diabetic patients, Mol. Med., 7: 619–623, 2001. [PMC free article] [PubMed] [Google Scholar]
- 63. Takayama F., Tsutsui S., Horie M., Shimokata K., Niwa T., Glutathionyl hemoglobin in uremic patients undergoing hemodialysis and continuous ambulatory peritoneal dialysis, Kidney Int. Suppl., 78: S155–158, 2001. [DOI] [PubMed] [Google Scholar]
- 64. Pastore A., Tozzi G., Gaeta L. M., Giannotti A., Bertini E., Federici G., Digilio M. C., Piemonte F., Glutathione metabolism and antioxidant enzymes in children with Down's syndrome, J. Pediatr., 142: 583–585, 2003. [DOI] [PubMed] [Google Scholar]
- 65. Bursell S. E., King G. L., The potential use of glutathionyl hemoglobin as a clinical marker of oxidative stress, Clin. Chem., 46: 145–146, 2000. [PubMed] [Google Scholar]
- 66. Kleinman W. A., Komninou D., Leutzinger Y., Colosimo S., Cox J., Lang C. A., Richie J. P. Jr., Protein glutathiolation in human blood, Biochem. Pharmacol., 65: 741–746, 2003. [DOI] [PubMed] [Google Scholar]
- 67. Mawatari S., Murakami K., Different types of glutathionylation of hemoglobin can exist in intact erythrocytes, Arch. Biochem. Biophys., 421: 108–114, 2004. [DOI] [PubMed] [Google Scholar]
- 68. Taylor E. R., Hurrell F., Shannon R. J., Lin T. K., Hirst J., Murphy M. P., Reversible glutathionylation of complex I increases mitochondrial superoxide formation, J. Biol. Chem., 278: 19603–19610, 2003. [DOI] [PubMed] [Google Scholar]
- 69. Rao R. K., Clayton L. W., Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation, Biochem. Biophys. Res. Commun., 293: 610–616, 2002. [DOI] [PubMed] [Google Scholar]
- 70. Mahadev K., Zilbering A., Zhu L., Goldstein B. J., Insulin‐stimulated hydrogen peroxide reversibly inhibits protein‐tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade, J. Biol. Chem., 276: 21938–21942, 2001. [DOI] [PubMed] [Google Scholar]
- 71. Casagrande S., Bonetto V., Fratelli M., Gianazza E., Eberini I., Massignan T., Salmona M., Chang G., Holmgren A., Ghezzi P., Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems, Proc. Natl. Acad. Sci. USA, 99: 9745–9749, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72. Lusini L., Tripodi S. A., Rossi R., Giannerini F., Giustarini D., del Vecchio M. T., Barbanti G., Cintorino M., Tosi P., Di Simplicio P., Altered glutathione anti‐oxidant metabolism during tumor progression in human renal‐cell carcinoma, Int. J. Cancer, 91: 55–59, 2001. [DOI] [PubMed] [Google Scholar]