Abstract
Advances in mammalian cloning prove that somatic nuclei can be reprogrammed to a state of totipotency by transfer into oocytes. An alternative approach to reprogram the somatic genome involves the creation of hybrids between somatic cells and other cells that contain reprogramming activities. Potential fusion partners with reprogramming activities include embryonic stem cells, embryonic germ cells, embryonal carcinoma cells, and even differentiated cells. Recent advances in fusion‐mediated reprogramming are discussed from the standpoints of the developmental potency of hydrid cells, genetic and epigenetic correlates of reprogramming, and other aspects involved in the reprogramming process. In addition, the utility of fusion‐mediated reprogramming for future cell‐based therapies is discussed.
Keywords: embryonic stem cells, cell fusion, cell hybrid, reprogramming, epigenetics, nuclear transfer, therapeutic cloning, differentiation, transdifferentiation, dedifferentiation
References
- 1. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol. 1962; 4: 256–73. [DOI] [PubMed] [Google Scholar]
- 2. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385: 810–3. [DOI] [PubMed] [Google Scholar]
- 3. Eggan K, Akutsu H, Loring J, Jackson‐Grusby L, Klemm M, Rideout WM 3rd, Yanagimachi R, Jaenisch R. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA. 2001; 98: 6209–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Rideout WM 3rd, Wakayama T, Wutz A, Eggan K, Jackson‐Grusby L, Dausman J, Yanagimachi R, Jaenisch R. Generation of mice from wild‐type and targeted ES cells by nuclear cloning. Nat Genet. 2000; 24: 109–10. [DOI] [PubMed] [Google Scholar]
- 5. Jaenisch R Eggan K, Humpherys D, Rideout W, Hochedlinger K. Nuclear cloning, stem cells, and genomic reprogramming. Cloning Stem Cells 2002; 4: 389–96. [DOI] [PubMed] [Google Scholar]
- 6. Nichols J Zevnik B, Anastassiadis K, Niwa H, Klewe‐Nebenius D, Chambers I, Scholer H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95: 379–91. [DOI] [PubMed] [Google Scholar]
- 7. Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, Page DC, Jaenisch R. Incomplete reactivation of Oct4‐related genes in mouse embryos cloned from somatic nuclei. Development 2003; 130: 1673–80. [DOI] [PubMed] [Google Scholar]
- 8. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643–55. [DOI] [PubMed] [Google Scholar]
- 9. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631–42. [DOI] [PubMed] [Google Scholar]
- 10. Eggan K, Akutsu H, Hochedlinger K, Rideout W 3rd, Yanagimachi R, Jaenisch R. X‐Chromosome inactivation in cloned mouse embryos. Science 2000; 290: 1578–81. [DOI] [PubMed] [Google Scholar]
- 11. Shi W, Zakhartchenko V, Wolf E. Epigenetic reprogramming in mammalian nuclear transfer. Differentiation 2003; 71: 91–113. [DOI] [PubMed] [Google Scholar]
- 12. Bourc'his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard JP, Viegas‐Pequignot E. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol. 2001; 11: 1542–6. [DOI] [PubMed] [Google Scholar]
- 13. Mann MR, Chung YG, Nolen LD, Verona RI, Latham KE, Bartolomei MS. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol Reprod. 2003; 69: 902–14. [DOI] [PubMed] [Google Scholar]
- 14. Hochedlinger K, Jaenisch R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 2002; 415: 1035–8. [DOI] [PubMed] [Google Scholar]
- 15. Rideout WM 3rd, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 2002; 109: 17–27. [DOI] [PubMed] [Google Scholar]
- 16. Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM 3rd, Biniszkiewicz D, Yanagimachi R, Jaenisch R. Epigenetic instability in ES cells and cloned mice. Science 2001; 293: 95–7. [DOI] [PubMed] [Google Scholar]
- 17. Humpherys D, Eggan K, Akutsu H, Friedman A, Hochedlinger K, Yanagimachi R, Lander ES, Golub TR, Jaenisch R. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA. 2002; 99: 12889–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–5. [DOI] [PubMed] [Google Scholar]
- 19. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 2002; 416: 545–8. [DOI] [PubMed] [Google Scholar]
- 20. Harris RG, Herzog EL, Bruscia EM, Grove JE, van Arnam JS, Krause DS. Lack of a fusion requirement for development of bone marrow‐derived epithelia. Science 2004; 305: 90–3. [DOI] [PubMed] [Google Scholar]
- 21. Que J, El Oakley RM, Salto‐Tellez M, Wong N, de Kleijn DP, Teh M, Retnam L, Lim SK. Generation of hybrid cell lines with endothelial potential from spontaneous fusion of adult bone marrow cells wit embryonic fibroblast feeder. In Vitro Cell Dev Biol Anim. 2004; 40: 143–9. [DOI] [PubMed] [Google Scholar]
- 22. Pells S, Di Domenico AI, Gallagher EJ, McWhir J. Multipotentiality of neuronal cells after spontaneous fusion with embryonic stem cells and nuclear reprogramming In vitro. Cloning Stem Cells 2002; 4: 331–8. [DOI] [PubMed] [Google Scholar]
- 23. Matveeva NM, Shilov AG, Kaftanovskaya EM, Maximovsky LP, Zhelezova AI, Golubitsa AN, Bayborodin SI, Fokina MM, Serov OL. In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol Reprod Dev. 1998; 50: 128–38. [DOI] [PubMed] [Google Scholar]
- 24. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reporgramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 2001; 11: 1553–8. [DOI] [PubMed] [Google Scholar]
- 25. Hatano SY, Tada M, Kimura H, Yamaguchi S, Kono T, Nakano T, Suemori H, Nakatsuji N, Tada T. Pluripotential competence of cells associated with Nanog activity. Mech Dev. 2005; 122: 67–79. [DOI] [PubMed] [Google Scholar]
- 26. Kimura H, Tada M, Nakatsuji N, Tada T. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol. 2004; 24: 5710–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap stain leads to widespread expression of β‐galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA. 1997; 94: 3789–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Tada M, Morizane A, Kimura H, Kawasaki H, Ainscough JF, Sasai Y, Nakatsuji N, Tada T. Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn. 2003; 227: 504–10. [DOI] [PubMed] [Google Scholar]
- 29. Do JT, Scholer HR. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 2004; 22: 941–9. [DOI] [PubMed] [Google Scholar]
- 30. Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA metylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 1987; 99: 371–82. [DOI] [PubMed] [Google Scholar]
- 31. Hajkova P, Erhardt S, Lane N, Haaf T, El‐Maarri O, Reik W, Walter J, Surani MA. Epigenetic reprogramming in mouse primordial germ cells.. Mech Dev, 2002; 117: 15–23. [DOI] [PubMed] [Google Scholar]
- 32. Tada M, Tada T, Lefebvre L, Barton SC, Surani MA. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 1997; 16: 6210–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Flasza M, Shering AF, Smith K, Andrews PW, Talley P, Johnson PA. Reporgramming in inter‐species embryonal carcinoma‐somatic cell hybrids induces expression of pluripotency and differentiation markers. Cloning Stem Cells 2003; 5: 339–54. [DOI] [PubMed] [Google Scholar]
- 34. Serov OL, Matveeva NM, Kizilova EA, Kuznetsov SB, Zelezova AI, Golubitsa AN, Pristiazniuk IE, Puzakov MV. “Chromosome memory” of parental genomes in embryonic hybrid cells. Ontogenez 2003; 34: 216–27. [PubMed] [Google Scholar]
- 35. Dennis C. Developmental reprogramming: take a cell, any cell. Nature 2003; 426: p. 490–1. [DOI] [PubMed] [Google Scholar]
- 36. McGann CJ, Odelberg SJ, Keating MT. Mamalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci USA. 2001; 98: 13699–704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Landsverk HB, Hakelien AM, Kuntziger T, Robl JM, Skalhegg BS, Collas P. Reprogrammed gene expression in a somatic cell‐free extract. EMBO Rep. 2002; 3: 384–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Hakelien AM, Landsverk HB, Robl JM, Skalhegg BS, Collas P. Reprogramming fibroblasts to express T‐cell functions using cell extracts. Nat Biotechnol. 2002; 20: 460–6. [DOI] [PubMed] [Google Scholar]
- 39. Chen S, Zhang Q, Wu X, Schultz PG, Ding S. Dedifferentiation of lineage‐committed cells by a small molecule. J Am Chem Soc. 2004; 126: 410–1. [DOI] [PubMed] [Google Scholar]