Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(1):59–71. doi: 10.1111/j.1582-4934.2005.tb00337.x

The activation of Akt/PKB signaling pathway and cell survival

Gang Song 1, Gaoliang Ouyang 1, Shideng Bao 1,2,
PMCID: PMC6741304  PMID: 15784165

Abstract

Akt/PKB is a serine/threonine protein kinase that functions as a critical regulator of cell survival and proliferation. Akt/PKB family comprises three highly homologous members known as PKBα/Akt1, PKBβ/Akt2 and PKBγ/Akt3 in mammalian cells. Similar to many other protein kinases, Akt/PKB contains a conserved domain structure including a specific PH domain, a central kinase domain and a carboxyl‐terminal regulatory domain that mediates the interaction between signaling molecules. Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival. This review surveys recent developments in understanding the molecular mechanisms of Akt/PKB activation and its roles in cell survival in normal and cancer cells.

Keywords: Akt/PKB, protein phosphorylation, cell survival, apoptosis

References

  • 1. Nicholson K.M., Anderson N.G., The Akt/PKB signalling pathway in human malignancy, Cell signal, 14: 381–395, 2002. [DOI] [PubMed] [Google Scholar]
  • 2. Hajduch E, Litherland G.J., Hundal H.S., Protein kinase B (Akt/PKB)‐a key regulator of glucose transport?, FEBS Lett., 492: 199–203, 2001. [DOI] [PubMed] [Google Scholar]
  • 3. Coffer P.J., Woodgett J.R., Molecular cloning and characterization of a novel putative protein‐serine kinase related to the cAMP dependent and protein kinase C families, Eur. J. Biochem., 201: 475–481, 1991. [DOI] [PubMed] [Google Scholar]
  • 4. Jones P.F., Jakubowicz T., Pitossi F.J., Maurer F., Hemmings B.A., Molecular cloning and identification of a serine/threonine protein kinase of the second‐messenger subfamily, Proc. Natl. Acad. Sci. USA., 88: 4171–4175, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Bellacosa A., Testa J.R., Staal S.P., Tsichlis P.N., A retroviral oncogene, akt, encoding a serine‐threonine kinase containing an SH2‐like region, Science, 254: 274–277, 1991. [DOI] [PubMed] [Google Scholar]
  • 6. Jones P.F., Jakubowicz T., Hemmings B.A., Molecular cloning of a second form of rac protein kinase, Cell Regul., 2: 1001–1009, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Cheng J.Q., Godwin A.K., Bellacosa A., Taguchi T., Franke T.F., Hamilton T.C., Tsichlis P.N., Testa J.R., AKT2, a putative oncogene encoding a member of a subfamily of protein‐serine/threonine kinases, is amplified in human ovarian carcinomas, Proc. Natl. Acad. Sci. USA., 89: 9267–9271, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Brodbeck D., Cron P., Hemmings B.A., A human protein kinase B with regulatory phosphorylation sites in the activation loop and in the C‐terminal hydrophobic domain, J. Biol. Chem., 274: 9133–9136, 1999. [DOI] [PubMed] [Google Scholar]
  • 9. Brazil D.P., Hemmings B.A., Ten years of protein kinase B signalling: a hard Akt to follow, Trends Biochem. Sci., 26: 657–664, 2001. [DOI] [PubMed] [Google Scholar]
  • 10. Tyers M., Rachubinski R.A., Stewart M.I., Varrichio A.M., Shorr R.G., Haslam R.J., Harley C.B., Molecular cloning and expression of the major protein kinase C substrate of platelets, Nature, 333: 470–473, 1998. [DOI] [PubMed] [Google Scholar]
  • 11. Lietzke S.E., Bose S., Cronin T., Klarlund J., Chawla A., Czech M.P., Lambright D.G., Structural basis of 3‐phosphoinositide recognition by pleckstrin homology domains, Mol Cell, 6: 385–394, 2000. [DOI] [PubMed] [Google Scholar]
  • 12. Ferguson K.M., Kavran J.M., Sankaran V.G., Fournier E., Isakoff S.J., Skolnik E.Y., Lemmon M.A., Structural basis for discrimination of 3‐phosphoinositides by pleckstrin homology domains, Mol. Cell, 6: 373–384, 2000. [DOI] [PubMed] [Google Scholar]
  • 13. James S.R., Downes C.P., Gigg R., Grove S.J., Holmes A.B., Alessi D.R., Specific binding of the Akt‐1 protein kinase to phosphatidylinositol 3,4,5‐trisphosphate without subsequent activation, Biochem. J., 315: 709–713, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Frech M., Andjelkovic M., Ingley E., Reddy K.K., Falck J.R., Hemmings B.A., High affinity binding of inositol phosphates and phosphoinositides to the Pleckstrin homology domain of RAC protein kinase B and their influence on kinase activity, J. Biol. Chem., 272: 8474–8481, 1997. [DOI] [PubMed] [Google Scholar]
  • 15. Thomas C.C., Deak M., Alessi D.R., Van Aalten D.M., High‐resolution structure of the pleckstrin homology domain of Akt/PKB bound to phosphatidylinositol (3,4,5)‐ trisphosphate, Curr. Biol., 12: 1256–1262, 2002. [DOI] [PubMed] [Google Scholar]
  • 16. Peterson R.T., Schreiber S.L., Kinase phosphorylation: keeping it all in the family, Curr. Biol., 9: R521–524, 1999. [DOI] [PubMed] [Google Scholar]
  • 17. Alessi D.R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B.A., Mechanism of activation of protein kinase B by insulin and IGF‐1, EMBO. J., 15: 6541–6551, 1996. [PMC free article] [PubMed] [Google Scholar]
  • 18. Andjelkovic M., Alessi D.R., Meier R., Fernandez A., Lamb N.J., Frech M., Cron P., Cohen P., Lucocq J.M., Hemmings B.A., Role of translocation in the activation and function of protein kinase B, J. Biol. Chem., 272: 31515–31524, 1997. [DOI] [PubMed] [Google Scholar]
  • 19. Brodbeck D., Hill M.M., Hemmings B.A., Two splice variants of protein kinase B g have different regulatory capacity depending on the presence or absence of the regulatory phosphorylation site serine 472 in the carboxyl‐terminal hydrophobic domain, J. Biol. Chem., 276: 29550–29558, 2001. [DOI] [PubMed] [Google Scholar]
  • 20. Konishi H., Kuroda S., Tanaka M., Matsuzaki H., Ono Y., Kameyama K., Haga T., Kikkawa U., Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins, Biochem. Biophys. Res. Commun., 216: 526–534, 1995. [DOI] [PubMed] [Google Scholar]
  • 21. Wymann M.P., Zvelebil M., Laffargue M., Phosphoinositide 3‐kinase signaling‐which way to target?, Trends Pharmacol. Sci., 24: 366–376, 2003. [DOI] [PubMed] [Google Scholar]
  • 22. Simpson L., Parsons R., PTEN: life as a tumor suppressor, Exp. Cell. Res, 264: 29–41, 2001. [DOI] [PubMed] [Google Scholar]
  • 23. Lemmon M.A., Ferguson K.M., Signal‐dependent membrane targeting by pleckstrin homology (PH) domains, Biochem. J., 350: 1–18, 2000. [PMC free article] [PubMed] [Google Scholar]
  • 24. Andjelkovic M., Alessi D.R., Meier R., Fernandez A., Lamb N.J., Frech M., Cron P., Cohen P., Lucocq J.M., Hemmings B.A., Role of translocation in the activation and function of protein kinase B, J. Biol. Chem., 272: 31515–31524, 1997. [DOI] [PubMed] [Google Scholar]
  • 25. Stephens L., Anderson K., Stokoe D., Erdjument‐Bromage H., Painter G.F., Holmes A.B., Gaffney P.R., Reese C.B., McCormick F., Tempst P., Coadwell J., Hawkins P.T., Protein kinase B kinases that mediate phosphatidylinositol 3,4,5‐trisphosphate‐dependent activation of protein kinase B, Science, 279: 710–714, 1998. [DOI] [PubMed] [Google Scholar]
  • 26. Toker A., Newton A.C., Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK‐2 site, J. Biol. Chem., 275: 8271–8274, 2000. [DOI] [PubMed] [Google Scholar]
  • 27. Persad S., Attwell S, Gray V., Mawji N., Deng J.T., Leung D., Yan J., Sanghera J., Walsh M.P., Dedhar S., Regulation of Akt/PKB‐serine 473 phosphorylation by integrin‐linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343, J. Biol. Chem., 276: 27462–27469, 2001. [DOI] [PubMed] [Google Scholar]
  • 28. Conus N.M., Hannan K.M., Cristiano B.E., Hemmings B.A., Pearson R.B., Direct identification of tyrosine 474 as a regulatory phosphorylation site for the Akt protein kinase, J. Biol. Chem., 277: 38021–38028, 2002. [DOI] [PubMed] [Google Scholar]
  • 29. Jiang T., Qiu Y., Interaction between Src and a C‐terminal proline‐rich motif of Akt is required for Akt activation, J. Biol. Chem., 278: 15789–15793, 2003. [DOI] [PubMed] [Google Scholar]
  • 30. Mora A., Komander D., Van Aalten D.M., Alessi D.R., PDK1, the master regulator of AGC kinase signal transduction, Semin Cell Dev. Biol., 15: 161–170, 2004. [DOI] [PubMed] [Google Scholar]
  • 31. Biondi R.M., Cheung P.C., Casamayor A., Deak M., Currie R.A., Alessi D.R., Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C‐terminal residues of PKA, EMBO. J., 19: 979–988, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Biondi R.M., Kieloch A., Currie R.A., Deak M., Alessi D.R., The PIF‐binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB, EMBO. J., 20: 4380–4390, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Collins B.J., Deak M., Arthur J.S., Armit L.J., Alessi D.R., In vivo role of the PIF‐binding docking site of PDK1 defined by knock‐in mutation, EMBO. J., 22: 4202–4211, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Anderson K.E., Coadwell J., Stephens L.R., Hawkins P.T., Translocation of PDK‐1 to the plasma membrane is important in allowing PDK‐1 to activate protein kinase B, Curr. Biol., 8: 684–691, 1998. [DOI] [PubMed] [Google Scholar]
  • 35. Balendran A., Casamayor A., Deak M., Paterson A., Gaffney P., Currie R., Downes C.P., Alessi D.R., PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2, Curr. Biol., 9: 393–404, 1999. [DOI] [PubMed] [Google Scholar]
  • 36. Williams M.R., Arthur J.S., Balendran A., van der Kaay J., Poli V., Cohen P., Alessi D.R., The role of 3‐phosphoinositide‐dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells, Curr. Biol., 10: 439–448, 2000. [DOI] [PubMed] [Google Scholar]
  • 37. Hill M.M., Andjelkovic M., Brazil D.P., Ferrari S., Fabbro D., Hemmings B.A., Insulin‐stimulated protein kinase B phosphorylation on Ser‐473 is independent of its activity and occurs through a staurosporine‐insensitive kinase, J. Biol. Chem., 276: 25643–25646, 2001. [DOI] [PubMed] [Google Scholar]
  • 38. Toker A., Newton A.C., Akt/Protein kinase B is regulated by autophosphorylation at the hypothetical PDK‐2 site, J. Biol. Chem., 275: 8271–8274, 2000. [DOI] [PubMed] [Google Scholar]
  • 39. Laine J., Kunstle G., Obata T., Sha M., Noguchi M., The protooncogene TCL1 is an Akt kinase coactivator, Mol. Cell, 6: 395–407, 2000. [DOI] [PubMed] [Google Scholar]
  • 40. Hill M.M., Andjelkovic M., Brazil D.P., Ferrari S., Fabbro D., Hemmings B.A., Insulin‐stimulated protein kinase B phosphorylation on Ser‐473 is independent of its activity and occurs through a staurosporine‐insensitive kinase, J. Biol. Chem., 276: 25643–25646, 2001. [DOI] [PubMed] [Google Scholar]
  • 41. Delcommenne M., Tan C., Gray V., Rue L., Woodgett J., Dedhar S., Phosphoinositide‐3‐OH kinase‐dependent regulation of glycogen synthase kinase 3 and Akt/PKB by the integrin‐linked kinase, Proc. Natl. Acad. Sci. USA., 95: 11211–11216, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Lynch D.K., Ellis C.A., Edwards P.A., Hiles I.D., Integrin‐linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism, Oncogene, 18: 8024–8032, 1999. [DOI] [PubMed] [Google Scholar]
  • 43. Persad S., Attwell S., Gray V., Mawji N., Deng J.T., Leung D., Yan J., Sanghera J., Walsh M.P., Dedhar S., Regulation of Akt/PKB‐serine 473 phosphorylation by integrin‐linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343, J. Biol. Chem., 276: 27462–27469, 2001. [DOI] [PubMed] [Google Scholar]
  • 44. Chen R., Kim O., Yang J., Sato K., Eisenmann K.M., McCarthy J., Chen H., Qiu Y., Regulation of Akt/PKB activation by tyrosine phosphorylation, J. Biol. Chem., 276: 31858–31862, 2001. [DOI] [PubMed] [Google Scholar]
  • 45. Sable C.L., Filippa N., Hemmings B., Van Obberghen E., cAMP stimulates protein kinase B in a Wortmannininsensitive manner, FEBS. Lett., 409: 253–257, 1997. [DOI] [PubMed] [Google Scholar]
  • 46. Filippa N., Sable C.L., Filloux C., Hemmings B.A., Van Obberghen E., Mechanism of protein kinase B activation by cyclic AMP‐dependent protein kinase, Mol. Cell Biol., 19: 4989–5000, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Perez‐Garcia M.J., Cena V., De Pablo Y., Llovera M., Comella J.X., Soler R.M., Glial cell line‐derived neurotrophic factor increases intracellular calcium concentration. Role of calcium/calmodulin in the activation of the phosphatidylinositol 3‐kinase pathway, J. Biol. Chem., 279: 6132–6142, 2004. [DOI] [PubMed] [Google Scholar]
  • 48. Konishi H., Matsuzaki H., Tanaka M., Takemura Y., Kuroda S., Ono Y., Kikkawa U., Activation of protein kinase B (Akt/RAC‐protein kinase) by cellular stress and its association with heat shock protein Hsp27, FEBS. Lett., 410: 493–498, 1997. [DOI] [PubMed] [Google Scholar]
  • 49. Moule S.K., Welsh G.I., Edgell N.J., Foulstone E.J., Proud C.G., Denton R.M., Regulation of protein kinase B and glycogen synthase kinase‐3 by insulin and betaadrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin‐sensitive and ‐insensitive mechanisms, J. Biol. Chem., 272: 7713–7719, 1997. [DOI] [PubMed] [Google Scholar]
  • 50. Brazil D.P., Park J., Hemmings B.A., PKB binding proteins: Getting in on the Akt, Cell, 111: 293–303, 2002. [DOI] [PubMed] [Google Scholar]
  • 51. Maira S.M., Galetic I., Brazil D.P., Kaech S., Ingley E., Thelen M., Hemmings B.A., Carboxyl‐terminal modulator protein (CTMP), a negative regulator of Akt/PKB and v‐Akt at the plasma membrane, Science, 294: 374–380, 2001. [DOI] [PubMed] [Google Scholar]
  • 52. Du K., Herzig S., Kulkarni R.N., Montminy M., TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver, Science, 300: 1574–1577, 2003. [DOI] [PubMed] [Google Scholar]
  • 53. Paramio J.M., Segrelles C., Ruiz S., Jorcano J.L., Inhibition of protein kinase B (PKB) and PKC‐mediates keratin K10‐induced cell cycle arrest, Mol. Cell Biol., 21: 7449–7459, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Konishi H., Matsuzaki H., Tanaka M., Activation of protein kinase B (Akt/RAC‐protein kinase) by cellular stress and its association with heat shock protein Hsp27, FEBS. Lett., 410: 493–498, 1997. [DOI] [PubMed] [Google Scholar]
  • 55. Rane M.J., Pan Y., Singh S., Powell D.W., Wu R., Cummins T., Chen Q., McLeish K.R., Klein J.B., Heat shock protein 27 controls apoptosis by regulating Akt activation, J. Biol. Chem., 278: 27828–27835, 2003. [DOI] [PubMed] [Google Scholar]
  • 56. Solit D.B., Basso A.D., Olshen A.B., Scher H.I., Rosen N., Inhibition of heat shock protein 90 function down‐regulates Akt kinase and sensitizes tumors to Taxol, Cancer Res., 63: 2139–2144, 2003. [PubMed] [Google Scholar]
  • 57. Han D.C., Shen T.L., Guan J.L., The Grb7 family proteins: structure, interactions with other signaling molecules and potential cellular functions, Oncogene, 20: 6315–6321, 2001. [DOI] [PubMed] [Google Scholar]
  • 58. Jahn T., Seipel P., Urschel S., Peschel C., Duyster J., Role for the adaptor protein Grb 10 in the activation of Akt, Mol. Cell Biol., 22: 979–991, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Pekarsky Y., Koval A., Hallas C., Bichi R., Tresini M., Malstrom S., Russo G., Tsichlis P., Croce C.M., Tcll enhances Akt kinase activity and mediates its nuclear translocation, Proc. Natl. Acad. Sci. USA., 97: 3028–3303, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Auguin D., Barthe P., Royer C., Stern M.H., Noguchi M., Arold S.T., Roumestand C., Structural basis for the coactivation of protein kinase B by T‐cell leukemia‐1 (TCL1) family proto‐oncoproteins, J. Biol. Chem., 279: 35890–35902, 2004. [DOI] [PubMed] [Google Scholar]
  • 61. Remy I., Michnick S.W., Regulation of apoptosis by the Ft 1 protein, a new modulator of Akt/PKB, Mol. Cell Biol., 24: 1493–1504, 2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Cenni V., Sirri A., Riccio M., Lattanzi G., Santi S., De Pol A., Maraldi N.M., Marmiroli S., Targeting of the Akt/PKB kinase to the actin skeleton, Cell Mol. Life Sci., 60: 2710–27120, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Sinha D., Bannergee S., Schwartz J.H., Lieberthal W., Levine J.S., Inhibition of ligand‐independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors upregulates Akt and prevents apoptosis, J. Biol. Chem., 279: 10962–10972, 2003. [DOI] [PubMed] [Google Scholar]
  • 64. Kim A.H., Yano H., Cho H., Meyer D., Monks B., Margolis B., Birnbaum M.J., Chao M.V., Akt 1 regulates a JNK scaffold during excitotoxic apoptosis, Neuron, 35: 697–709, 2002. [DOI] [PubMed] [Google Scholar]
  • 65. van den Heuvel A.P., De Vries‐Smits A.M., Van Weeren P.C., Dijkers P.F., De Bruyn K.M., Riedl J.A., Burgering B.M., Binding of protein kinase B to the plakin family member periplakin, J. Cell Sci., 115: 3957–3966, 2002. [DOI] [PubMed] [Google Scholar]
  • 66. Figueroa C., Tarras S., Taylor J., Vojtek A.B., Akt2 negatively regulates assembly of the POSH‐MLK‐JNK signaling complex, J. Biol. Chem., 278: 47922–47927, 2003. [DOI] [PubMed] [Google Scholar]
  • 67. Yao R., Cooper G.M., Requirement for phosphatidylinositol‐3 kinase in the prevention of apoptosis by nerve growth factor, Science, 267: 2003–2006, 1995. [DOI] [PubMed] [Google Scholar]
  • 68. Bao S.D., Ouyang G.L., Bai X.F., Huang Z., Ma C., Liu M., Shao R., Anderson R.M., Rich J.N., Wang X.F., Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway, Cancer Cell, 5: 329–339, 2004. [DOI] [PubMed] [Google Scholar]
  • 69. Shi Q, Bao SD, Maxwell JA, Reesel E.D., Friedmanl H.F., Bigner D.D., Wang X. F., Richl J.N., Secreted Protein Acidic, Rich in Cysteine (SPARC) Mediates Cellular Survival of Gliomas through AKT Activation, J. Biol. Chem., 279: 52200–52209, 2004. [DOI] [PubMed] [Google Scholar]
  • 70. Gupta D., Syed N.A., Roesler W.J., Khandelwal R.L., Effect of overexpression and nuclear translocation of constitutively active PKB‐alpha on cellular survival and proliferation in HepG2 cells, J. Cell Biochem., 93: 513, 2004. [DOI] [PubMed] [Google Scholar]
  • 71. Wendel H.G., De Stanchina E., Fridman J.S., Malina A., Ray S., Kogan S., Cordon‐Cardo C., Pelletier J., Lowe S.W., Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy, Nature, 428: 332–337, 2004. [DOI] [PubMed] [Google Scholar]
  • 72. Thornberry N.A., Lazebnik Y., Caspases: Enemies within, Science, 281: 312–316, 1998. [DOI] [PubMed] [Google Scholar]
  • 73. Adams J.M., Cory S., The Bcl‐2 protein family: Arbiters of cell survival, Science, 281: 1322–1326, 1998. [DOI] [PubMed] [Google Scholar]
  • 74. Del Peso L., Gonzalez‐Garcia M., Page C., Herrera R., Nunez G., Interleukin‐3‐induced phosphorylation of BAD through the protein kinase Akt, Science, 278: 687–689, 1997. [DOI] [PubMed] [Google Scholar]
  • 75. Datta S.R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M.E., Akt phosphorylation of BAD couples survival signals to the cell‐intrinsic death machinery, Cell, 91: 231–241, 1997. [DOI] [PubMed] [Google Scholar]
  • 76. Datta S.R., Brunet A., Greenberg M.E., Cellular survival: a play in three Akts, Genes Dev., 13: 2905–2927, 1999. [DOI] [PubMed] [Google Scholar]
  • 77. Donepudi M., Grutter M.G., Structure and zymogen activation of caspases, Biophys. Chem. , 145–153, 2002. [DOI] [PubMed]
  • 78. Cardone M.H., Roy N., Stennicke H.R., Salvesen G.S., Franke T.F., Stanbridge E., Frisch S., Reed J.C., Regulation of cell death protease caspase‐9 by phosphorylation, Science, 282: 1318–1321, 1998. [DOI] [PubMed] [Google Scholar]
  • 79. Fujita E., Jinbo A., Matuzaki H., Konishi H., Kikkawa U., Momoi T., Akt phosphorylation site found in human caspase‐9 is absent in mouse caspase‐9, Biochem. Biophys. Res. Commun., 264: 550–555, 1999. [DOI] [PubMed] [Google Scholar]
  • 80. Johnson G.L., Lapadat R., Mitogen‐activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases, Science, 298: 1911–1912, 2002. [DOI] [PubMed] [Google Scholar]
  • 81. Kim A.H., Khursigara G., Sun X., Franke T.F., Chao M.V., Akt phosphorylates and negatively regulates apoptosis signal‐regulating kinase 1, Mol. Cell Biol., 21: 893–901, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Barthwal M.K., Sathyanarayana P., Kundu C.N., Rana B., Pradeep A., Sharma C., Woodgett J.R., Rana A., Negative regulation of mixed lineage kinase 3 by Akt/PKB leads to cell survival, J. Biol. Chem., 278: 3897–3902, 2003. [DOI] [PubMed] [Google Scholar]
  • 83. Park H.S., Kim M.S., Huh S.H., Park J., Chung J., Kang S.S., Choi E.J., Akt (protein kinase B) negatively regulates SEK 1 by means of protein phosphorylation, J. Biol. Chem., 277: 2573–2578, 2002. [DOI] [PubMed] [Google Scholar]
  • 84. Paradis S., Ruvkun G., Caenorhabditis elegans Akt/PKB transduces insulin receptor‐like signals from AGE‐1 PI3 kinase to the DAF‐16 transcription factor, Genes Dev., 12: 2488–2498, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Burgering B.M., Medema R.H., Decisions on life and death: FOXO Forkhead transcription factors are in command when Akt/PKB is off duty, J. Leukoc. Biol., 73: 689–701, 2003. [DOI] [PubMed] [Google Scholar]
  • 86. Li Q., Verma I.M., NF‐KB regulation in the immune system, Nat. Rev. Immunol., 2: 725–734, 2000. [DOI] [PubMed] [Google Scholar]
  • 87. Kane L.P., Shapiro V.S., Stokoe D., Weiss A., Induction of NF‐kappaB by the Akt/PKB kinase, Curr. Biol., 9: 601–604, 1999. [DOI] [PubMed] [Google Scholar]
  • 88. Barkett M., Gilmore T.D., Control of apoptosis by Rel/NF‐KB transcription factors, Oncogene, 18: 6910–6924, 1999. [DOI] [PubMed] [Google Scholar]
  • 89. Lauder A., Castellanos A., Weston K., c‐Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of T cells and is required for PKB‐mediated protection from apoptosis, Mol. Cell Biol., 21: 5797–5805, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Shimizu H., Hupp T.R., Intrasteric regulation of MDM2, Trends Biochem. Sci., 28: 346–349, 2003. [DOI] [PubMed] [Google Scholar]
  • 91. Oren M., Decision making by p53: life, death and cancer, Cell Death Differ., 10: 431–442, 2003. [DOI] [PubMed] [Google Scholar]
  • 92. Mayo L.D., Donner D.B., A phosphatidylinositol 3‐kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus, Proc. Natl. Acad. Sci. USA., 98: 11598–11603, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Gottlieb T.M., Leal J.F., Seger R., Taya Y., Oren M., Cross‐talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis, Oncogene, 21: 1299–1303, 2002. [DOI] [PubMed] [Google Scholar]
  • 94. Du K., Montminy M., CREB is a regulatory target for the protein kinase Akt/PKB, J. Biol. Chem., 273: 32377–32379, 1998. [DOI] [PubMed] [Google Scholar]
  • 95. Wang J.M., Chao J.R., Chen. W. , FKuo M.L., Yen J.J., Yang‐Yen H.F., The antiapoptotic gene mcl‐l is up‐regulated by the phsophatidylinositol 3‐kinase/Akt signaling pathway through a transcription factor complex containing CREB, Mol. Cell Biol., 19: 6195–7206, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Basu S., Totty N.F., Irwin M.S., Sudol M., Downward J., Akt phosphoralates the Yet‐associated protein, YAP, to induce interaction with 14‐3‐3 and attenuatin of p73‐mediated apoptosis, Mol. Cell, 11: 11–23, 2003. [DOI] [PubMed] [Google Scholar]
  • 97. Cross D.A., Alessi D.R., Cohen P., Andjelkovich M., Hemmings B.A., Inhibition of glycogen synthase kinase‐3 by insulin mediated by protein kinase B, Nature, 378: 785–789, 1995. [DOI] [PubMed] [Google Scholar]
  • 98. Doble B.W., Woodgett J.R., GSK‐3: tricks of the trade for a multi‐tasking kinase, J. Cell Sci., 116: 1175–1186, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Pap M., Cooper G.M., Role of glycogen synthase kinase‐3 in the phosphatidylinsitol 3‐kinase/Akt cell survival pathway, J. Biol. Chem., 273: 19929–19932, 1998. [DOI] [PubMed] [Google Scholar]
  • 100. Rathmell J.C., Vander Heiden M.G., Harris M.H., Frauwirth K.A., Thompson C.B., In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability, Mol. Cell, 6: 683–692, 2000. [DOI] [PubMed] [Google Scholar]
  • 101. Edinger A.L., Thompson C.B., Akt maintains cell size and survival by increasing mTOR‐dependent nutrient uptake, Mol. Biol. Cell, 13: 2276–2288, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Vander Heiden M.G., Plas D.R., Rathmell J.C., Fox C.J., Harris M.H., Thompson C.B., Growth factors can influence cell growth and survival through effects on glucose metabolism, Mol. Cell Biol., 21: 5899–5912, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Rathmell J.C., Fox C.J., Plas D.R., Hammerman P.S., Cinalli R.M., Thompson C.B., Akt‐directed glucose metabolism can prevent Bax conformation change and promote growth factor‐independent survival, Mol. Cell Biol., 23: 7315–7328, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Chun K.H., Kosmeder J.W. 2nd, Sun S., Pezzuto J.M., Lotan R., Hong W.K., Lee H.Y., Effects of deguelin on the phosphatidylinositol 3‐kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells, J. Natl. Cancer Inst., 95: 291–302, 2003. [DOI] [PubMed] [Google Scholar]
  • 105. Lee H.Y., Molecular mechanisms of deguelin‐induced apoptosis in transformed human bronchial epithelial cells, Biochem. Pharmacol., 68: 1119–1124, 2004. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES