Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(4):840–853. doi: 10.1111/j.1582-4934.2005.tb00383.x

Antisense‐ and RNA interference‐based therapeutic strategies in allergy

Florin‐Dan Popescu 1,
PMCID: PMC6740309  PMID: 16364194

Abstract

Modern therapeutic methods for manipulation of gene expression in allergic diseases have been receiving increased attention in the emerging era of functional genomics. With the growing application of gene silencing technologies, pharmacological modulation of translation represents a great advance in molecular therapy for allergy. Several strategies for sequence‐specific post‐transcriptional inhibition of gene expression can be distinguished: antisense oligonucleotides (AS‐ONs), ribozymes (RZs), DNA enzymes (DNAzymes), and RNA interference (RNAi) triggered by small interfering RNAs (siRNAs). Potential anti‐mRNA drugs in asthma and other allergic disorders may be targeted to cell surface receptors (adenosine A1 receptor, high‐affinity receptor Fc‐RI‐α, cytokine receptors), adhesion molecules and ligands (ICAM‐1, VLA‐4), ion channels (calcium‐dependent chloride channel‐1), cytokines and related factors (IL‐4, IL‐5, IL‐13, SCF, TNF‐α, TGF‐β1), intracellular signal transduction molecules, such as tyrosine‐protein kinases (Syk, Lyn, Btk), serine/threonine‐protein kinases (p38 α MAP kinase, Raf‐1), non‐kinase signaling proteins (RasGRP4), and transcription factors involved in Th2 differentiation and allergic inflammation (STAT‐6, GATA‐3, NF‐kB). The challenge to scientists is to determine which of the candidate targets warrants investment of time and resources. New‐generation respirable AS‐ONs, external guide sequence ribozymes, and RNA interference‐based therapies have the potential to satisfy unmet needs in allergy treatment, acting at a more proximal level to a key etiopathogenetic molecular process, represented by abnormal expression of genes. Moreover, antisense and siRNA technologies imply a more rational design of new drugs for allergy.

Keywords: allergy, antisense oligonucleotides, ribozymes, DNAzymes, RNA interference, small interfering RNAs

References

  • 1. Johansson, SG , Bieber, T , Dahl, R , Friedmann, PS , Lanier, BQ , Lockey, RF , Motala, C , Ortega Martell, JA , Platts‐Mills, TA , Ring, J , Thien, F , Van Cauwenberge, P , Williams, HC . Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the world Allergy Organization, October 2003. J Allergy Clin Immunol. 2004; 113: 832–6. [DOI] [PubMed] [Google Scholar]
  • 2. Scherer, LJ , Rossi, JJ . Approaches for the sequence‐specific knockdown of mRNA. Nat Biotechnol. 2003; 21: 1457–65. [DOI] [PubMed] [Google Scholar]
  • 3. Ball, HA , van Scott, MR , Robinson, CB . Sense and antisense: therapeutic potential of oligonucleotides and interference RNA in asthma and allergic disorders. Clin Rev Allergy Immunol. 2004; 27: 207–17. [DOI] [PubMed] [Google Scholar]
  • 4. Wild, LG , Lehrer, SB . Immunotherapy for food allergy. Curr Allergy Rep. 2001; 1: 48–53. [DOI] [PubMed] [Google Scholar]
  • 5. Popescu, FD . New asthma drugs acting on gene expression. J Cell Mol Med. 2003; 7: 475–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Howard, TD , Meyers, DA , Bleecker, ER . Mapping susceptibility genes for allergic diseases. Chest 2003; 123: 363–8. [DOI] [PubMed] [Google Scholar]
  • 7. Van Eerdewegh, P , Little, RD , Dupuis, J , Del Mastro, RG , Falls, K , Simon, J , Torrey, D , Pandit, S , McKenny, J , Braunschweiger, K , Walsh, A , Liu, Z , Hayward, B , Folz, C , Manning, SP , Bawa, A , Saracino, L , Thackston, M , Benchekroun, Y , Capparell, N , Wang, M , Adair, R , Feng, Y , Dubois, J , Fitzgerald, MG , Huang, H , Gibson, R , Allen, KM , Pedan, A , Danzing, MR , Umland, SP , Egan, RW , Cuss, FM , Rorke, S , Clough, JB , Holloway, JW , Holgate, ST , Keith, TP . Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002; 418: 426–30. [DOI] [PubMed] [Google Scholar]
  • 8. Holgate, ST , Davies, DE , Rorke, S , Cakebread, J , Murphy, G , Powell, RM , Holloway, JW . Indentification and possible functions of ADAM33 as an asthma susceptibility gene. Clin Exp Allergy Rev. 2004; 4: 49–55. [Google Scholar]
  • 9. Ball, HA , Sandrasagra, A , Tang, L , van Scott, M , Wild, J , Nyce, JW . Clinical potintial of respirable antisense oligonucleotides (RASONs) in asthma. Am J Pharmacogenomics. 2003; 3: 97–106. [DOI] [PubMed] [Google Scholar]
  • 10. Popescu, FD . Pharmacological modulation of gene expression in asthma (review in Japanese and English). International Review of Asthma (Japan). 2005; 7: 74–90. [Google Scholar]
  • 11. Grzela, K , Lazarczyk, M , Dziunycz, P , Milewski, L , Niderla, J , Grzela, T . Molecular therapy versus standard treatment in allergy (review). Int J Mol Med. 2004; 14: 3–22. [PubMed] [Google Scholar]
  • 12. Brysch, W . The design of appropriate control experiments to ensure specificity in antisense oligonucleotide function In: Leslie RA, Hunter J, Robertson HA, editors. Antisense technology in the central nervous system. USA Oxford University Press, 2000, p. 22–41. [Google Scholar]
  • 13. Isenberg‐Feig, H , Justice, JP , Keane‐Myers, A . Animal models of allergic asthma. Curr Allergy Asthma Reports. 2003; 3: 70–8. [DOI] [PubMed] [Google Scholar]
  • 14. Coffman, RL , Hessel, EM . Nonhuman primate models of asthma. J Exp Med. 2005; 201: 1875–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Kurreck, J . Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem. 2003; 270: 1628–44. [DOI] [PubMed] [Google Scholar]
  • 16. Tanaka, M , Nyce, J . Respirable antisense oligonucleotides: a new drug class for respiratory disease. Respir Res. 2001; 2: 5–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Ali, S , Leonard, SA , Kukoly, CA , Metzger, WJ , Wooles, WR , McGinty, JF , Tanaka, M , Sandrasagra, A , Nyce, JW . Absorption, distribution, metabolism, and excretion of a respirable antisense oligonucleotide for asthma. Am J Respir Crit Care Med. 2001; 163: 989–93. [DOI] [PubMed] [Google Scholar]
  • 18. Sandrasagra, A , Leonard, SA , Tang, L , van Gan, K , Ball, HA , Mannion, JC , Nyce, JW . Discovery and development of respirable antisense therapeutics for asthma. Antisense Nucleic Acid Drug Dev. 2002; 12: 177–81. [DOI] [PubMed] [Google Scholar]
  • 19. Paterson, D . Asthma: new drug targets and innovative therapeutics (London). IDrugs 2001; 4: 646–9. [PubMed] [Google Scholar]
  • 20. Finotto, S , De Sanctis, GT , Lehr, HA , Herz, U , Buerke, M , Schipp, M , Bartsch, B , Atreya, R , Schmitt, E , Galle, PR , Renz, H , Neurath, MF . Treatment of allergic inflammation and hyperresponsiveness by antisense‐induced local blockade of GATA‐3 expression. J Exp Med. 2001; 193: 1247–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Stenton, GR , Kim, MK , Nohara, O , Khen, CF , Hirji, N , Wills, FL , Gilchrist, M , Hwang, PH , Park, JG , Finlay, W , Jones, RL , Befus, AD , Schreiber, AD . Aerosolized Syk antisense suppresses Syk expression, mediator release from macrophages, and pulmonary inflammation. J Immunol. 2000; 164: 3790–7. [DOI] [PubMed] [Google Scholar]
  • 22. Stenton, GR , Ulanova, M , de Ry, RE , Merani, S , Kim, MK , Gilchrist, M , Puttagunta, L , Musat‐Marcu, S , James, D , Schreiber, AD , Befus, AD . Inhibition of allergic inflammation in the airways using aerosolized antisense to Syk kinase. J Immunol. 2002; 169: 1028–36. [DOI] [PubMed] [Google Scholar]
  • 23. Bochner, BS . Adhesion molecules as therapeutic targets. Immunol Allergy Clin N Am. 2004; 24: 615–30. [DOI] [PubMed] [Google Scholar]
  • 24. Nyce, J . Respirable antisense oligonucleotides: a new, thrid drug class targeting respiratory disease. Curr Opin Allergy Clin Immunol. 2002; 2: 533–6. [DOI] [PubMed] [Google Scholar]
  • 25. Kim, HM , Kim, KS , Lee, EH . Specific inhibition of immunoglobulin E‐mediated allergic reaction using antisense Fc‐RI‐α oligodeoxynucleotides. Immunology 1998; 93: 589–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Lach‐Trifilieff, E , McKay, RA , Monia, BP , Karras, JG , Walker, C . In vitro and in vivo inhibition of interleukin IL‐5‐mediated eosinopoiesis by murine IL‐5Rα antisense oligonucleotides. Am J Respir Cell Mol Biol. 2001; 24: 116–22. [DOI] [PubMed] [Google Scholar]
  • 27. Allam, M , Renzi, PM . Inhibition of GM‐CSF/IL‐3/IL‐5 signaling by antisense oligodeoxynucleotides targeting the common beta chain of their receptors. Antisense Nucleic Acid Drug Dev. 2001; 11: 289–300. [DOI] [PubMed] [Google Scholar]
  • 28. Allakhverdi, Z , Allam, M , Renzi, PM . Inhibition of antigen‐induced eosinophilia and airway hyperresponsiveness by antisense oligonucleotides directed against the common β chain of IL‐3, IL‐5, GM‐CSF receptors in a rat model of allergic asthama. Am J Respir Crit Care Med. 2002; 165: 1015–21. [DOI] [PubMed] [Google Scholar]
  • 29. Lofthouse, SA , Crosby, JR , Tung, D , Guha, M , Kowalski, D , Luther, D , Arberg, CC , Lin, D , Osgood, T , McKay, K , Gaarde, B , Tachas, G , Wraight, CJ , Monia, BP , Karras, JG , Gregory, SA . Aerosol delivery of VLA‐4 specific antisense oligonucleotides inhibit airway inflammation and hyperresponsiveness in mice. Respirology 2005; 10: A11. [Google Scholar]
  • 30. Hanai, K , Kurokawa, T , Minakuchi, Y , Maeda, M , Nagahara, S , Miyata, T , Ochiya, T , Sano, A . Potential of atelocollagen‐mediated systemic antisense therapeutics for inflammatory disease. Hum Gene Ther. 2004; 15: 263–72. [DOI] [PubMed] [Google Scholar]
  • 31. Nakanishi, A , Morita, S , Iwashita, H , Sagiya, Y , Ashida, Y , Shirafuji, H , Fujisawa Nishimura, O , Fujino, M . Role of gob‐5 in mucus overproduction and airway hyperresponsiveness in asthma. Proc Natl Acad Sci USA 2001; 98: 5175–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Hikida, M , Haruna, K , Ohmori, H . Suppression of interleukin 4 production from type 2 helper T cell clone by antisense oligodeoxynucleotide. Immunol Lett. 1992; 34: 297–302. [DOI] [PubMed] [Google Scholar]
  • 33. Benbernou, N , Matsiota‐Bernard, P , Guenounou, M . Antisense oligonucleotides to interleukin‐4 regulate IgE and IgG2a production by spleen cells from Nippostrongylus brasiliensis‐infected rats. Eur J Immunol. 1993; 23: 659–63. [DOI] [PubMed] [Google Scholar]
  • 34. Haruna, K , Hikida, M , Ohmori, H . Antigen‐specific but not polyclonal IgE response in murine B cells cocultured with Th2 clone is refractory to suppression by IL4‐depletion. Int Arch Allergy Immunol. 1993; 102: 152–9. [DOI] [PubMed] [Google Scholar]
  • 35. Molet, S , Ramos‐Barbon, D , Martin, JG , Hamid, Q . Adoptively transferred late allergic response is inhibited by IL‐4, but not IL‐5, antisense oligonucleotide. J Allergy Clin Immunol. 1999; 104: 1188. [DOI] [PubMed] [Google Scholar]
  • 36. Fiset, PO , Soussi‐Gounni, A , Christodoulopoulos, P , Tulic, M , Sobol, SE , Frenkiel, S , Lavigne, F , Lamkhioued, B , Hamid, Q . Modulation of allergic response in nasal mucosa by antisense oligodeoxynucleotides for IL‐4. J Allergy Clin Immunol. 2003; 111: 580–6. [DOI] [PubMed] [Google Scholar]
  • 37. Mousavi, T , Mazer, B , Tebianian, M . Inhibition of IL‐13 by antisense oligonucleotide changes immunoglobulin isotype profile in cultured B‐lymphocytes. Iran Biomed J. 2004; 8: 185–91. [Google Scholar]
  • 38. Finotto, S , Buerke, M , Lingnau, K , Schmitt, E , Galle, PR , Neurath, MF . Local administration of antisense phosphorothioate oligonucleotides to the c‐kit ligand, stem cell factor, suppresses airway inflammation and IL‐4 production in a murine model of asthma. J Allergy Clin Immunol. 2001; 107: 279–86. [DOI] [PubMed] [Google Scholar]
  • 39. Kim, HM , Lee, Y‐M . Role of TGF‐β1 on the IgE‐dependent anaphylaxis reaction. J Immunol. 1999; 126: 4960–5. [PubMed] [Google Scholar]
  • 40. Karras, JG , McGraw, K , McKay, RA , Cooper, SR , Lerner, D , Lu, T , Walker, C , de An, NM , Monia, BP . Inhibition of antigen‐induced eosinophilia and late phase airway hyperresponsiveness by an IL‐5 antisense oligonucleotide in mouse models of asthma. J Immunol. 2000; 164: 5409–15. [DOI] [PubMed] [Google Scholar]
  • 41. Crosby, JR , Tung, D , Guha, M , Luther, D , Kowalski, D , Osgood, T , Gaarde, B , Monia, B , Karras, J , Gregory, SA . Inhaled TNF‐α antisense oligonucleotide inhibits lung inflammation and airway hyper‐responsiveness in a mouse model of chronic asthma (poster 311). ATS; 2005. San Diego , Abstract Page: A905. [Google Scholar]
  • 42. Pazdrak, K , Olszewska‐Pazdrak, B , Stafford, S , Garofalo, RP , Alam, R . Lyn, Jak2, and Raf‐1 kinases are critical for the antiapoptotic effect of interleukin 5, whereas only Raf‐1 kinase is essential for eosinophil activation and degranulation. J Exp Med. 1998; 188: 421–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Stafford, S , Lowell, C , Sur, S , Alam, R . Lyn tyrosine kinase is important for IL‐5‐stimulated eosinophil differentiation. J Immunol. 2002; 168: 1978–83. [DOI] [PubMed] [Google Scholar]
  • 44. Ulanova, M , Puttagunta, L , Kim, MK , Schreiber, AD , Befus, AD . Antisense oligonucleotides to Syk kinase: a novel therapeutic approach for respiratory disorders. Curr Opin Investig Drugs. 2003; 4: 552–5. [PubMed] [Google Scholar]
  • 45. Duan, W , Chan, JH , McKay, K , Crosby, JR , Choo, HH , Leung, BP , Karras, JG , Wong, WS . Inhaled p38 α mitogen‐activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med. 2005; 171: 571–8. [DOI] [PubMed] [Google Scholar]
  • 46. Choi, IW , Kim, DK , Ko, HM , Lee, HK . Administration of antisense phosphorothioate oligonucleotide to the p65 subunit of NF‐kB inhibits established asthmatic reaction in mice. Int Immunopharmacol. 2004; 4: 1817–28. [DOI] [PubMed] [Google Scholar]
  • 47. Hill, S , Herlaar, E , Le Cardinal, A , Van Heeke, G , Nicklin, P . Homologous human and murine antisense oligonucleotides targeting STAT6. Am J Respir Cell Mol Biol. 1999; 21: 728–37. [DOI] [PubMed] [Google Scholar]
  • 48. Peng, Q , Matsuda, T , Hirst, SJ . Signaling pathways regulating interleukin‐13‐stimulated chemokine release from airway smooth muscle. Am J Respir Crit Care Med. 2004; 169: 596–603. [DOI] [PubMed] [Google Scholar]
  • 49. Bagheri, S , Kashani‐Sabet, M . Ribozymes in the age of molecular therapeutics. Curr Mol Med. 2004; 4: 489–506. [DOI] [PubMed] [Google Scholar]
  • 50. Cairns, MJ , Sun, LQ . Target‐site selection for the 10–23 DNAzyme. Methods Mol Biol. 2004; 252: 267–77. [DOI] [PubMed] [Google Scholar]
  • 51. Jen, KY , Gewirtz, AM . Suppression of gene expression by targeted disruption of messenger RNA: available options and current strategies. Stem Cells 2000; 18: 307–19. [DOI] [PubMed] [Google Scholar]
  • 52. Freelove, AC , Zheng, R . The power of ribozyme technologies: the logical way ahead for molecular medicine and gene therapy Curr Opin Mol Ther. 2002; 4: 419–22. [PubMed] [Google Scholar]
  • 53. Sandberg, JA , Lee, PA , Usman, LN . Ribozyme therapy In: Hansel TT, Barnes PJ, editors. New drugs for asthma, allergy and COPD. Basel : Karger, Prog Respir Res, 2001. vol 31, p. 370–3. [Google Scholar]
  • 54. Dreyfus, DH , Matczuk, A , Fuleihan, R . An RNA external guide sequence ribozyme targeting human interleukin‐4 receptor α mRNA. Int Immunopharmacol. 2004; 4: 1015–27. [DOI] [PubMed] [Google Scholar]
  • 55. Zhang, H , Altman, S . Inhibition of the expression of the human RNase P protein subunits Rpp21, Rpp25, Rpp29 by external guide sequences (EGSs) and siRNA. J Mol Biol. 2004; 342: 1077–83. [DOI] [PubMed] [Google Scholar]
  • 56. Wadhwa, R , Kaul, SC , Miyagishi, M , Taira, K . Know‐how of RNA interference and its applications in research and therapy. Mutat Res. 2004; 567: 71–84. [DOI] [PubMed] [Google Scholar]
  • 57. Bagasra, O , Prilliman, KR . RNA interference: the molecular immune system. J Mol Histol. 2004; 35:545–53. [DOI] [PubMed] [Google Scholar]
  • 58. Heinonen, JE , Smith, CI , Nore, BF . Silencing of Bruton's tyrosine kinase (Btk) using short interfering RNA duplexes (siRNA). FEBS Lett. 2002; 527: 274–8. [DOI] [PubMed] [Google Scholar]
  • 59. Li, L , Yang, Y , Stevens, RL . RasGRP4 regulates the expression of prostaglandin D2 in human and rat mast cell lines. J Biol Chem. 2003; 278: 4725–9. [DOI] [PubMed] [Google Scholar]
  • 60. Platz, J , Pinkenburg, O , Beisswenger, C , Puchner, A , Damm, T , Bals, R . Application of small interfering RNA (siRNA) for modulation of airway epithelial gene expression. Oligonucleotides 2005; 15: 132–8. [DOI] [PubMed] [Google Scholar]
  • 61. Guo, J , Fu, YC , Becerra, CR . Dissecting role of regulatiory factors in NF‐kB pathway with siRNA. Acta Pharmacol Sin. 2005; 26: 780–8. [DOI] [PubMed] [Google Scholar]
  • 62. Sorensen, DR , Leirdal, M , Sioud, M . Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol. 2003; 327: 761–6. [DOI] [PubMed] [Google Scholar]
  • 63. Scherr, M , Battmer, K , Dallmann, I , Ganser, A , Eder, M . Inhibition of GM‐CSF receptor function by stable RNA interference in a NOD/SCID mouse hematopoietic stem cell trasplantation model. Olignucleotides 2003; 13: 353–63. [DOI] [PubMed] [Google Scholar]
  • 64. Agrawal, S , Kandimalla, ER . Role of Toll‐like receptors in antisense and siRNA. Nat Biotechnol. 2004; 22: 1533–7. [DOI] [PubMed] [Google Scholar]
  • 65. Vollmer, J . Progress in drug development of immunostimulatory CpG oligodeoxynucleotide ligands for TLR9. Expert Opin Biol Ther. 2005; 5: 673–82. [DOI] [PubMed] [Google Scholar]
  • 66. Senn, JJ , Burel, S , Henry, SP . Non‐CpG‐containing antisense 2′‐methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll‐like receptor 9 or myeloid differentiation factor 88. J Pharmacol Exp Ther. 2005; 314: 972–9. [DOI] [PubMed] [Google Scholar]
  • 67. Heidel, JD , Hu, S , Liu, XF , Triche, TJ , Davis, ME . Lack of interferon response in animals to naked siRNAs. Nat Biotechnol. 2004; 22: 1579–82. [DOI] [PubMed] [Google Scholar]
  • 68. Kawasaki, H , Taira, K . Induction of DNA methylation and gene silencing by shor interfering RNAs in human cells. Nature 2004; 431: 211–7. [DOI] [PubMed] [Google Scholar]
  • 69. Bi, F , Liu, N , Fan, D . Small interfering RNA: a new tool for gene therapy. Curr Gene Ther. 2003; 3: 411–7. [DOI] [PubMed] [Google Scholar]
  • 70. Kalota, A , Shetzline, SE , Gewirtz, AM . Progress in the development of nucleic acid therapeutics for cancer. Cancer Biol Ther. 2004; 3: 4–12. [DOI] [PubMed] [Google Scholar]
  • 71. Krause, JR , Shahidi‐Asl, M . Molecular pathology in the diagnosis and ttreatment of non‐Hodgkin's lymphomas. J Cell Mol Med. 2003 Oct-Dec; 7(4): 494–512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Haulica, I . From molecular genetics to functional genomics and physiome. J Cell Mol Med. 2002 Oct-Dec; 6(4): 648–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Smythe, GM , Hodgetts, SI , Grounds, MD . Problems and solutions in myoblast transfer therapy. J Cell Mol Med. 2001 Jan-mar;5(1):33–47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Kemp, PJ , Peers, C , Lewis, A , Miller, P . Regulation of recombinant human brain tandem P domain K+ channels by hypoxia: a role for O2 in the control of neuronal excitability J Cell Mol Med. 2004 Jan-Mar;8(1):38–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Perkins, D . Targeting apoptosis in neurological disease using the herpes simplex virus. J Cell Mol Med. 2002 Jul-Sep:6(3):341–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Zaffaroni, N , Pennati, M , Daidone, MG . Survivin as a target for new anticancer interventions. J Cell Mol Med. 2005; 9: 360–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Scanlon, KJ . Anti‐genes: siRNA, ribozymes and antisense. Curr Pharm Biotechnol. 2004; 5: 415–20. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES