Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(4):653–660. doi: 10.1111/j.1582-4934.2002.tb00464.x

Multiorgan dysfunction syndrome: how water might contribute to its progression

H Lange 1,
PMCID: PMC6741288  PMID: 12611650

Abstract

Mulitorgan dysfunction syndrome (MODS) is one of the most frequent conditions encountered in intensive‐care medicine. MODS is defined as total r partial loss oftwo or more organs with vital functions. The development of acute renal failure (ARF) in MODS leads to an additional aggravation with considerably higher hospital mortality than in other ICU patients with MODS. Whereas dissolved substances involved in the regulation of regional blood flow, endothelial cell injury, microvascular permeability, oxygnation, and nutrition of cells are at the focus of interest in MODS, hardly any scientific attention is paid to their main solvent water. An impaired renal water excretion and an icreased metabolic water volunme requiring exceetion interfere with diffusive and convective oxygen transport through the different fluid compartments. It will be shown first that the ratio of Uosm/Posm appears to be a reliable tools to assess overhydration in ARF. Secondly, the limits of urinary output in response to water intake will be considered. Furthermore, the metabolic water formation by an enhanced degradation of endogenous protein and fat will be discussed. Finally, the daily caloric intake is questioned with respect to energy expenditure and metabolic water formation.

Keywords: Multiorgan dysfunction syndrome, water balance, acute renal failure, osmolality, energy expenditure, nutrition

References

  • 1. Deitch E.A., Multiple organ failure: pathophysiology and potential future therapy, Ann. Surg., 216: 117–134, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Taylor D.E., Piantadosi C.A., Oxidative metabolism in sepsis and sepsis syndrome, J. Crit. Care, 10: 122–135, 1995. [DOI] [PubMed] [Google Scholar]
  • 3. Michie H.R., Metabolism of sepsis and multiple organ failure, World J. Surg., 20: 460–464, 1996. [DOI] [PubMed] [Google Scholar]
  • 4. Zhang H., Slutsky A.S., Vincent J.L., Oxygen free radicals in ARDS, septic shock and organ dysfunction, Intensive Care Med., 26: 474–476, 2000. [DOI] [PubMed] [Google Scholar]
  • 5. Gautam Narinder, Olofsson A. M., Herwald H., Iversen L.F., Lundgren‐Akerlund E., Hedqvist P., Arfors K.E., Flodgaard H., Lindbom L.: Heparin‐binding protein (HBP/CAP37): A missing link in neutrophile‐evoked alteration of vascular permeability, Nat. Med. 7: 1123–27, 2001. [DOI] [PubMed] [Google Scholar]
  • 6. Lange H., Wasserhaushalt: Ödeme und Über‐wässerung, Internist, 23: 710–717, 1982. [PubMed] [Google Scholar]
  • 7. Lange H., Seybold D., Dölle W., Harnkonzentrierung nach akutem Nierenversagen (ADH‐Refraktärität?), Klin. Wochenschr., 48: 1041–1046, 1970. [DOI] [PubMed] [Google Scholar]
  • 8. Lange H., Seybold D., Dölle W., Harnkonzentrierung in der oligoanurischen Phase des akuten Nierenversagens, Klin. Wochenschr., 51: 333–338, 1973. [DOI] [PubMed] [Google Scholar]
  • 9. Zak G.A., Brun C., Smith H.W., The mechanism of formation of osmotically concentrated urine during the antidiuretic state, J. Clin. Invest., 33: 1064–74, 1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Lange H., Seybold D., Beer M., Evidence against ADH unresponsiveness after kidney transplantation, Rein et Foie - Maladies de la Nutrition (Journées Internationales de Néphrologie, Vittel, 19–21 Septembre 1974), Rédacteurs en chef M.G. Chaumet, M.A. Gross; Société Générale des Eaux Minérales de Vittel; Imprimerie AMELOT, 27800 Brionne; 1975, XVI B: 495–501. [Google Scholar]
  • 11. Kleiber M., Der Energiehaushalt von Mensch und Haustier ‐ The Fire of Life. Publisher Paul Parey, Hamburg and Berlin 1967, p. 88, Tab. 5.5. [Google Scholar]
  • 12. Cuthbertson D.P., Post ‐ shock metabolic response, Lancet, 11: 433–437, 1942. [PubMed] [Google Scholar]
  • 13. Seybold D., Lange H., Direkte Kalorimetrie am Krankenbett, Verh. dt Ges. inn Med., 79: 1264–1266, 1973. [PubMed] [Google Scholar]
  • 14. Krautwald G., Der Einfluss von Glukokortikoiden auf den Energieumsatz des Menschen nach Nieren‐transplantation; Inauguraldissertation Marburg 1987.
  • 15. Lange H., Gräber T., Schwickardi M., A simplified procedure of direct calorimetry for bedside monitoring of the resting metabolic rate, Eur. J. Appl. Physiol., 71: 58–64, 1995. [DOI] [PubMed] [Google Scholar]
  • 16. Seybold D., Lange H., Direkte Kalorimetrie bei akutem Nierenversagen zur Bestimmung der metabolischen Wasserbildung, Verh. dt Ges. inn Med., 80: 800–802, 1974. [PubMed] [Google Scholar]
  • 17. Mueller T.F., Mueller A., Bachem M.G., Lange H., Immediate metabolic effects of different nutritional regimens in critically ill medical patients, Intensive Care Med., 21: 561–566, 1995. [DOI] [PubMed] [Google Scholar]
  • 18. Frankenfield D.C., Wiles C.E. 3rd, Bagley S., Siegel J.H., Relationships between resting and total energy expenditure in injured and septic patients, Crit. Care Med., 22: 1796–1804, 1994. [PubMed] [Google Scholar]
  • 19. Green C.J., Campbell I.T., McClelland P., Hufton J.L., Ahmed M.M., Helliwell T. R., Wilkes R.G., Gilbertson A.A., Bone J.M., Energy and nitrogen balance and changes in midupperarm circumference with multiple organ failure, Nutrition, 11: 739–746, 1995. [PubMed] [Google Scholar]
  • 20. Gilbert E.M., Haupt M.T., Mandanas R.Y., Huaringa A.J., and Carlson R.W.: The Effect of Fluid Loading, Blood Transfusion, and Catecholamine Infusion on Oxygen Delivery and Consumption in Patients with Sepsis, Am. Rev. Resp. Dis. 134: 873–878, 1986. [DOI] [PubMed] [Google Scholar]
  • 21. Memon R.A., Feingold K.R., Grunfeld C., The Effects of Cytokines on Intermediary Metabolism, Endocrinologist, 4: 56–63, 1994. [Google Scholar]
  • 22. Singer M., Management of multiple organ failure: guidelines but no hard‐and‐fast rules, J. Antimicrob. Chemother. 41 Suppl.: 103–112, 1998. [DOI] [PubMed] [Google Scholar]
  • 23. Narins Robert G. (Edt.), Maxwell and Kleeman's Clinical Disorders of Fluid and Electrolyte Metabolism, 5th Edit McGraw‐Hill Inc. 1994. p. 1425. [Google Scholar]
  • 24. Parrillo J.E., Pathogenetic Mechanisms of Septic Shock, N. Engl. J. Med., 328: 1471–1477, 1993. [DOI] [PubMed] [Google Scholar]
  • 25. Richard C., Tissue hypoxia ‐ How to detect, how to correct, how to prevent?, 3rd European Consensus Conference in Intensive Care Medicine, Intensive Care Med., 22: 1250–1257, 1996. [PubMed] [Google Scholar]
  • 26. Piiper J., Perfusion, diffusion and their heterogeneities limiting blood ‐ tissue O2 transfer in muscle, Acta Physiol. Scand., 168: 603–607, 2000. [DOI] [PubMed] [Google Scholar]
  • 27. Pittman R. N., Oxygen supply to contracting skeletal muscle at the microcirculatory level: diffusion vs. convection, Acta Physiol. Scand., 168: 593–602, 2000. [DOI] [PubMed] [Google Scholar]
  • 28. Wagner P.D., Diffusive resistance to O2 transport in muscle, Acta Physiol. Scand., 168: 609–614, 2000. [DOI] [PubMed] [Google Scholar]
  • 29. Richardson R.S., Noyszewski E.A., Kendrick K.F., Leigh J.S., Wagner P.D., Myoglobin O2 Desaturation during Exercise. Evidence of Limited O2 Transport, J. Clin. Invest., 96: 1916–1926, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Hoppeler H., Weibel E.R., Structural and functional limits for oxygen supply to muscle, Acta Physiol. Scand., 168: 445–456, 2000. [DOI] [PubMed] [Google Scholar]
  • 31. Umber F., Lehrbuch der Ernährung und der Stoffwechselkrankheiten für Ärzte und Studierende, Urban u. Schwarzenberg, Berlin , Wien , 1909. [Google Scholar]
  • 32. Askanazi J., Carpentier Y.A., Jeevanandam M., Michelsen C.B., Elwyn D.H., Kinney J.M., Energy expenditure, nitrogen balance, and norepinephrine excretion after injury, Surgery, 89: 78–84, 1981. [PubMed] [Google Scholar]
  • 33. Feinstein E.I., Blumenkrantz M.J., Healy M., Koffler A., Silberman H., Massry S.G., Kopple J.D., Clinical and metabolic responses to parenteral nutrition in acute renal failure, Medicine, 60: 124–137, 1981. [DOI] [PubMed] [Google Scholar]
  • 34. Askanazi J., Elwyn D.H., Silverberg P.A., Rosenbaum S.H., Kinney J.M., Respiratory distress secondary to a high carbohydrate load: A case report, Surgery, 87: 596–598, 1980. [PubMed] [Google Scholar]
  • 35. Askenazy J., Carpentier Y.A., Nordenstrom J., Elwyn D.H., Jeevandam M., Rosenbaum S.H., Gump F.E., Kinney J.M., Influence of Total Parenteral Nutrition on Fuel Utilisation in Injury and sepsis, Ann. Surg., 191: 40–46, 1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Askanazi J., Rosenbaum S.H., Hyman A.I., Silverberg P.A., Milic‐Guili J., Kinney J.M., Respiratory Changes Induced by the Large Glucose Loads of Total Parenteral Nutrition, JAMA, 243: 1444–1447, 1980. [PubMed] [Google Scholar]
  • 37. Casey L.C., Balk R.A., Bone R.C.: Plasma cytokines and endotoxin levels correlate with survival in patients with the sepsis syndrome, Ann. Intern. Med. 119: 771–778, 1993. [DOI] [PubMed] [Google Scholar]
  • 38. Streat S.J., Beddoe A.H., Hill G.L., Aggressive Nutritional Support Does not Prevent Protein Loss Despite Fat Gain in Septic Intensive Care Patients, J. Trauma., 27: 262–266, 1987. [DOI] [PubMed] [Google Scholar]
  • 39. Tappy L., Berger M., Schwarz J.M., McCamish M., Revelly J.P., Schneiter P., Jéquier E., Chioléro R., Hepatic and Peripheral Glucose Metabolism in Intensive Care Patients Receiving Continuous High‐ or Low‐Carbohydrate Enteral Nutrition, J. Parenter. Enteral. Nutr., 23: 260–268, 1999. [DOI] [PubMed] [Google Scholar]
  • 40. Gump F.E., Martin P., and Kinney J.M., Oxygen consumption and caloric expenditure in surgical patients, Surg. Gynecol. Obstet., 137: 499–513, 1973. [PubMed] [Google Scholar]
  • 41. Taveroff A., McArdle A.H., Rybka W.B.: Reducing parenteral energy and protein intake improves metabolic homeostasis after bone marrow transplantation, Am. J. Clin. Nutr. 54: 1087–1092, 1991. [DOI] [PubMed] [Google Scholar]
  • 42. Alexander J.W., Gonce S.J., Miskell P.W., Peck M.D., Sax H., A new model for studying nutrition in peritonitis ‐ The adverse effect of overfeeding, Ann. Surg., 209: 334–340, 1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Kubo C., Johnson B.C., Day N.K., Good R.A., Calorie source, calorie restriction, immunity and aging of (NZB/NZW)F1 mice, J. Nutr., 114: 1884–99, 1984. [DOI] [PubMed] [Google Scholar]
  • 44. Zaloga G.P., Roberts P., Permissive Underfeeding, New Horizons 1994; 2: 257–263. [PubMed] [Google Scholar]
  • 45. Toigo G., Aparicio M., Attman P.O., Cano N., Cianciaruso B., Engel B., Fouque D., Heidland A., Teplan V., Wanner C., Expert working group report on nutrition in adult patients with renal insufficiency (Part 2 of 2), Clin. Nutr., 19: 281–291, 2000. [DOI] [PubMed] [Google Scholar]
  • 46. Samadi N., Kuhlmann U., Lange H. et al., unpublished data, 2000.
  • 47. Knaus W.A., Draper E.A., Wagner D.P., Zimmerman J.E., APACHE II: A severity of disease classification system, Crit. Care Med., 13: 818–829, 1985. [PubMed] [Google Scholar]
  • 48. Klein S., Kinney J., Jeejeebhoy K., Alpers D., Hellerstein M., Murray M., Twomey P., Nutrition Support in Clinical Practice: Review of Published Data and Recommendations for Future Research Directions, Am. J. Clin. Nutr., 66: 683–706, 1997. [DOI] [PubMed] [Google Scholar]
  • 49. DeMendonca A., Vincent J.L., Suter P.M., Moreno R., Dearden N.M., Antonelli M., Takala J., Sprung C., Cantraine F., Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score, Intensive Care Med., 26: 915–921, 2000. [DOI] [PubMed] [Google Scholar]
  • 50. Marshall J.C., Clinical trials of mediator‐directed therapy in sepsis: what have we learned?, Intensive Care Med. 26 Suppl: 75–83, 2000. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES