Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(4):570–582. doi: 10.1111/j.1582-4934.2002.tb00455.x

Reactive oxygen species, antioxidant mechanisms and serum cytokine levels in cancer patients: impact of an antioxidant treatment

G Mantovani 1,, A Macciò 2, C Madeddu 1, L Mura 1, E Massa 1, G Gramignano 1, M R Lusso 1, V Murgia 1, P Camboni 1, L Ferreli 1
PMCID: PMC6741317  PMID: 12611641

Abstract

Objective. So far, it is not well established whether oxidative stress found in cancer patients results from an increased production of oxidants in the body or from a failure of physiological antioxidant systems. To further investigate this question we have assessed the blood levels of reactive oxygen species as a marker of free radicals producing oxidative stress and the most relevant of the physiological body enzymes counteracting reactive oxygen species, namely glutathione peroxidase and superoxide dismutase. Serum levels of proinflammatory cytokines and IL‐2 were also investigated. All these parameters were studied in relation to the clinically most important index of disease progression, namely Performance Status (ECOG PS). We also tested the reducing ability of different antioxidant agents on reactive oxygen species levels by measuring the increase in glutathione peroxidase activity, and the reduction of serum levels of IL‐6 and TNF. Design, setting and subjects. We carried out an open non randomized study on 28 advanced stage cancer patients (stage III, 10.7%, and stage IV, 89.3%) with tumours at different (8) sites: all were hospitalized in the Medical Oncology Dept, University of Cagliari Interventions. The patients were divided into 5 groups and a different antioxidant treatment was administered to each group. The selected antioxidants were: alpha lipoic acid 200 mg/day orally, N‐acetylcysteine 1800 mg/day i.v. or carboxycysteine‐lysine salt 2.7 g/day orally, amifostine 375 mg/day i.v., reduced glutathione 600 mg/day i.v., vitamin A 30000 IU/day orally plus vitamin E 70 mg/day orally plus Vitamin C 500 mg/day orally. The antioxidant treatment was administered for 10 consecutive days. Results. Our results show that all but one of the antioxidants tested were effective in reducing reactive oxygen species levels and 2 of them (cysteine‐containing compounds and amifostine) had the additional effect of increasing glutathione peroxidase activity. Comprehensively, the “antioxidant treatment” was found to have an effect both on reactive oxygen species levels and glutathione peroxidase activity. The antioxidant treatment also reduced serum levels of IL‐6 and TNF. Patients in both ECOG PS 0‐1 and ECOG PS 2‐3 responded to antioxidant treatment.

Keywords: antioxidant agents, reactive oxygen species, glutathione peroxidase, cytokines, disease progression, cancer patients

References

  • 1. Lusini L., Tripodi S.A., Rossi R., Giannerini F., Giustarini D., Del Vecchio M.T., Barbanti G., Cintorino M., Tosi P., Di Simplicio P., Altered glutathione anti‐oxidant metabolism during tumor progression in human renal‐cell carcinoma, Int. J. Cancer, 91: 55–59, 2001. [DOI] [PubMed] [Google Scholar]
  • 2. Sies H., Biochemistry of oxidative stress, Angewandte Chem., 25: 1058–1071, 1986. [Google Scholar]
  • 3. Halliwell B., Arouma O.I., DNA damage by oxygen‐derived species. Its mechanism and measurement in mammalian systems, FEBS Lett., 281: 9–19, 1991. [DOI] [PubMed] [Google Scholar]
  • 4. Davies K.J., Oxidative stress: the paradox of aerobic life, Biochem. Soc. Symp., 61: 1–31, 1993. [DOI] [PubMed] [Google Scholar]
  • 5. Halliwell B., Antioxidants and human disease: a general introduction, Nutr. Rev., 55: S44–S52, 1997. [DOI] [PubMed] [Google Scholar]
  • 6. Halliwell B., Gutteridge J.M.C., Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity In: Free Radicals in Biology and Medicine, Oxford , Clarendon Press, 1989, pp. 86–179. [Google Scholar]
  • 7. Camhi S.L., Lee P., Choi A.M., The oxidative stress response, New Horizons, 3: 170–182, 1995. [PubMed] [Google Scholar]
  • 8. Mantovani G., MacciÒ A., Lai P., Massa E., Ghiani M., Santona M.C., Cytokine activity in cancer‐related anorexia/cachexia: role of megestrol acetate and medroxyprogesterone acetate. Semin. Oncol., 25 (Suppl. 6): 45–52, 1998. [PubMed] [Google Scholar]
  • 9. Mantovani G., MacciÒ A., Bianchi A., Curreli L., Ghiani M., Santona M.C., Del Giacco G.S., Megestrol acetate in neoplastic anorexia/cachexia: clinical evaluation and comparison with cytokine levels in patients with head and neck carcinoma treated with neoadjuvant chemotherapy, Int. J. Clin. Lab. Res., 25: 135–141, 1995. [DOI] [PubMed] [Google Scholar]
  • 10. Mantovani G., MacciÒ A., Esu S., Lai P., Santona M.C., Massa E., Dessi D., Melis G.B., Del Giacco G.S., Medroxyprogesterone acetate reduces the in vitro production of cytokines and serotonin involved in anorexia/cachexia and emesis by peripheral blood mononuclear cells of cancer patients, Eur. J. Cancer, 33: 602–607, 1997. [DOI] [PubMed] [Google Scholar]
  • 11. Weijl N.I., Cleton F.J., Osanto S., Free radicals and antioxidants in chemotherapy‐induced toxicity, Cancer. Treat. Rev., 23: 209–240, 1997. [DOI] [PubMed] [Google Scholar]
  • 12. Packer L., Witt E.H., Tritschler H.J., Alpha‐Lipoic acid as a biological antioxidant, Free Radic. Biol. Med., 19: 227–250, 1995. [DOI] [PubMed] [Google Scholar]
  • 13. Han D., Handelman G., Marcocci L., Sen C.K., Roy S., Kobuchi H., Tritschler H.J., Flohe L., Packer L., Lipoic acid increases de novo synthesis of cellular glutathione by improving cysteine utilization, Biofactors, 6: 321–338, 1997. [DOI] [PubMed] [Google Scholar]
  • 14. Beher J., Maier K., Degenkolb B., Krombach F., Vogelmeier C., Antioxidative and clinical effects of high‐dose N‐acetylcysteine in fibrosing alveolitis. Adjunctive therapy to maintenance immunosuppression, Am. J. Resp. Crit. Care Med., 156: 1897–1901, 1997. [DOI] [PubMed] [Google Scholar]
  • 15. Navarro J., Obrador E., Carretero J., Petschen I., Avino J., Perez P., Estrela J.M., Changes in glutathione status and the antioxidant system in blood and in cancer cells associate with tumor growth in vivo, Free Radic. Biol. Med., 26: 410–418, 1999. [DOI] [PubMed] [Google Scholar]
  • 16. McCall M.R., Frei B., Can antioxidant vitamins materially reduce oxidative damage in humans Free Radic. Biol. Med., 26: 1034–1053, 1999. [DOI] [PubMed] [Google Scholar]
  • 17. Frei B., Stocker R., Ames B.N., Antioxidant defenses and lipid peroxidation in human blood plasma, Proc. Natl. Acad. Sci. U.S.A., 85: 9748–9752, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Sobin L.H., Wittekind C.H. (eds): UICC, International Union Against Cancer ‐ TNM Classification of Malignant Tumors, 5th edition, Wiley‐Liss, New York , NY , 1997. [Google Scholar]
  • 19. Oken M.M., Creech R.H., Tormey D.C., Horton J., Davis T.E., McFadden E.T., Carbone P.P., Toxicity and response criteria of the Eastern Cooperative Oncology Group, Am. J. Clin. Oncol., 5: 649–655, 1982. [PubMed] [Google Scholar]
  • 20. Cesarone M.R., Belcaro G., Carratelli M., Cornelli U., De Sanctis M.T., Incandela L., Barsotti A., Terranova R., Nicolaides A., A simple test to monitor oxidative stress, Int. Angiol., 18: 127–130, 1999. [PubMed] [Google Scholar]
  • 21. Cornelli U., Terranova R., Luca S., Cornelli M., Alberti A., Bioavailability and antioxidant activity of some food supplements in men and women using the D'Roms test as a marker of oxidative stress, J. Nutr., 131: 3208–3211, 2001. [DOI] [PubMed] [Google Scholar]
  • 22. Buonocore G., Perrone S., Longini M., Terzuoli L., Bracci R., Total hydroperoxide and advanced oxidation protein products in preterm hypoxic babies, Pediatr. Res., 4: 221–224, 2000. [DOI] [PubMed] [Google Scholar]
  • 23. Mantovani G., Maccio A., Mura L., Massa E., Mudu M.C., Mulas C., Lusso M.R., Madeddu C., Dessi A., Serum levels of leptin and proinflammatory cytokines in patients with advanced‐stage cancer at different sites, J. Mol. Med., 78: 554–561, 2000. [DOI] [PubMed] [Google Scholar]
  • 24. Mantovani G., MacciÒ A., Madeddu C., Mura L., Massa E., Mudu M.C., Mulas C., Lusso M.R., Gramignano G., Piras M.B., Serum values of proinflammatory cytokines inversely correlate with serum leptin levels in patients with advanced stage cancer at different sites, J. Mol. Med., 79: 406–414, 2001. [DOI] [PubMed] [Google Scholar]
  • 25. Kong Q., Lillehei K.O., Antioxidant inhibitors for cancer therapy, Med. Hypotheses, 51: 405–409, 1998. [DOI] [PubMed] [Google Scholar]
  • 26. Ames B.N., Shigenaga M.K., Hagen T.M., Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. U.S.A., 90: 7915–7922, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Jaruga P., Zastawny T.H., Skokowski J., Dizdaroglu M., Olinski R., Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer, FEBS Letters, 14: 59–64, 1994. [DOI] [PubMed] [Google Scholar]
  • 28. Sun Y., Oberley L.W., Redox regulation of transcriptional activators, Free Radic. Biol. Med., 21: 335–348, 1996. [DOI] [PubMed] [Google Scholar]
  • 29. Blackburn R.V., Spitz D.R., Liu X., Galoforo S.S., Sim J.E., Ridnour L.A., Chen J.C., Davis B.H., Corry P.M., Lee Y.J., Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells, Free Radic. Biol. Med., 26: 419–430, 1999. [DOI] [PubMed] [Google Scholar]
  • 30. Toyokuni S., Okamoto K., Yodoi J., Hiai H., Persistent oxidative stress in cancer, FEBS Letters, 16: 3581–3583, 1995. [DOI] [PubMed] [Google Scholar]
  • 31. Meyer T.E., Liang H.Q., Buckley A.R., Buckley D.J., Gout P.W., Green E.H., Bode A.M., Changes in glutathione redox cycling and oxidative stress response in the malignant progression of NB2 lymphoma cells, Int. J. Cancer, 73: 55–63, 1998. [DOI] [PubMed] [Google Scholar]
  • 32. Terradez P., Asensi M., Lasso de la Vega M.C., Puertes I.R., Vina J., Estrela J.M., Depletion of tumour glutathione in vivo by buthionine sulphoximine: modulation by the rate of cellular proliferation and inhibition of cancer growth, Biochem. J., 292: 477–483, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Mantovani G., MacciÒ A., Madeddu C., Mura L., Gramignano G., Lusso M.R., Mulas C., Mudu M.C., Murgia V., Camboni P., Massa E., Ferreli L., Contu P., Rinaldi A., Sanjust E., Atzei D., Elsener B., Quantitative evaluation of oxidative stress, chronic inflammatory indexes and leptin in cancer patients: correlation with stage and performance status, Int. J. Cancer, 98: 84–91, 2002. [DOI] [PubMed] [Google Scholar]
  • 34. Ray G., Batra S., Shukla N.K., Deo S., Raina V., Ashok S., Husain S.A., Lipid peroxidation, free radical production and antioxidant status in breast cancer, Breast Cancer Res. Treat., 59: 163–170, 2000. [DOI] [PubMed] [Google Scholar]
  • 35. Guven M., Ozturk B., Sayal A., Ozturk A., Ulutin T., Lipid peroxidation and antioxidant system in the blood of cancerous patients with metastasis, Cancer Biochem. Biophys., 17: 155–162, 1999. [PubMed] [Google Scholar]
  • 36. Sabitha K.E., Shyamaladevi C.S., Oxidant and antioxidant activity changes in patients with oral cancer and treated with chemotherapy, Oral Oncol., 35: 273–277, 1999. [DOI] [PubMed] [Google Scholar]
  • 37. Nordmann R., Free radicals, oxidative stress and antioxidant vitamins, C.R. Seances Soc. Biol. Fil., 187: 277–285, 1993. [PubMed] [Google Scholar]
  • 38. Mantovani G., MacciÒ A., Melis G.B., Mura L., Massa E., Mudu M.C., Restoration of functional defects in peripheral blood mononuclear cells isolated from cancer patients by thiol antioxidants alpha‐lipoic acid and N‐acetyl cysteine, Int. J. Cancer, 86: 842–847, 2000. [DOI] [PubMed] [Google Scholar]
  • 39. Mantovani G., MacciÒ A., Madeddu C., Mura L., Gramignano G., Lusso M.R., Murgia V., Camboni P., Ferreli L., Mocci M., Massa E., The impact of different antioxidant agents alone or in combination on reactive oxygen species, antioxidant enzymes and cytokines in a series of advanced cancer patients at different sites: correlation with disease progression, Free Radical Research, accepted for publication. [DOI] [PubMed]
  • 40. Dietrich M., Block G., Hudes M., Morrow J.D., Norkus E.P., Traber M.G., Cross C.E., Packer L., Antioxidant supplementation decreases lipid peroxidation biomarker F(2)‐isoprostanes in plasma of smokers, Cancer Epidemiol. Biomarkers Prev., 11: 7–13, 2002. [PubMed] [Google Scholar]
  • 41. Albini A., Morini M., D'Agostini F., Ferrari N., Campelli F., Arena G., Noonan D.M., Pesce C., De Flora S., Inhibition of angiogenesis‐driven Kaposi's sarcoma tumor growth in nude mice by oral N‐acetylcysteine, Cancer Res., 61: 8171–8178, 2001. [PubMed] [Google Scholar]
  • 42. Peristeris P., Clark B.D., Gatti S., Faggioni R., Mantovani A., Mengozzi M., Orencole S.F., Sironi M., Ghezzi P., N‐acetylcysteine and glutathione as inhibitors of tumor necrosis factor production, Cell. Immunol., 140: 390–399, 1992. [DOI] [PubMed] [Google Scholar]
  • 43. Pena L.R., Hill D.B., McClain C.J., Treatment with glutathione precursor decreases cytokine activity, JPEN J. Parenter. Enteral. Nutr., 23: 1–6, 1999. [DOI] [PubMed] [Google Scholar]
  • 44. Weijl N.I., Hopman G.D., Wipkink‐Bakker A., Lentjes E.G., Berger H.M., Cleton F.J., Osanto S., Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients, Ann. Oncol., 9: 1331–1337, 1998. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES