Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(4):539–553. doi: 10.1111/j.1582-4934.2002.tb00453.x

Activated c‐Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer

G Maulik 1, P Madhiwala 1, S Brooks 1, P C Ma 1,2, T Kijima 1, E V Tibaldi 3, E Schaefer 4, K Parmar 5, R Salgia 1,
PMCID: PMC6741298  PMID: 12611639

Abstract

Small cell lung cancer (SCLC) is an aggressive illness with early metastases. There are several receptor tyrosine kinases (RTKs) overexpressed in SCLC, including c‐Met. c‐Met contains an external semaphorin‐like domain, a cytoplasmic juxtamembrane domain, tyrosine kinase domain and multiple tyrosines that bind to adapter molecules. We have previously reported that c‐Met is abundantly expressed in the NCI‐H69 SCLC cell line and now have determined the downstream effects of stimulating c‐Met via its ligand hepatocyte growth factor (HGF). Utilizing unique phospho‐specific antibodies generated against various tyrosines of c‐Met, we show that Y1003 (binding site for c‐Cb1 and a negative regulatory site), Y1313 (binding site for PI3K), Y1230/Y1234/Y1235 (autophosphorylation site), Y1349 (binding site for Grb2), Y1365 (important in cell morphogenesis) are phosphorylated in response to HGF (40 ng/ml, 7.5 min) in H69 cells. Since multiple biological and biochemical effects are transduced through the PI3K pathway, we determine the role of PI3K in the c‐Met/HGF stimulation pathway. We initially determined that by inhibiting PI3K with LY294002 (50μM over 72 hours), there was at least a 55% decrease in viability of H69 cells. Since H69 SCLC cells form clusters in cell culture, we determined the effects of HGF and LY294002 on cell motility of the clusters by time‐lapse video microscopy. In response to HGF, SCLC moved much faster and formed more clusters, and this was inhibited by LY294002. Finally, we determined the downstream signal transduction of HGF stimulation of c‐Met with and without inhibition of c‐Met (with geldanamycin, an anisamycin antibiotic that inhibits c‐Met in SCLC) or PI3K (with LY294002). We show that association of c‐Met with PI3K and GAB2 is diminished by inhibiting c‐Met. In summary, activation of the c‐Met pathway targets the PI3K pathway in SCLC and this may be an important therapeutic target.

Keywords: signal transduction in lung cancer, PI3‐K, cell motility, c‐Met/HGF, geldanamycin

References

  • 1. Maulik G., Kijima T., Ma P.C., Ghosh S.K., Lin J., Shapiro G.I., Schaefer E., Tibaldi E., Johnson B.E., and Salgia R., Modulation of the c‐Met/hepatocyte growth factor pathway in small cell lung cancer, Clin. Cancer Res., 8: 620–627, 2002. [PubMed] [Google Scholar]
  • 2. Salgia R., Skarin, A.T. , Molecular abnormalities in lung cancer, J. Clin. Oncol., 16: 1207–1217, 1998. [DOI] [PubMed] [Google Scholar]
  • 3. Wang W.L., Healy M.E., Sattler M., Verma S., Lin J., Maulik G., Stiles C.D., Griffin J.D., Johnson B.E., Salgia R., Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571, Oncogene, 19: 3521–3528, 2000. [DOI] [PubMed] [Google Scholar]
  • 4. B. E. J. , Phase 11 study of ST571 (Gleevec) for patients with small cell lung cancer, Thirty Eight Annual Meeting of American Society of Clinical Oncology, Orlando, Florida, May 20, 2002, pp. 293a.
  • 5. To C.T. Tsao M.S., The roles of hepatocyte growth factor/scatter factor and met receptor in human cancers (Review), Oncol. Rep., 5: 1013–1024, 1998. [DOI] [PubMed] [Google Scholar]
  • 6. Faletto D.L., Tsarfaty I., Kmiecik T.E., Gonzatti M., Suzuki T., Vande Woude G.F., Evidence for non‐covalent clusters of the c‐met proto‐oncogene product, Oncogene, 7: 1149–1157, 1992. [PubMed] [Google Scholar]
  • 7. Schmidt L., Junker K., Weirich G., Glenn G., Choyke P., Lubensky I., Zhuang Z., Jeffers M., Vande Woude G., Neumann H., Walther M., Linehan W.M., Zbar B., Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto‐oncogene, Cancer Res., 58: 1719–1722, 1998. [PubMed] [Google Scholar]
  • 8. Stella M.C. Comoglio P.M., HGF: a multifunctional growth factor controlling cell scattering, Int. J. Biochem. Cell. Biol., 31: 1357–1362, 1999. [DOI] [PubMed] [Google Scholar]
  • 9. Ueno H., Honda H., Nakamoto T., Yamagata T., Sasaki K., Miyagawa K., Mitani K., Yazaki Y., Hirai H., The phosphatidylinositol 3' kinase pathway is required for the survival signal of leukocyte tyrosine kinase, Oncogene, 14: 3067–3072, 1997. [DOI] [PubMed] [Google Scholar]
  • 10. Kubota Y., Angelotti T., Niederfellner G., Herbst R., Ullrich A., Activation of phosphatidylinositol 3‐kinase is necessary for differentiation of FDC‐P1 cells following stimulation of type III receptor tyrosine kinases, Cell. Growth Differ., 9: 247–256, 1998. [PubMed] [Google Scholar]
  • 11. Kennedy S.G., Wagner A.J., Conzen S.D., Jordan J., Bellacosa A., Tsichlis P.N., Hay N., The PI 3‐kinase/Akt signaling pathway delivers an anti‐apoptotic signal, Genes Dev., 11: 701–713, 1997. [DOI] [PubMed] [Google Scholar]
  • 12. Moore S.M., Rintoul R.C., Walker T.R., Chilvers E.R., Haslett C., Sethi T., The pressence of a constitutively active phosphoinositide 3‐kinase in small cell lung cancer cells mediates anchorage‐independent proliferation via a protein kinase B and p70s6k‐dependent pathway, Cancer Res., 58: 5239–5247, 1998. [PubMed] [Google Scholar]
  • 13. Rameh L.E., Cantley L.C., The role of phosphoinositide 3‐kinase lipid products in cell function, J. Biol. Chem., 274: 8347–8350, 1999. [DOI] [PubMed] [Google Scholar]
  • 14. Berrie C.P., Phosphoinositide 3‐kinase inhibition in cancer treatment, Expert Opin. Investig. Drugs, 10: 1085–1098, 2001. [DOI] [PubMed] [Google Scholar]
  • 15. Guo M., Joiakim A., Reiners, J.J. Jr. , Suppression of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD)‐mediated aryl hydrocarbon receptor transformation and CYP1A1 induction by the phosphatidylinositol 3‐kinase inhibitor 2‐(4‐morpholinyl)‐8‐phenyl‐4H‐1‐benzopyran‐4‐one (LY294002), Biochem. Pharmacol., 60: 635–642, 2000. [DOI] [PubMed] [Google Scholar]
  • 16. Maulik G., Shrikhande A., Kijima T., Ma P.C., Morrison P.T., Salgia R., Role of the hepatocyte growth factor receptor, c‐Met, in oncogenesis and potential for therapeutic inhibition, Cytokine Growth Factor Rev., 13: 41–59, 2002. [DOI] [PubMed] [Google Scholar]
  • 17. Olivero M., Rizzo M., Madeddu R., Casadio C., Pennacchietti S., Nicotra M.R., Prat M., Maggi G., Arena N., Natali P.G., Comoglio P.M., Di Renzo M.F., Overexpression and activation of hepatocyte growth factor/scatter factor in human non‐small‐cell lung carcinomas, Br. J. Cancer, 74: 1862–1868, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Ichimura E., Maeshima A., Nakajima T., Nakamura T., Expression of c‐met/HGF receptor in human non‐small cell lung carcinomas in vitro and in vivo and its prognostic significance, Jpn. J. Cancer Res., 87: 1063–1069, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Rygaard K., Nakamura T., Spang‐Thomsen M, Expression of the proto‐oncogenes c‐met and c‐kit and their ligands, hepatocyte growth factor/scatter factor and stem cell factor, in SCLC cell lines and xenografts, Br. J. Cancer, 67: 37–46, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Wybenga‐Groot L.E., Baskin B., Ong S.H., Tong J., Pawson T., Sicheri F., Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell, 106: 745–757, 2001. [DOI] [PubMed] [Google Scholar]
  • 21. Baxter R.M., Secrist J.P., Vaillancourt R.R., Kazlauskas A., Full activation of the plateletderived growth factor beta‐receptor kinase involves multiple events. J. Biol. Chem., 273: 17050–17055, 1998. [DOI] [PubMed] [Google Scholar]
  • 22. Irusta P.M., DiMaio D., A single amino acid substitution in a WW‐like domain of diverse members of the PDGF receptor subfamily of tyrosine kinases causes constitutive receptor activation, Embo. J., 17: 6912–6923, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Nakao M., Yokota S., Iwai T., Kaneko H., Horiike S., Kashima K., Sonoda Y., Fujimoto T., Misawa S., Internal tandem duplication of the flt3 gene found in acute myeloid leukemia, Leukemia, 10: 1911–1918, 1996. [PubMed] [Google Scholar]
  • 24. Yokota S., Kiyoi H., Nakao M., Iwai T., Misawa S., Okuda T., Sonoda Y., Abe T., Kahsima K., Matsuo Y., Naoe T., Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines, Leukemia, 11: 1605–1609, 1997. [DOI] [PubMed] [Google Scholar]
  • 25. Hayakawa F., Towatari M., Kiyoi H., Tanimoto M., Kitamura T., Saito H., Naoe, T. , Tandem‐duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL‐3‐dependent cell lines, Oncogene, 19: 624–631, 2000. [DOI] [PubMed] [Google Scholar]
  • 26. Bladt F., Riethmacher D., Isenmann S., Aguzzi A., Birchmeier C., Essential role for the c‐met receptor in the migration of myogenic precursor cells into the limb bud [see comments], Nature, 376: 768–771, 1995. [DOI] [PubMed] [Google Scholar]
  • 27. Nobes C.D., Hall A, Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility, Biochem. Soc. Trans., 23: 456–459, 1995. [DOI] [PubMed] [Google Scholar]
  • 28. Nobes C.D., Hall A., Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell, 81: 53–62, 1995. [DOI] [PubMed] [Google Scholar]
  • 29. Derman M.P., Cunha M.J., Barros E.J., Nigam S.K., Cantley L.G., HGF‐mediated chemotaxis and tubulogenesis require activation of the phosphatidylinositol 3‐kinase, Am. J. Physiol., 268: F1211–1217, 1995. [DOI] [PubMed] [Google Scholar]
  • 30. Derman M.P., Chen J.Y., Spokes K.C., Songyang Z., Cantley L.G., An 11‐amino acid sequence from c‐met initiates epithelial chemotaxis via phosphatidylinositol 3‐kinase and phospholipase C, J. Biol. Chem., 271: 4251–4255, 1996. [DOI] [PubMed] [Google Scholar]
  • 31. Ridley A.J., Paterson H.F., Johnston C.L., Diekmann D., Hall A., The small GTP‐binding protein rac regulates growth factor‐induced membrane ruffling. Cell, 70: 401–410, 1992. [DOI] [PubMed] [Google Scholar]
  • 32. Ridley A.J., Hall A., The small GTP‐binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell, 70: 389–399, 1992. [DOI] [PubMed] [Google Scholar]
  • 33. Ridley A.J., Comoglio P.M., Hall A., Regulation of scotter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells, Mol. Cell. Biol., 15: 1110–1122, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Graziani A., Gramaglia D., Dalla Zonca P., Comoglio P.M., Hepatocyte growth factor/scatter factor stimulates the Ras‐guanine nucleotide exchanger, J. Biol. Chem., 268: 9165–9168, 1993. [PubMed] [Google Scholar]
  • 35. Itoh M., Yoshida Y., Nishida K., Narimatsu M., Hibi M., Hirano T., Tole of Gab1 in heart, placenta, and skin development and growth factor and cytokine‐induced extracellular signal‐regulated kinase mitogen‐activated protein kinase activation. Mol. Cell. Biol., 20: 3695–3704, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Gu H., Saito K., Klaman L.D., Shen J., Fleming T., Wang Y., Pratt J.C., Lin G., Limb B., Kinet J.P., Neel B.G., Essential role for Gab2 in the allergic response, Nature, 412: 186–190, 2001. [DOI] [PubMed] [Google Scholar]
  • 37. Zhang S., Broxmeyer H.E., Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp‐2, grb2, and PI3 kinase, Biochem. Biophys. Res. Commun., 277: 195–199, 2000. [DOI] [PubMed] [Google Scholar]
  • 38. Yamasaki S., Nishida K., Hibi M., Sakuma M., Shiina R., Takeuchi A., Ohnishi H., Hirano T., Saito T., Docking protein Gab2 in phosphorylated by ZAP‐70 and negatively regulates T cell receptor signaling by recruitment of inhibitory molecules, J. Biol. Chem., 276: 45175–45183, 2001. [DOI] [PubMed] [Google Scholar]
  • 39. Neckers L., Schulte T., Mimnaugh E., Geldanamycin as a potential anti‐cancer agent: Its molecular target and biochemical activity, Invest. New Drugs, 17: 361–373, 1999. [DOI] [PubMed] [Google Scholar]
  • 40. An W.G., Schulte T.W., Neckers L.M., The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr‐abl and v‐src proteins before their degradation by the proteasome [In Process Citation], Cell Growth Differ., 11: 355–360, 2000. [PubMed] [Google Scholar]
  • 41. Tamura Y., Peng P., Liu K., Daou M., Srivastava P., Immunotherapy of tumors with autologous tumor‐derived heat shock protein proparations, Science, 278: 117–120, 1997. [DOI] [PubMed] [Google Scholar]
  • 42. Asea A., Rehli M., Kabingu E., Boch J.A., Bare O., Auron P.E., Stevenson M.A., Calderwood S.K., Novel signal transduction pathway utilized by extracellular HSP70: role of toll‐like receptor (TLR) 2 and TLR4, J. Biol. Chem., 277: 15028–15034, 2002. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES