Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(4):519–525. doi: 10.1111/j.1582-4934.2004.tb00476.x

Role of STAT‐1 and STAT‐3 in ischaemia/reperfusion injury

A Stephanou 1,
PMCID: PMC6740306  PMID: 15601580

Abstract

Ischaemia/reperfusion (I/R) injury results in the death of irreplaceable cardiac myocytes by a programme cell death or apoptosis. The signal transducers and activators of transcription (STAT) factors function as modulators of cytokine signaling and sensors responding to cellular stress. Interestingly, many studies have demonstrated that although they have a similar structural organization, STAT‐1 and STAT‐3 have apposing effects on processes such as differentiation or apoptosis. For example, STAT‐1 has been shown to induced apoptosis, whilst STAT3 is able protect cardiac myocytes following ischaemia/reperfusion (I/R) injury. Many of the effects of STAT‐1 and STAT‐3 involve the direct binding to DNA and transcriptional activation of target genes. However, recent studies have shown that for STAT‐1 some of its effects appear not to require DNA binding. For example, induction of apoptosis by STAT‐1 can be produced by the C‐terminal activation domain in the absence of the DNA binding domain. This therefore, appears to involve a co‐activator effect in which STAT‐1 is recruited to DNA via a DNA‐bound transcription factor. In this regard, it is of interest that STAT‐1 but not STAT‐3 has been shown to interact with p53 and enhance its growth arrest and apoptosis‐ inducing properties. Hence, the finding that STAT‐1 and STAT‐3 can modulate the apoptotic programme both by direct DNA binding or via a co‐activator mechanism and despite their very similar structures, suggests that these related factors may be therapeutic targets against the damage myocardium following I/R injury. Recently, we reported that the polyphenolic agent epigallocatechin‐3‐gallate (EGCG), a major constituent of green tea and a potent inhibitor of STAT‐1 activation, protects the myocardium against I/R injury.

Keywords: STAT‐1, STAT‐3, heart, ischaemia/reperfusion, heart failure, apoptosis

References

  • 1. Kitanaka C., Kuchino Y., Caspase‐independent programmed cell death with necrotic morphology, Cell Death Differ., 6: 508–515, 1999. [DOI] [PubMed] [Google Scholar]
  • 2. Green D., Apoptotic pathways: paper wraps stone blunts scissors, Cell, 102: 1–4, 2000. [DOI] [PubMed] [Google Scholar]
  • 3. Nicholson D.W., Thornberry N.A., Caspases: killer proteases, Trends. Biochem. Sci., 22: 299–306, 1997. [DOI] [PubMed] [Google Scholar]
  • 4. Green D.R., Reed J.C., Mitochondria and apoptosis, Science, 281: 1309–1312, 1998. [DOI] [PubMed] [Google Scholar]
  • 5. Levrero M., De Laurenzi V., Costanzo A., Gong J., Wang J. Y., Melino, G. , The p53/p63/p73 family of transcription factors: overlapping and distinct functions, J. Cell Sci, 113: 1661–1670, 2000. [DOI] [PubMed] [Google Scholar]
  • 6. Fliss H., Gattinger D., Apoptosis in ischaemic and reper‐fused rat heart, Cir. Res., 79: 949–956, 1996. [DOI] [PubMed] [Google Scholar]
  • 7. Olivevetti G., Quani F., Sala R., Lagrasta C., Corradi D., Bonacina E., Gambert S.R, Cigoa E., Anvera P., Acute myocardial infarction in humans is associated with the activation of programmed myocyte cell death in the surviving portion of the heart, J. Mol. Cell. Cardiol., 28: 2005–2016. 1994. [DOI] [PubMed] [Google Scholar]
  • 8. Lee P., Sata M., Lefer D.J., Factor S.M., Walsh K., Kitsis R.N., Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia‐reperfusion in vivo, Am. J. Physiol. Heart. Circ. Physiol. 284: H456–63, 2003. [DOI] [PubMed] [Google Scholar]
  • 9. Black S.C., Huang J.Q., Rezaiefar P., Radinovic S., Eberhart A., Nicholson D.W., Rodger I. W., Co‐localization of the cysteine protease caspase‐3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat, J Mol Cell Cardiol, 30: 733–742, 1998. [DOI] [PubMed] [Google Scholar]
  • 10. Stephanou A., Brar B.K., Scarabelli T., Knight R.A., Latchman D.S., Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes in ischaemia versus reperfusion injury, Cell Death Differentiation, 8: 434–435, 2001. [DOI] [PubMed] [Google Scholar]
  • 11. Scarabelli T., Stephanou A., Rayment N.B., Passini E., Comini L., Curello S., Ferrari R., Knight R.A., Latchman D.S. Apoptosis of endothelial cells prodedes myocyte cell apoptosis in ischaemia/reperfusion injury, Circulation 104: 253–256, 2001. [DOI] [PubMed] [Google Scholar]
  • 12. Darnell J.E., Jr. , STATs and gene regulation, Science, 277: 1630–1635, 1997. [DOI] [PubMed] [Google Scholar]
  • 13. Ihle J.N. The STAT family in cytokine signaling, Curr. Opin. Cell Biol 13: 211–217, 2001. [DOI] [PubMed] [Google Scholar]
  • 14. Yasukawa H., Sasaki A., Yoshimura A., Negative regulation of cytokine signalling pathways, Annu. Rev. Immunol., 18: 143–164, 2000. [DOI] [PubMed] [Google Scholar]
  • 15. Krebs D.L., Hilton D.J., SOCS: physiological suppressors of cytokine signaling, J. Cell Sci., 113: 2813–2819, 2000. [DOI] [PubMed] [Google Scholar]
  • 16. Greenhalgh C.J., Hilton D.J., Negative regulation of cytokine signaling, J. Leukoc. Biol., 70: 348–356, 2001. [PubMed] [Google Scholar]
  • 17. Liu B., Liao J., Rao X., Kushner S.A., Chung C.D., Chang D. D., Shuai, K. , Inhibition of STAT 1‐mediated gene activation by PIAS1, Proc. Natl. Acad. Sci. USA, 95: 10626–10631, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Chung C.D., Liao J., Liu B., Rao X., Jay P., Berta P., Shuai, K. , Specific inhibition of STAT3 signal transduction by PIAS3, Science, 278: 1803–1805, 1997. [DOI] [PubMed] [Google Scholar]
  • 19. Kunisada K., Hirota H., Fujio Y., Matsui H., Tani Y., Yamauci‐Takihara K., Kishimoto T., Activation of the JAK‐STAT and MAP kinase by leukemia inhibitory factor through gp1 30 in cardiac myocytes, Circulation, 94: 2626–2632, 1996. [DOI] [PubMed] [Google Scholar]
  • 20. Pan J., Fukada K., Kodama H., Makino S., Baba S., Hori S., Ogawa S., Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart, Circ. Res., 81: 199–208, 1997. [DOI] [PubMed] [Google Scholar]
  • 21. Xuan Y.T., Guo Y., Han H., Zhu Y., Bolli R., An essential role of the JAK‐STAT pathway in ischaemic preconditioning, Proc. Natl. Acad. Sci. USA, 98: 9050–9055, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Smith R.M., Suleman N., Lacerda L., Opie L.H., Akira S., Chien K.R., Sack M.N., Genetic depletion of cardiac myocyte STAT‐3 abolishes classical preconditioning, Cardiovasc. Res., 63: 611–616, 2004. [DOI] [PubMed] [Google Scholar]
  • 23. Stephanou A., Brar B.K., Scarabelli T., Jonassen A.K., Yellon D.M., Marber M.S., Knight R.A., Latchman D.S., Ischemia‐induced STAT‐1 expression and activation plays a critical role in cardiac myocyte apoptosis, J. Biol. Chem., 275: 10002–10008, 2000. [DOI] [PubMed] [Google Scholar]
  • 24. Stephanou A., Scarabelli T., Brar B.K., Nakanishi Y., Matsumura M., Knight R.A., Latchman D.S. Induction of apoptosis and Fas/FasL expression by ischaemia/reperfusion in cardiac myocytes requires serine 727 of the STAT1 but not tyrosine 701, J. Biol. Chem., 276: 28340–28347, 2001. [DOI] [PubMed] [Google Scholar]
  • 25. Negro S., Kunisada K., Tone E., Funamoto M., Oh H., Kishimoto T., Yamauchi‐Takihara K., Activation of the JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction, Cardiovasc. Res., 47: 797–805, 2000. [DOI] [PubMed] [Google Scholar]
  • 26. Stephanou A., Brar B., Heads R., Knight R.A., Marber M.S., Pennica D., Latchman, D.S. , Cardiotropin‐1 induces heat shock accumulation in cultured cardiac cells and protects them from stressful stimuli, J. Mol. Cell Cardiol., 30: 849–855, 1998. [DOI] [PubMed] [Google Scholar]
  • 27. Liao Z., Brar B.K., Cai Q., Stephanou A., O'Leary R.M., Pennica D., Yellon D.M., Latchman D.S., Cardiotrophin‐1 (CT–1) can protect the adult heart from injury when added both prior to ischaemia and at reperfusion, Cardiovasc. Res., 53: 902–910, 2002. [DOI] [PubMed] [Google Scholar]
  • 28. Hilfiker‐Kleiner D., Hilfiker A., Fuchs M., Kaminski K., Schaefer A., Schieffer B., Hillmer A., Schmiedl A., Ding Z, Podewski E., Podewski E., Poli V., Schneider M.D., Schulz R., Park J.K., Wollert K.C., Drexler H., Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury, Circ. Res., 95: 187–195, 2004. [DOI] [PubMed] [Google Scholar]
  • 29. Jacoby J.J., Kalinowski A., Liu MG., Zhang S.S., Gao Q., Chai G.X., Ji L., Iwamoto Y., Li E., Schneider M., Russell K.S., Fu X.Y., Cardiomyocyte‐restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age, Proc. Natl. Acad. Sci. USA, 100: 12929–12934, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Stephanou A., Brar B.K., Knight R.A., Latchman D.S., Opposing actions of STAT‐1 and STAT‐3 on the Bcl‐2 and Bcl‐x promoters, Cell Death Diff., 7: 329–330, 2000. [DOI] [PubMed] [Google Scholar]
  • 31. DaFonseca C.J., Shu F., Zhang J. J., Identification of two residues in MCM5 critical for the assembly of MCM complexes and Stat1‐mediated transcription activation in response to IFN‐gamma, Proc. Natl. Acad. Sci. USA, 98: 3034–3039, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Ouchi T., Lee S.M., Ouchi M., Aaronson S.A., Horvath C.M., Collaboration of signal transducer and activator of transcription 1 (STAT1) and BRCA1 in differential regulation of IFN‐γ‐ target genes, Proc. Natl. Acad. Sci. USA, 97: 5208–5213, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Townsend, P.A. , Scarabelli, T.M. , Davidson, S.M. , Knight, R.A. , Latchman, D.S. , Stephanou, A. STAT‐1 interacts with p53 to enhance DNA damage‐induced apoptosis, J. Biol. Chem. 279: 5811–5820, 2004. [DOI] [PubMed] [Google Scholar]
  • 34. Lin, J. , Tang, H. , Jin, X. , Jia, G. , Hsieh, J.T. p53 regulates Stat3 phosphorylation and DNA binding activity in human prostate cancer cells expressing constitutively active Stat3, Oncogene 21: 3082–3088, 2002. [DOI] [PubMed] [Google Scholar]
  • 35. Stephanou A., Scarabelli, T. , Townsend P.A., Bell R., Yellon D.M., Knight R.A., Latchman D.S., The carboxyl‐terminal activation domain of the STAT‐1 transcription factor enhances ischaemia/reperfusion‐induced apoptosis in cardiac myocytes, FASEB J., 16: 1841–1843, 2002. [DOI] [PubMed] [Google Scholar]
  • 36. King P. Goodbourn, S. , STAT1 is inactivated by a cas‐pase, J. Biol. Chem., 273: 8699–8704, 1998. [DOI] [PubMed] [Google Scholar]
  • 37. Menegazzi M., Tedeschi E., Dussin D., De Prati A.C., Cavalieri E, Mariotto S., Suzuki H., Anti‐interferon gamma action of epigallocatechin‐3‐gallate mediated by specific inhibition of STAT1 activation, FASEB J., 15: 1309–1311, 2001. [DOI] [PubMed] [Google Scholar]
  • 38. Townsend P.A., Scarabelli T.M., Pasini E., Gitti G., Menegazzi M., Suzuki H., Knight R. A. Latchman D. S., Stephanou A., Epigallocatechin‐3‐gallate inhibits STAT‐1 activation and protects cardiac myocytes from ischemia/reperfusion‐induced apoptosis, FASEB J., 18: 1621–1623, 2004. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES