Abstract
The problem of protein folding is that how proteins acquire their native unique three‐dimensional structure in the physiological milieu. To solve the problem, the following key questions should be answered: do proteins fold co‐ or post‐translationally, i.e. during or after biosynthesis, what is the mechanism of protein folding, and what is the explanation for fast folding of proteins? The two first questions are discussed in the current review. The general lines are to show that the opinion, that proteins fold after they are synthesized is hardly substantiated and suitable for solving the problem of protein folding and why proteins should fold cotranslationally. A possible tentative model for the mechanism of protein folding is also suggested. To this end, a thorough analysis is made of the biosynthesis, delivery to the folding compartments, and the rates of the biosynthesis, translocation and folding of proteins. A cursory attention is assigned to the role of GroEL/ES‐like chaperonins in protein folding.
Keywords: protein folding, random coil, thermodynamic hypothesis
References
- 1. Jaenicke R., Folding and association of proteins, Prog. Biophys. Mol. Biol. 49: 117–237, 1987. [DOI] [PubMed] [Google Scholar]
- 2. Fedorov A.N., Baldwin T.O., Cotranslational protein folding, J. Biol. Chem. 272: 32715–32718, 1997. [DOI] [PubMed] [Google Scholar]
- 3. Komar A.A., Kommer A., Krashenininnikov I.A., Spirin A.S., Cotranslational folding of globin, J. Biol. Chem. 272: 10646–10651, 1997. [DOI] [PubMed] [Google Scholar]
- 4. Basharov M.A., Cotranslational protein folding, Biochemistry (Moscow) 65: 1380–1384, 2000. [DOI] [PubMed] [Google Scholar]
- 5. Kramer G., Ramachandiran V., Hardesty B., Cotranslational folding omnia mea mecum porto?, Int. J. Biochem. & Cell Biol. 33: 541–553, 2001. [DOI] [PubMed] [Google Scholar]
- 6. Tanford C., Protein denaturation, Adv. in Prot. Chem. 23: 122–288, 1968. [DOI] [PubMed] [Google Scholar]
- 7. Privalov P.L., Stability of proteins. Proteins which do not present a single cooperative system, Adv. in Prot. Chem. 35: 1–104, 1982. [PubMed] [Google Scholar]
- 8. Kim P.S., Baldwin R.L., Specific intermediates in the folding reactions of small proteins and the mechanism of folding, Annu. Rev. Biochem. 51: 459–489, 1982. [DOI] [PubMed] [Google Scholar]
- 9. White Jr., F.H. , Regeneration of native secondary and tertiary structures by air oxidation of reduced ribonuclease, J. Biol. Chem. 236: 1353–1360, 1961. [PubMed] [Google Scholar]
- 10. Anfinsen C.B., Haber E., Studies on the reduction and reformation of protein disulfide bonds, J. Biol. Chem. 236: 1361–1363, 1961. [PubMed] [Google Scholar]
- 11. Anfinsen C.B., Principles that govern the folding of protein chains, Science 181: 223–230, 1973. [DOI] [PubMed] [Google Scholar]
- 12. Merrifield R.B., Solid phase synthesis, Science 232: 341–347, 1986. [DOI] [PubMed] [Google Scholar]
- 13. Ptitsyn O.B., How does protein synthesis give rise to the 3D‐structure?, FEBS Lett. 285: 176–181, 1991. [DOI] [PubMed] [Google Scholar]
- 14. Karplus M., Weaver D.L., Protein folding dynamics: The diffusion‐collision model and experimental data, Protein Sci., 3: 650–668, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Guo Z., Thirumalai D., The nucleation‐collapse mechanism in protein folding: evidence for the non‐uniqueness of the folding nucleus, Folding & Design 2: 377–391, 1997. [DOI] [PubMed] [Google Scholar]
- 16. Baldwin R.B., Rose G.D., Is protein folding hierarchic? II. Folding intermediates and transition states, Trends Biochem. Sci. 24: 77–83, 1999. [DOI] [PubMed] [Google Scholar]
- 17. Creighton T.E., An unfolding story, Curr. Biol. 5: 353–356, 1995. [DOI] [PubMed] [Google Scholar]
- 18. Dill K.A., Bromberg S., Yue K., Fiebig K.M., Yee D.P., Thomas P.D., Chan H.S., Principles of protein folding ‐ A perspective from simple exact models, Protein Sci. 4: 561–602, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Baldwin R.L., Protein folding from 1961 to 1982, Nature Struc. Biol. 6: 814–817, 1999. [DOI] [PubMed] [Google Scholar]
- 20. Ptitsyn O.B., How the molten globule becam?, Trends Biochem. Sci. 20: 376–379, 1995. [DOI] [PubMed] [Google Scholar]
- 21. Go N., Taketomi H., Respective roles of short‐ and longrange interactions in protein folding, Proc. Natl. Acad. Sci. USA 75: 559–563, 1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Sali A., Shakhnovich E.I., Karplus M., Kinetics of protein folding ‐ A lattice model study of the requirements for folding to the native state, J. Mol. Biol. 235: 1614–1636, 1994. [DOI] [PubMed] [Google Scholar]
- 23. Miyazawa S., Jernigan R.L., Residue‐residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and treading, J. Mol. Biol. 256: 623–644, 1996. [DOI] [PubMed] [Google Scholar]
- 24. Okamoto Y., Protein folding problem as studied by new simulation algorithms, Rec. Res. Develop. Pure & Appl. Chem. 2: 1–23, 1998. [Google Scholar]
- 25. Levinthal C., How to fold graciously In: Debrunner P., Tsibris J.C.M. and Munck E. eds., Mossbauer Spectroscopy in Biological Systems, Proceedings of a Meeting, Monticello, University of Illinois Press, Urbana , IL , 1969, pp. 22–24. [Google Scholar]
- 26. Basharov M.A., Posttranslational concept of protein folding. How valid it is?, Biochemistry (Moscow) 65: 1184–1191, 2000. [PubMed] [Google Scholar]
- 27. Basharov M.A., Protein folding: chemically synthesized proteins In: Gromiha M., Selveraj S., eds., Recent Research Developments in Protein Folding, Stability and Design, Research Signpost Trivandrum, pp. 167–175, 2002. [Google Scholar]
- 28. Miller W.G., Brant D.A., Flory P.J., Random coil configurations of polypeptide copolymers, J. Mol. Biol. 23: 67–80, 1967. [Google Scholar]
- 29. Flory P., Statistical Mechanics of Chain Molecules, Wiley, New York , 1969. [Google Scholar]
- 30. Smith L.J., Fiebig K.M., Schwalbe H., Dobson C.M., The concept of a random coil. Residual structure in peptides and denatured proteins, Folding & Design 1: R95–R106, 1996. [DOI] [PubMed] [Google Scholar]
- 31. Sosnick T.R., Trewhella J., Denatured states of ribonuclease A have compact dimensions and residual secondary structure, Biochemistry 31: 8329–8335, 1992. [DOI] [PubMed] [Google Scholar]
- 32. Griebenow K., Klibanov A.M., On protein denaturation in aqueous‐organic mixtures but not in organic solvents, J. Am. Chem. Soc. 118: 11695–11700, 1996. [Google Scholar]
- 33. Kataoka M., Goto Y., X‐ray solution scattering studies of protein folding, Folding & Design 1: R107–R113, 1996. [DOI] [PubMed] [Google Scholar]
- 34. Bhattacharjya S., Balaram P., Effect of organic solvents on protein structures: observation of a structured helical core in hen egg‐white lysozyme in aqueous dimethylsulfoxide, Proteins 29: 492–502, 1997. [DOI] [PubMed] [Google Scholar]
- 35. Dunbar J., Yennawar H.P., Banerjee S., Luo J., Farber G.K., The effect of denaturants on protein structure, Prot. Sci. 6: 1727–1733, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Gillespie J.R., Shortle D., Characterization of long‐range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels, J. Mol. Biol. 268: 158–169, 1997. [DOI] [PubMed] [Google Scholar]
- 37. Neira J.L., Rico M., Folding studies on ribonuclease A, a model protein, Folding & Design 2: R1–R11, 1997. [DOI] [PubMed] [Google Scholar]
- 38. Schwalbe H., Fiebig K.M., Buck M., Jones J.A., Grimshaw S.B., Spencer A., Glaser S.J., Smith L.J., Dobson C.M., Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea, Biochemistry 36: 8977–8991, 1997. [DOI] [PubMed] [Google Scholar]
- 39. Wang Y., Shortle D., Residual helical and turn structure in the denatured state of staphylococcal nuclease: analysis of peptide fragments, Folding & Design 2: 93–100, 1997. [DOI] [PubMed] [Google Scholar]
- 40. Pappu R.V., Srinivasan R., Rose G., The Flory isolated‐pair hypothesis is not valid for polypeptide chains: Implications for protein folding, Proc. Natl Acad. Sci. USA 97: 12565–12570, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Tsou C.‐L., Folding of the nascent peptide chain into a biologically active protein, Biochemistry 27: 1809–1812, 1988. [DOI] [PubMed] [Google Scholar]
- 42. Volkenstein M.V., Configurational Statistics of Polymer Chains (in Russian, English translated), Academy of Sciences of the USSR, Moscow‐Leningrad , 1959. [Google Scholar]
- 43. Bartenev G.M., Frenkel S.Ya., Physics of Polymers (in Russian, English translated), Chimija, Leningrad , 1990. [Google Scholar]
- 44. Sochava I.V., Heat capacity and thermodynamic characteristics of denaturation and glass transition of hydrated and anhydrous proteins, Biophys. Chem. 69: 31–41, 1997. [DOI] [PubMed] [Google Scholar]
- 45. Spirin A.S., Ribosome structure and protein biosynthesis, The Benjamin/Cammings Publ.Co., Inc. New York , London , 1986. [Google Scholar]
- 46. Wilson K.S., Noller H.F., Molecular movement inside the translational engine, Cell 92: 337–349, 1998. [DOI] [PubMed] [Google Scholar]
- 47. Ramakrishnan V., Ribosome structure and mechanism of translation, Cell 108: 557–572, 2002. [DOI] [PubMed] [Google Scholar]
- 48. Wilson D.N., Blaha G., Connel S.R., Ivanov P.V., Jenke H., Stelzl U., Teraoka Y., Nierhaus K.H., Protein synthesis at atomic resolution: mechanistics of translation in the light of highly resolved structures for the ribosome, Curr. Prot. Rept. Sci. 3: 1–53: 2002. [DOI] [PubMed] [Google Scholar]
- 49. Ewbank J.J., Creighton T.E., Pathway of disulfide‐coupled unfolding of bovine α‐lactalbumin, Biochemistry 32: 3677–3699, 1993. [DOI] [PubMed] [Google Scholar]
- 50. Weissman J.M., Kim P.S., Reexamination of the folding of BPTI: Predominance of native intermediates, Science 253: 1386–1393, 1991. [DOI] [PubMed] [Google Scholar]
- 51. Garel J.‐R., Early steps in the refolding reaction of reduced ribonuclease A, J. Mol. Biol. 118: 331–345, 1978. [DOI] [PubMed] [Google Scholar]
- 52. Pace C.N., Creighton T.E., The disulfide folding pathway of ribonuclease T1, J. Mol. Biol. 188: 477–486, 1986. [DOI] [PubMed] [Google Scholar]
- 53. Baker D., Agard D.A., Kinetics versus thermodynamics in protein folding, Biochemistry 33: 7505–7509, 1994. [DOI] [PubMed] [Google Scholar]
- 54. Sohl J.L., Jaswa S.S., Agard D.A., Unfolded conformations of α‐lytic protease are more stable than its native state, Nature 392: 817–819, 1998. [DOI] [PubMed] [Google Scholar]
- 55. Baker D., Metastable states and folding free energy barriers, Nature Struct. Biol. 5: 1021–1024, 1998. [DOI] [PubMed] [Google Scholar]
- 56. Wilken J., Kent S.B.H., Chemical protein synthesis, Curr: Opin. Biotechnol. 9: 412–426, 1998. [DOI] [PubMed] [Google Scholar]
- 57. Blobel G., Dobberstein B., Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane‐bound ribosomes of murine myeloma, J. Cell. Biol. 67: 852–862, 1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Simon S.M., Blobel G., A protein‐conducting channel in the endoplasmic reticulum, Cell 65: 371–380, 1991. [DOI] [PubMed] [Google Scholar]
- 59. Walter P., Johnson A.E., Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane, Annu. Rev. Cell Biol. 10: 87–119, 1994. [DOI] [PubMed] [Google Scholar]
- 60. Schatz G., Dobberstein B., Common principles of protein translocation across membranes, Science 271: 1519–1526, 1996. [DOI] [PubMed] [Google Scholar]
- 61. Peters T., Jr. , The biosynthesis of rat serum albumin. II. Intracellular phenomena in the secretion of newly formed albumin, J. Biol. Chem. 237: 1186–1189, 1962. [PubMed] [Google Scholar]
- 62. Palmiter R.D., Ovalbumin messenger ribonucleic acid translation, J. Biol. Chem. 248: 2095–2106, 1973. [PubMed] [Google Scholar]
- 63. Haschemeyer A.E.V., Kinetics of protein synthesis in higher organisms in vivo , Trends Biochem. Sci. 1: 133–136, 1976. [Google Scholar]
- 64. Chavancy G., Garel J.‐P., Does quantitative tRNA adaptation to codon content in mRNA optimize the ribosomal translational efficiency? Proposal for a translational system model, Biochimie 63: 187–195, 1981. [DOI] [PubMed] [Google Scholar]
- 65. Ballinger D.G., Pardue M.L., The control of protein synthesis during heat shock in Drosophila cells involves altered polypeptide elongation rates, Cell 33: 103–114, 1983. [DOI] [PubMed] [Google Scholar]
- 66. Varenne S., Buc J., Lloubes R., Lazdunski C., Translation is a non‐uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains, J. Mol. Biol. 180: 549–576, 1984. [DOI] [PubMed] [Google Scholar]
- 67. Sorensen M.A., Kurland C.G., Pedersen S., Codon usage determines translation rate E.coli, J. Mol. Biol. 207: 365–377, 1989. [DOI] [PubMed] [Google Scholar]
- 68. Sorensen M.A., Pedersen S., Absolute in vivo translation rates of individual codons in E.coli. The two glytamic acid codons GAA and GAG, J. Mol. Biol. 222: 265–280, 1991. [DOI] [PubMed] [Google Scholar]
- 69. Laughrea M., Speed accuracy relationships during in vitro and in vivo protein biosynthesis, Biochimie 63: 145–168, 1981. [DOI] [PubMed] [Google Scholar]
- 70. Kurland C.G., Strategies for efficiency and accuracy in gene expression. The major codon preference: a growth optimization strategy, Trends Biochem. Sci. 12: 126–128, 1987. [Google Scholar]
- 71. Eigen M., Dynamics of conformational changes in helical macromolecules, Chim. Phys. 65: 53–53, 1968. [Google Scholar]
- 72. Williams S., Causgrove T.P., Gilmanshin R., Fang K.S., Callender R.H., Woodruff W.H., Dyer R.B., Fast events in protein folding: helix melting and formation in a small peptide, Biochemistry 35: 691–697, 1996. [DOI] [PubMed] [Google Scholar]
- 73. Onda M., Tatsumi E., Takahashi N., Hirose M., Refolding process of ovalbumin from urea‐denatured state, J. Biol. Chem. 272 (1997) 3973–3979. [DOI] [PubMed] [Google Scholar]
- 74. Eaton W.A., Munoz V., Thompson P.A., Chan C‐K., Hofricher J., Fast events in protein folding, Curr. Opin. Struct. Biology 7: 10–14, 1997. [DOI] [PubMed] [Google Scholar]
- 75. Kiefhaber T., Bachmann A., Wildegger G., Wagner C., Direct measurement of nucleation and growth rates in lysozyme folding, Biochemistry 36: 5108–5112, 1997. [DOI] [PubMed] [Google Scholar]
- 76. Schindler T., Schmid F.X., Thermodynamic properties of an extremely rapid protein folding reaction, Biochemistry 35: 16833–16842, 1996. [DOI] [PubMed] [Google Scholar]
- 77. Sosnick T.R., Shtilerman M.D., Mayne L., Englander S.W., Ultrafast signals in protein folding and the polypeptide contracted state, Proc. Natl. Acad. Sci. USA 94: 8545–8550, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78. Rapoport T.A., Jungnickel B., Kutay U., Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes, Annu. Rev. Biochem. 65: 271–303, 1996. [DOI] [PubMed] [Google Scholar]
- 79. Haucke V., Schatz G., Import of proteins into mitochondria and chloroplasts, Trends Cell Biol. 7: 103–106, 1997. [DOI] [PubMed] [Google Scholar]
- 80. Johnson A.E., Protein translocation at the ER membrane: a complex process becomes more so, Trends Cell Biol. 7: 90–95, 1997. [DOI] [PubMed] [Google Scholar]
- 81. Duong F., Eichler J., Price A., Leonard M.R., Wickner W., Biogenesis of the gram‐negative bacterial envelope, Cell 91: 567–573, 1997. [DOI] [PubMed] [Google Scholar]
- 82. Matlack K.E.S., Mothes W., Rapoport T.A., Protein translocation: tunnel vision, Cell 92: 381–390, 1998. [DOI] [PubMed] [Google Scholar]
- 83. May T., Soll J., Chloroplast precursor protein translocation, FEBS Letters 452: 52–56, 1999. [DOI] [PubMed] [Google Scholar]
- 84. Chen X., Schnell D.J., Protein import into chloroplasts, Trends Cell Biol. 9: 222–227, 1999. [DOI] [PubMed] [Google Scholar]
- 85. Rassow J., Dekker P.J., Wilpe S., Meijer M., Soll J., The preprotein translocase of the mitochondrial inner membrane: function and evolution, J. Mol. Biol. 286: 105–120, 1999. [DOI] [PubMed] [Google Scholar]
- 86. Rachubinski R.A., Subramani S., How proteins penetrate peroxisomes, Cell 83: 525–528, 1995. [DOI] [PubMed] [Google Scholar]
- 87. McNew J.A., Goodman J.M., The targeting and assembly of peroxisomal proteins: some old rules do not apply, Trends Biochem. Sci. 2: 54–58, 1996. [PubMed] [Google Scholar]
- 88. Schatz G., The protein import system of mitochondria, J. Biol. Chem. 271: 31763–31766, 1996. [DOI] [PubMed] [Google Scholar]
- 89. Glick B.J., Beasley E.M., Schatz G., Protein sorting in mitochondria, Trends Biochem. Sci. 17: 453–459, 1992. [DOI] [PubMed] [Google Scholar]
- 90. Kouranov A., Schnell D.J., Protein translocation at the envelope and thylakoid membranes of chloroplasts, J. Biol. Chem. 271: 31009–31012, 1996. [DOI] [PubMed] [Google Scholar]
- 91. Wickner W., Leonard M.R., Escherichia coli preprotein translocase, J. Biol. Chem. 271: 29514–29516, 1996. [DOI] [PubMed] [Google Scholar]
- 92. Economou A., Wickner W., SecA promotes preprotein translocation by undergoing ATP‐driven cycles of membrane insertion and deinsertion, Cell 78: 835–843, 1994. [DOI] [PubMed] [Google Scholar]
- 93. Economou A., Pogliano J.A., Beckwith J., Oliver D.B., Wickner W., SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF, Cell 83: 1171–1181, 1995. [DOI] [PubMed] [Google Scholar]
- 94. Goldman Y.E., Brenner B., Molecular mechanism of muscle contraction, Ann. Rev. Physiol. 49: 629–636, 1987. [DOI] [PubMed] [Google Scholar]
- 95. Vale R.D., Switches, latches, and amplifiers: common themes of G proteins and molecular motors, J. Cell Biol. 135: 291–302, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96. Kinosita K., Jr. , Yasuda R., Noji H., Ishiwata S., Yoshida M., F1‐ATPase: a rotary motor made a single molecule, Cell 93: 21–24, 1998. [DOI] [PubMed] [Google Scholar]
- 97. Ellis R.J., van der Vies S.M., Molecular chaperones, Annu. Rev. Biochem. 60: 321–347, 1991. [DOI] [PubMed] [Google Scholar]
- 98. Gething M.‐J., Sambrook J., Protein folding in the cell, Nature 355: 33–45, 1992. [DOI] [PubMed] [Google Scholar]
- 99. Lorimer G. H., A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo , FASEB J. 10: 5–9, 1996. [DOI] [PubMed] [Google Scholar]
- 100. Ellis R.J., Hartl F.‐U., Protein folding in the cell: competing models of chaperonin function, FASEB J. 10: 20–26, 1996. [DOI] [PubMed] [Google Scholar]
- 101. Netzer W.J., Hartl F.‐U., Protein folding in the cytosol: chaperonin‐dependent and ‐independent mechanisms, Trends Biochem. Sci. 23: 68–73, 1998. [DOI] [PubMed] [Google Scholar]
- 102. Bukau B., Horwich A., The Hsp70 and Hsp60 chaperone machines, Cell 92: 351–366, 1998. [DOI] [PubMed] [Google Scholar]
- 103. Ellis R.J., Hartl F.‐U., Principles of protein folding in the cellular environment, Curr. Opin. Struct. Biol. 9: 102–110, 1999. [DOI] [PubMed] [Google Scholar]
- 104. Feldman D.E., Frydman J., Protein folding in vivo: the importance of molecular chaperones, Curr. Opin. Struct. Biol. 10: 26–33, 2000. [DOI] [PubMed] [Google Scholar]
