Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(3):592–608. doi: 10.1111/j.1582-4934.2005.tb00491.x

Tissue engineering of cultured skin substitutes

Raymund E Horch 1,, Jürgen Kopp 1, Ulrich Kneser 1, Justus Beier 1, Alexander D Bach 1
PMCID: PMC6741320  PMID: 16202208

Abstract

Skin replacement has been a challenging task for surgeons ever since the introduction of skin grafts by Reverdin in 1871. Recently, skin grafting has evolved from the initial autograft and allograft preparations to biosynthetic and tissue‐engineered living skin replacements. This has been fostered by the dramatically improved survival rates of major burns where the availability of autologous normal skin for grafting has become one of the limiting factors. The ideal properties of a temporary and a permanent skin substitute have been well defined. Tissue‐engineered skin replacements: cultured autologous keratinocyte grafts, cultured allogeneic keratinocyte grafts, autologous/allogeneic composites, acellular biological matrices, and cellular matrices including such biological substances as fibrin sealant and various types of collagen, hyaluronic acid etc. have opened new horizons to deal with such massive skin loss. In extensive burns it has been shown that skin substitution with cultured grafts can be a life‐saving measure where few alternatives exist. Future research will aim to create skin substitutes with cultured epidermis that under appropriate circumstances may provide a wound cover that could be just as durable and esthetically acceptable as conventional split‐thickness skin grafts. Genetic manipulation may in addition enhance the performance of such cultured skin substitutes. If cell science, molecular biology, genetic engineering, material science and clinical expertise join their efforts to develop optimized cell culture techniques and synthetic or biological matrices then further technical advances might well lead to the production of almost skin like new tissue‐engineered human skin products resembling natural human skin.

Keywords: skin substitutes, keratinocyte culture, massive burns, tissue engineering, fibrin sealant, biological matrices, monolayers, collagen, hyaluronic acid, allografts

References

  • 1. Achauer BM, Martinez SE. Burn wound pathophysiology and care. Crit Care Clin. 1985; 1: 47–58. [PubMed] [Google Scholar]
  • 2. Adams SW, Wang L, Fortney J, Gibson LF. Etoposide differentially affects bone marrow and dermal derived endothelial cells. J Cell Mol Med. 2004; 8: 338–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Agrawal N, You H, Liu Y, Chiriva‐Internati M, Bremner J, Garg T, Grizzi F, Krishna Prasad C, Mehta JL, Hermonat PL. Generation of recombinant skin in vitro by adeno‐associated virus type 2 vector transduction. Tissue Eng. 2004; 10: 1707–15. [DOI] [PubMed] [Google Scholar]
  • 4. Alexander J, MacMillan B, Law E, Kittur D. Treatment of severe burns with widly meshed skin autograft and meshed skin allograft overlay. J Trauma. 1981; 21: 433–8. [PubMed] [Google Scholar]
  • 5. Alsbjorn B. In search of an ideal skin substitute. Scand J Plast Reconstr Surg. 1984; 18: 127–33. [DOI] [PubMed] [Google Scholar]
  • 6. Altmeppen J, Hansen E, Bonnlander GL, Horch RE, Jeschke MG. Composition and characteristics of an autologous thrombocyte gel. J Surg Res. 2004; 117: 202–7. [DOI] [PubMed] [Google Scholar]
  • 7. Andreadis ST. Gene transfer to epidermal stem cells: implications for tissue engineering. Expert Opin Biol Ther. 2004; 4: 783–800. [DOI] [PubMed] [Google Scholar]
  • 8. Andree C, Voigt M, Wenger A, Erichsen T, Bittner K, Schaefer D, Walgenbach KJ, Borges J, Horch RE, Eriksson E, Stark GB. Plasmid gene delivery to human keratinocytes through a fibrin‐mediated transfection system. Tissue Eng. 2001; 7: 757–66. [DOI] [PubMed] [Google Scholar]
  • 9. Anglani F, Forino M, Del Prete D, Tosetto E, Torregrossa R, D'Angelo A. In search of adult renal stem cells. J Cell Mol Med. 2004; 8: 474–87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Archambault M, Yaar M, Gilchrest BA. Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultraviolet irradiation. J Invest Dermatol. 1995; 104: 859–67. [DOI] [PubMed] [Google Scholar]
  • 11. Badiu C. Genetic clock of biologic rhythms. J Cell Mol Med. 2003; 7: 408–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004; 8: 301–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Bannasch H, Horch RE, Tanczos E, Stark GB. Treatment of chronic wounds with cultured autologous keratinocytes as suspension in fibrin glue. Zentralbl Chir. 2000; 125: 79–81. [PubMed] [Google Scholar]
  • 14. Bannasch H, Kontny U, Kruger M, Stark GB, Niemeyer CM, Brandis M, Horch RE. A semisynthetic bilaminar skin substitute used to treat pediatric full‐body toxic epidermal necrolysis: wraparound technique in a 17–month‐old girl. Arch Dermatol. 2004; 140: 160–2. [DOI] [PubMed] [Google Scholar]
  • 15. Bell E, Sher S, Hull B. The living skin‐equivalent as a structural and immunological model in skin grafting. Scan Electron Microsc. 1984; (Pt 4): 1957–62. [PubMed]
  • 16. Benga G. Basic studies on gene therapy of human malignant melanoma by use of the human interferon? gene entrapped in cationic multilamellar liposomes. 1. Morphology and growth rate of six melanoma cell lines used in transfection experiments with the human interfer‐on beta gene. J Cell Mol Med. 2001; 5: 402–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Billingham R, Reynolds J. Transplantation studies on sheet of pure epidermal epithelium and of epidermal cell suspensions. Br J Plast Surg. 1952; 23: 25–32. [DOI] [PubMed] [Google Scholar]
  • 18. Breitkreutz D, Mirancea N, Schmidt C, Beck R, Werner U, Stark HJ, Gerl M, Fusenig NE. Inhibition of basement membrane formation by a nido‐gen‐binding laminin?1–chain fragment in human skin‐organotypic cocultures. J Cell Sci. 2004; 117: 2611–22. [DOI] [PubMed] [Google Scholar]
  • 19. Burd A, Chan ESY, Lam PK. Post burn keloid treated with keratinocyte cell suspension and fibrin glue In: Achauer B, ed. Cultured human keratinocytes and tissue engineered skin substitutes. Stuttgart : Thieme; 2001. pp. 288–304. [Google Scholar]
  • 20. Burke JF, Yannas IV, Quinby WC, Jr. , Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981; 194: 413–28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Chang WY, Bryce DM, D'Souza SJ, Dagnino L. The DP‐1 transcription factor is required for keratinocyte growth and epidermal stratification. J Biol Chem. 2004; 279: 51343–53. [DOI] [PubMed] [Google Scholar]
  • 22. Chivu M, Diaconu CC, Brasoveanu L, Alexiu I, Bleotu C, Banceanu G, Miscalencu D, Cernescu C. Ex vivo differentiation of umbilical cord blood progenitor cells in the presence of placental conditioned medium. J Cell Mol Med. 2002; 6: 609–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Cohen M, Bahoric A, Clarke HM. Aerosolization of epidermal cells with fibrin glue for the epithelialization of porcine wounds with unfavorable topography. Plast Reconstr Surg. 2001; 107: 1208–15. [DOI] [PubMed] [Google Scholar]
  • 24. Compton CC, Gill JM, Bradford DA, Regauer S, Gallico GG, O'Connor NE. Skin regenerated from cultured epithelial autografts on full‐thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab Invest. 1989; 60: 600–12. [PubMed] [Google Scholar]
  • 25. Compton CC, Nadire KB, Regauer S, Simon M, Warland G, O'Connor NE, Gallico GG, Landry DB. Cultured human sole‐derived keratinocyte grafts re‐express site‐specific differentiation after transplantation. Differentiation 1998; 64: 45–53. [DOI] [PubMed] [Google Scholar]
  • 26. Compton CC, Press W, Gill JM, Bantick G, Nadire KB, Warland G, Fallon JT 3rd, Vamvakas EC. The generation of anchoring fibrils by epidermal keratinocytes: a quantitative long‐term study. Epithelial Cell Biol. 1995; 4: 93–103. [PubMed] [Google Scholar]
  • 27. Constantinescu S. Stemness, fusion and renewal of hematopoietic and embryonic stem cells. J Cell Mol Med. 2003; 7: 103–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Constantinescu SN. Stem cell generation and choice of fate: role of cytokines and cellular microenvironment. J Cell Mol Med. 2000; 4: 233–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Currie LJ, Sharpe JR, Martin R. The use of fibrin glue in skin grafts and tissue‐engineered skin replacements: a review. Plast Reconstr Surg. 2001; 108: 1713–26. [DOI] [PubMed] [Google Scholar]
  • 30. De Luca M, Albanese E, Bondanza S, Megna M, Ugozzoli L, Molina F, Cancedda R, Santi PL, Bormioli M, Stella M, et al. Multicentre experience in the treatment of burns with autologous and allogenic cultured epithelium, fresh or preserved in a frozen state. Burns 1989; 15: 303–9. [DOI] [PubMed] [Google Scholar]
  • 31. Demling RH, DeSanti L. Management of partial thickness facial burns (comparison of topical antibiotics and bio‐engineered skin substitutes). Burns 1999; 25: 256–61. [DOI] [PubMed] [Google Scholar]
  • 32. Doss MX, Koehler CI, Gissel C, Hescheler J, Sachinidis A. Embryonic stem cells: a promising tool for cell replacement therapy. J Cell Mol Med 2004; 8: 465–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Dubertret L, Coulomb B. Reconstruction of human skin in culture. C R Seances Soc Biol Fil. 1994; 188: 235–44. [PubMed] [Google Scholar]
  • 34. Eaglstein WH, Iriondo M, Laszlo K. A composite skin substitute (graftskin) for surgical wounds. A clinical experience. Dermatol Surg. 1995; 21: 839–43. [DOI] [PubMed] [Google Scholar]
  • 35. Ehrlich HP. Control of wound healing from connective tissue aspect. Chirurg. 1995; 66: 165–73. [PubMed] [Google Scholar]
  • 36. Filip S, English D, Mokry J. Issues in stem cell plasticity. J Cell Mol Med. 2004; 8: 572–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Foyatier JL, Faure M, Hezez G, Masson C, Paulus C, Chomel P, Latarjet J, Delay E, Thomas L, Adam C, et al. Clinical application of grafts of cultured epidermis in burn patients. Apropos of 16 patients. Ann Chir Plast Esthet. 1990; 35: 39–46. [PubMed] [Google Scholar]
  • 38. Fratianne R, Schafer IA. Keratinocyte allografts act as a biological bandage to accelerate helaing of split thickness donor sites In: Achauer B, ed. Cultured Human Keratinocytes and Tissue Engineered Skin Substitutes. Stuttgart : Thieme; 2001. pp. 316–25. [Google Scholar]
  • 39. Fraulin FO, Bahoric A, Harrop AR, Hiruki T, Clarke HM. Autotransplantation of epithelial cells in the pig via an aerosol vehicle. J Burn Care Rehabil. 1998; 19: 337–45. [DOI] [PubMed] [Google Scholar]
  • 40. Freising C, Horch RE. Clinical results of cultivated ker‐atinocyzes to treat burn injuries ‐ a metaanalysis In: Achauer B, ed. Cultured Human Keratinocytes and Tissue Engineered Skin Substitutes. Stuttgart : Thieme; 2001. pp. 220–6. [Google Scholar]
  • 41. Gallico GG 3rd. Biologic skin substitutes. Clin Plast Surg. 1990; 17: 519–26. [PubMed] [Google Scholar]
  • 42. Gallico GG 3rd, O'Connor NE. Cultured epithelium as a skin substitute. Clin Plast Surg. 1985; 12: 149–57. [PubMed] [Google Scholar]
  • 43. Gallico GG 3rd, O'Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984; 311: 448–51. [DOI] [PubMed] [Google Scholar]
  • 44. Gallico Gr, O'Connor N, Compton C, Kehinde O. HG. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984; 311: 448–51. [DOI] [PubMed] [Google Scholar]
  • 45. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA. 1979; 76: 5665–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Grossman N, Slovik Y, Bodner L. Effect of donor age on cultivation of human oral mucosal keratinocytes. Arch Gerontol Geriatr. 2004; 38: 114–22. [DOI] [PubMed] [Google Scholar]
  • 47. Hafez AT, Bagli DJ, Bahoric A, Aitken K, Smith CR, Herz D, Khoury AE. Aerosol transfer of bladder urothelial and smooth muscle cells onto demucosalized colonic segments: a pilot study. J Urol. 2003; 169: 2316–9. [DOI] [PubMed] [Google Scholar]
  • 48. Harriger MD, Supp AP, Swope VB, Boyce ST. Reduced engraftment and wound closure of cryopreserved cultured skin substitutes grafted to athymic mice. Cryobiology 1997; 35: 132–42. [DOI] [PubMed] [Google Scholar]
  • 49. Harris PA, di Francesco F, Barisoni D, Leigh IM, Navsaria HA. Use of hyaluronic acid and cultured autologous keratinocytes and fibroblasts in extensive burns. Lancet 1999; 353 (9146): 35–6. [DOI] [PubMed] [Google Scholar]
  • 50. Harris PA, Leigh IM, Navsaria HA. Pre‐confluent keratinocyte grafting: the future for cultured skin replacements Burns 1998; 24: 591–3. [DOI] [PubMed] [Google Scholar]
  • 51. Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, Jordan M, McManus W, Solem L, Warden G, et al. Artificial dermis for major burns. A multi‐center randomized clinical trial. Ann Surg. 1988; 208: 313–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Herndon DN, Rutan RL. Comparison of cultured epidermal autograft and massive excision with serial auto‐grafting plus homograft overlay. J Burn Care Rehabil. 1992; 13: 154–7. [DOI] [PubMed] [Google Scholar]
  • 53. Hickerson WL, Compton C, Fletchall S, Smith LR. Cultured epidermal autografts and allodermis combination for permanent burn wound coverage. Burns 1994; 20: S52–5. [DOI] [PubMed] [Google Scholar]
  • 54. Horch R, Horch GB. Economy of skin grafting in burns. Hospital - J Eur Assoc Hosp Man 2001; 3: 6–9. [Google Scholar]
  • 55. Horch R, Stark GB, Kopp J, Spilker G. Cologne Burn Centre experiences with glycerol‐preserved allogeneic skin: Part I: Clinical experiences and histological findings (overgraft and sandwich technique). Burns 1994; 20: S23–6. [DOI] [PubMed] [Google Scholar]
  • 56. Horch R, Stark GB, Spilker G. Treatment of perianal burns with submerged skin particles. Zentralbl Chir. 1994; 119: 722–5. [PubMed] [Google Scholar]
  • 57. Horch RE, Andree C, Kopp J, Tanczos E, Voigt M, Bannasch H, Walgenbach KJ, Dai FP, Bittner K, Galla TJ, Stark GB. Gene therapy perspectives in modulation of wound healing. Zentralbl Chir. 2000; 125: 74–8. [PubMed] [Google Scholar]
  • 58. Horch RE, Bannasch H, Kopp J, Andree C, Ihling C, Stark GB. Keratinocytes suspended in fibrin glue (KFGS) restore dermo‐epidermal junction better than conventional sheet grafts (CEG). Plast Surg Forum 1996. 19: 23–5. [Google Scholar]
  • 59. Horch RE, Bannasch H, Kopp J, Andree C, Stark GB. Single‐cell suspensions of cultured human keratinocytes in fibrin‐glue reconstitute the epidermis. Cell Transplant 1998; 7: 309–17. [DOI] [PubMed] [Google Scholar]
  • 60. Horch RE, Bannasch H, Stark GB. Combined grafting of cultured human keratinocytes as a single cell suspension in fibrin glue and preserved dermal grafts enhances skin reconstitution in athymic mice full‐thickness wounds. Eur J Plast Surg. 1999; 22: 237–43. [Google Scholar]
  • 61. Horch RE, Bannasch H, Stark GB. Transplantation of cultured autologous keratinocytes in fibrin sealant bioma‐trix to resurface chronic wounds. Transplant Proc. 2001; 33: 642–4. [DOI] [PubMed] [Google Scholar]
  • 62. Horch RE, Corbei O, Formanek‐Corbei B, Brand‐Saberi B, Vanscheidt W, Stark GB. Reconstitution of basement membrane after ‘sandwich‐technique’ skin grafting for severe burns demonstrated by immunohistochem‐istry. J Burn Care Rehabil. 1998; 19: 189–202. [DOI] [PubMed] [Google Scholar]
  • 63. Horch RE, Debus M, Wagner G, Stark GB. Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis. Tissue Eng. 2000; 6: 53–67. [DOI] [PubMed] [Google Scholar]
  • 64. Horch RE, Jeschke MG, Spilker G, Herndon DN, Kopp J. Treatment of second degree facial burns with allografts ‐ preliminary results. Burns 2005; 31: 225–31. [DOI] [PubMed] [Google Scholar]
  • 65. Horch RE, Munster AM, Achauer B. Cultured human keratinocytes and tissue engeneered skin substitutes. Sututtgart : Thieme, 2001. [Google Scholar]
  • 66. Horch RE, Stark GB. Economy of skin grafting in burns. Hospital - J Eur Assoc Hosp Man 2001; 3: 6–9. [Google Scholar]
  • 67. Horch RE, Stark GB, Kopp J. Histology after grafting of cultured keratinocyte‐fibrin‐glue‐suspension (KFGS) with allogenic split‐thickness‐skin (STS) overlay. Ellipse 1994; 11: 21–6. [Google Scholar]
  • 68. Horch RE, Stark GB, Kopp J, Andree C. Dermisersatz nach drittgradigen Verbrennungen und bei chronischen Wunden ‐ Neue Erkenntnisse zur Morphologie nach Fremdhauttransplantation in Kombination mit kultivierten Keratinozyten. Transplantationsmedizin 1995; 7: 99–103. [Google Scholar]
  • 69. Horch RE, Stark GB, Kopp J, Spilker G. Cologne Burn Centre experiences with glycerol‐preserved allogeneic skin: Part I: Clinical experiences and histological findings (overgraft and sandwich technique). Burns 1994; 20: S23–6. [DOI] [PubMed] [Google Scholar]
  • 70. Horch RE, Stark GB, Spilker G. Treatment of perianal burns with submerged skin particles. Zentralbl Chir. 1994; 119: 722–5. [PubMed] [Google Scholar]
  • 71. Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med. 2004; 8: 498–508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Iwami Y, Masuda H, Asahara T. Endothelial progenitor cells: past, state of the art, and future. J Cell Mol Med. 2004; 8: 488–97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Jansen J, Hanks S, Thompson JM, Dugan MJ, Akard LP. Transplantation of hematopoietic stem cells from the peripheral blood. J Cell Mol Med. 2005; 9: 37–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Johnsen S, Ermuth T, Tanczos E, Bannasch H, Horch RE, Zschocke I, Peschen M, Schopf E, Vanscheidt W, Augustin M. Treatment of therapy‐refractive ulcera cruris of various origins with autologous keratinocytes in fibrin sealant. Vasa 2005; 34: 25–9. [DOI] [PubMed] [Google Scholar]
  • 75. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002; 55: 185–93. [DOI] [PubMed] [Google Scholar]
  • 76. Jones I, James SE, Rubin P, Martin R. Upward migration of cultured autologous keratinocytes in Integra artificial skin: a preliminary report. Wound Repair Regen. 2003; 11: 132–8. [DOI] [PubMed] [Google Scholar]
  • 77. Kneser U, Arkudas A, Ohnolz J, Heidner K, Bach AD, Kopp J, Horch RE. Vascularized bone replacement for the treatment of chronic bone defects ‐ initial results of microsurgical solid matrix vascularization. EWMA J. 2005; 5: 14–9. [Google Scholar]
  • 78. Kogan L, Govrin‐Yehudain J. Vertical (two‐layer) skin grafting: new reserves for autologic skin. Ann Plast Surg 2003; 50: 514–6. [DOI] [PubMed] [Google Scholar]
  • 79. Kohnlein HE. Skin transplantation and skin substitutes. Langenbecks Arch Chir. 1970; 327: 1090–106. [DOI] [PubMed] [Google Scholar]
  • 80. Koller R, Bierochs B, Bayer GS, Meissl G, Frey M. The use of allogenic cultivated keratinocytes for the early coverage of deep dermal burns ‐ the Viennese experience In: Achauer B, ed. Cultured Human Keratinocytes and Tissue Engienered Skin Substitutes. Stuttgart : Thieme; 2001. pp. 227–9. [Google Scholar]
  • 81. Kopp J, Jeschke M, Bach A, Kneser U, Horch R. Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autologous ker‐atinocytes in a natural fibrin matrix. Cell Tissue Bank. 2004; 5: 212–7. [DOI] [PubMed] [Google Scholar]
  • 82. Kopp J, Jeschke MG, Bach AD, Kneser U, Horch RE. Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autologous ker‐atinocytes in a natural fibrin matrix. Cell Tissue Bank. 2004; 5: 89–96. [DOI] [PubMed] [Google Scholar]
  • 83. Kopp J, Jiao XY, Bannasch H, Horch RE, Huan JN, Chen Y, Stark GB. Membrane cell grafts (MCG) regenerate the epidermis in full thickness wounds. Di-Er Junyi Daxue Xuebao - Academic Journal of the Second Military Medical University 1998; 8: 77–81. [Google Scholar]
  • 84. Kopp J, Jiao XY, Bannasch H, Horch RE, Nagursky H, Voigt M, Stark GB. Membrane cell grafts (MCG), fresh and frozen, to cover full thickness wounds in athymic nude mice. Eur J Plast Surg. 22: 213–9. [Google Scholar]
  • 85. Kopp J, Jiao XY, Dai FP, Kulmburg P, Chen Y, Stark GB. KGF‐transfected cells can stimulate growth an proliferation of human cultured kerationcytes in vitro. Di-Er Junyi Daxue Xuebao - Academic Journal of the Second Military Medical University 1998; 8: 74–6. [Google Scholar]
  • 86. Kopp J, Wang GY, Horch RE, Pallua N, Ge SD. Ancient traditional Chinese medicine in burn treatment: a historical review. Burns 2003; 29: 473–8. [DOI] [PubMed] [Google Scholar]
  • 87. Kopp J, Wang GY, Kulmburg P, Schultze‐Mosgau S, Huan JN, Ying K, Seyhan H, Jeschke MD, Kneser U, Bach AD, Ge SD, Dooley S, Horch RE. Accelerated wound healing by in vivo application of keratinocytes overexpressing KGF. Mol Ther. 2004; 10: 86–96. [DOI] [PubMed] [Google Scholar]
  • 88. Kuehnle I, Goodell MA. The therapeutic potential of stem cells from adults. BMJ 2002; 325: 372–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Leigh IM, Navsaria H, Purkis PE, McKay I. Clinical practice and biological effects of keratinocyte grafting. Ann Acad Med Singapore 1991; 20: 549–55. [PubMed] [Google Scholar]
  • 90. Manea A, Constantinescu E, Popov D, Raicu M. Changes in oxidative balance in rat pericytes exposed to diabetic conditions. J Cell Mol Med. 2004; 8: 117–26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Mangoldt F. Die Überhäutung von Wundflächen und Wundhöhlen durch Epithelausaat, eine neue Methode der Transplantation. Deut Med Wschr 1895; 21: 798–9. [Google Scholar]
  • 92. McNulty JM, Kambour MJ, Smith AA. Use of an improved zirconyl hematoxylin stain in the diagnosis of Barrett's esophagus. J Cell Mol Med. 2004; 8: 382–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Meana A, Iglesias J, Del Rio M, Larcher F, Madrigal B, Fresno MF, Martin C, San Roman F, Tevar F. Large surface of cultured human epithelium obtained on a dermal matrix based on live fibroblast‐containing fibrin gels. Burns 1998; 24: 621–30. [DOI] [PubMed] [Google Scholar]
  • 94. Munster AM. Cultured skin for massive burns. A prospective, controlled trial. Ann Surg. 1996; 224: 372–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Munster AM. Whither [corrected] skin replacement Burns 1997; 23: v. [DOI] [PubMed] [Google Scholar]
  • 96. Munster AM, Smith‐Meek M, Shalom A. Acellular allograft dermal matrix: immediate or delayed epidermal coverage Burns 2001; 27: 150–3. [DOI] [PubMed] [Google Scholar]
  • 97. Munster AM, Smith‐Meek M, Sharkey P. The effect of early surgical intervention on mortality and cost‐effectiveness in burn care, 1978‐91. Burns 1994; 20: 61–4. [DOI] [PubMed] [Google Scholar]
  • 98. Munster AM, Weiner SH, Spence RJ. Cultured epidermis for the coverage of massive burn wounds. A single center experience. Ann Surg. 1990; 211: 676–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Murphy GF, Orgill DP, Yannas IV. Partial dermal regeneration is induced by biodegradable collagen‐glycosaminoglycan grafts. Lab Invest. 1990; 62: 305–13. [PubMed] [Google Scholar]
  • 100. Myers SR, Grady J, Soranzo C, Sanders R, Green C, Leigh IM, Navsaria HA. A hyaluronic acid membrane delivery system for cultured keratinocytes: clinical “take” rates in the porcine keratodermal model. J Burn Care Rehabil. 1997; 18: 214–22. [DOI] [PubMed] [Google Scholar]
  • 101. Nanchahal J, Dover R, Otto WR. Allogeneic skin substitutes applied to burns patients. Burns 2002; 28: 254–7. [DOI] [PubMed] [Google Scholar]
  • 102. Nanchahal J, Ward CM. New grafts for old? A review of alternatives to autologous skin. Br J Plast Surg. 1992; 45: 354–63. [DOI] [PubMed] [Google Scholar]
  • 103. Navsaria HA, Ojeh NO, Moiemen N, Griffiths MA, Frame JD. Reepithelialization of a full‐thickness burn from stem cells of hair follicles micrografted into a tissue‐engineered dermal template (Integra). Plast Reconstr Surg. 2004; 113: 978–81. [DOI] [PubMed] [Google Scholar]
  • 104. O'Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen‐GAG scaffolds. Biomaterials 2005; 26: 433–41. [DOI] [PubMed] [Google Scholar]
  • 105. Orgill DP, Straus FH 2nd, Lee RC. The use of collagen‐GAG membranes in reconstructive surgery. Ann N Y Acad Sci. 1999; 888: 233–48. [DOI] [PubMed] [Google Scholar]
  • 106. Parisel C, Saffar L, Gattegno L, Andre V, Abdul‐Malak N, Perrier E, Letourneur D. Interactions of heparin with human skin cells: binding, location, and transdermal penetration. J Biomed Mater Res. 2003; 67A: 517–23. [DOI] [PubMed] [Google Scholar]
  • 107. Paunescu V, Suciu E, Tatu C, Plesa A, Herman D, Siska IR, Suciu C, Crisnic D, Nistor D, Tanasie G, Bunu C, Raica M. Endothelial cells from hematopoietic stem cells are functionally different from those of human umbilical vein. J Cell Mol Med. 2003; 7: 455–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Pellegrini G, Dellambra E, Paterna P, Golisano O, Traverso CE, Rama P, Lacal P, De Luca M. Telomerase activity is sufficient to bypass replicative senescence in human limbal and conjunctival but not corneal keratinocytes. Eur J Cell Biol. 2004; 83: 691–700. [DOI] [PubMed] [Google Scholar]
  • 109. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol. 1999; 145: 769–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G, Micali G, De Luca M. The control of epidermal stem cells (holoclones) in the treatment of massive full‐thickness burns with autologous ker‐atinocytes cultured on fibrin. Transplantation 1999; 68: 868–79. [DOI] [PubMed] [Google Scholar]
  • 111. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long‐term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997; 349: 990–3. [DOI] [PubMed] [Google Scholar]
  • 112. Pels‐Leusden F. Die Anwendung des Spalthautlappens in der Chirurgie. Deut Med Wschr 1905; 31: 99–102. [Google Scholar]
  • 113. Phillips TJ. Biologic skin substitutes. J Dermatol Surg Oncol. 1993; 19: 794–800. [DOI] [PubMed] [Google Scholar]
  • 114. Prasanna M, Singh K, Kumar P. Early tangential excision and skin grafting as a routine method of burn wound management: an experience from a developing country. Burns 1994; 20: 446–50. [DOI] [PubMed] [Google Scholar]
  • 115. Pruitt BA, Jr. The evolutionary development of biologic dressings and skin substitutes. J Burn Care Rehabil. 1997; 18: S2–5. [DOI] [PubMed] [Google Scholar]
  • 116. Raghunath M, Meuli M. Cultured epithelial autografts: diving from surgery into matrix biology. Pediatr Surg Int. 1997; 12: 478–83. [DOI] [PubMed] [Google Scholar]
  • 117. Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, Pellegrini G. Autologous fibrin‐cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 2001; 72: 1478–85. [DOI] [PubMed] [Google Scholar]
  • 118. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975; 6: 331–43. [DOI] [PubMed] [Google Scholar]
  • 119. Rheinwald JG, Hahn WC, Ramsey MR, Wu JY, Guo Z, Tsao H, De Luca M, Catricala C, O'Toole KM. A two‐stage, p16(INK4A)‐ and p53–dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol. 2002; 22: 5157–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Ronfard V, Broly H, Mitchell V, Galizia JP, Hochart D, Chambon E, Pellerin P, Huart JJ. Use of human keratinocytes cultured on fibrin glue in the treatment of burn wounds. Burns 1991; 17: 181–4. [DOI] [PubMed] [Google Scholar]
  • 121. Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long‐term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 2000; 70: 1588–98. [DOI] [PubMed] [Google Scholar]
  • 122. Rosenthal N. Prometheus's vulture and the stem‐cell promise. N Engl J Med. 2003; 349: 267–74. [DOI] [PubMed] [Google Scholar]
  • 123. Rouabhia M. In vitro production and transplantation of immunologically active skin equivalents. Lab Invest. 1996; 75: 503–17. [PubMed] [Google Scholar]
  • 124. Rouabhia M, Germain L, Bergeron J, Auger FA. Allogeneic‐syngeneic cultured epithelia. A successful therapeutic option for skin regeneration. Transplantation 1995; 59: 1229–35. [PubMed] [Google Scholar]
  • 125. Schiera G, Bono E, Raffa MP, Gallo A, Pitarresi GL, Di Liegro I, Savettieri G. Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J Cell Mol Med. 2003; 7: 165–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Schultze‐Mosgau S, Lee BK, Ries J, Amann K, Wiltfang J. In vitro cultured autologous pre‐confluent oral keratinocytes for experimental prefabrication of oral mucosa. Int J Oral Maxillofac Surg. 2004; 33: 476–85. [DOI] [PubMed] [Google Scholar]
  • 127. Shakespeare P. Burn wound healing and skin substitutes. Burns 2001; 27: 517–22. [PubMed] [Google Scholar]
  • 128. Shakespeare P. Skin substitutes‐benefits and costs. Burns 2001; 27: vii–viii. [PubMed] [Google Scholar]
  • 129. Shakespeare PG. Cost effectiveness of skin substitutes. A commentary on the debate at the 10th ISBI Congress, Jerusalem 1998. International Society for Burn Injuries. Burns 1999; 25: 179–81. [DOI] [PubMed] [Google Scholar]
  • 130. Sheridan RL, Moreno C. Skin substitutes in burns. Burns 2001; 27: 92. [DOI] [PubMed] [Google Scholar]
  • 131. Sheridan RL, Morgan JR, Cusick JL, Petras LM, Lydon MM, Tompkins RG. Initial experience with a composite autologous skin substitute. Burns 2001; 27: 421–4. [DOI] [PubMed] [Google Scholar]
  • 132. Slavin J. The role of cytokines in wound healing. J Pathol. 1996; 178: 5–10. [DOI] [PubMed] [Google Scholar]
  • 133. Smola H, Stark HJ, Thiekotter G, Mirancea N, Krieg T, Fusenig NE. Dynamics of basement membrane formation by keratinocyte‐fibroblast interactions in organotypic skin culture. Exp Cell Res. 1998; 239: 399–410. [DOI] [PubMed] [Google Scholar]
  • 134. Stark GB, Horch RE, Voigt M, Tanczos E. Biological wound tissue glue systems in wound healing. Langenbecks Arch Chir Suppl Kongressbd. 1998; 115: 683–8. [PubMed] [Google Scholar]
  • 135. Stark HJ, Baur M, Breitkreutz D, Mirancea N, Fusenig NE. Organotypic keratinocyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. J Invest Dermatol. 1999; 112: 681–91. [DOI] [PubMed] [Google Scholar]
  • 136. Stark HJ, Szabowski A, Fusenig NE, Maas‐Szabowski N. Organotypic cocultures as skin equivalents: A complex and sophisticated in vitro system. Biol Proced Online 2004; 6: 55–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137. Stark HJ, Willhauck MJ, Mirancea N, Boehnke K, Nord I, Breitkreutz D, Pavesio A, Boukamp P, Fusenig NE. Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co‐culture. Eur J Cell Biol. 2004; 83: 631–45. [DOI] [PubMed] [Google Scholar]
  • 138. Supp DM, Boyce ST. Genetic modification of cultured skin substitutes In: Achauer B, ed. Cultured human keratinocytes and tissue engineered skin substitutes. Stuttgart : Thieme; 2001; pp. 60–71. [Google Scholar]
  • 139. Supp DM, Supp AP, Bell SM, Boyce ST. Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J Invest Dermatol. 2000; 114: 5–13. [DOI] [PubMed] [Google Scholar]
  • 140. Suzuki T, Ui K, Shioya N, Ihara S. Mixed cultures comprising syngeneic and allogeneic mouse keratinocytes as a graftable skin substitute. Transplantation 1995; 59: 1236–41. [PubMed] [Google Scholar]
  • 141. Tanczos E, Horch RE, Bannasch H, Andree C, Walgenbach KJ, Voigt M, Stark GB. Keratinocyte transplantation and tissue engineering. New approaches in treatment of chronic wounds. Zentralbl Chir. 1999; 124: 81–6. [PubMed] [Google Scholar]
  • 142. van Luyn MJ, Verheul J, van Wachem PB. Regeneration of full‐thickness wounds using collagen split grafts. J Biomed Mater Res. 1995; 29: 1425–36. [DOI] [PubMed] [Google Scholar]
  • 143. Voigt M, Schauer M, Schaefer DJ, Andree C, Horch R, Stark GB. Cultured epidermal keratinocytes on a microspherical transport system are feasible to reconstitute the epidermis in full‐thickness wounds. Tissue Eng. 1999; 5: 563–72. [DOI] [PubMed] [Google Scholar]
  • 144. Wang HJ, Bertrand‐de Haas M, van Blitterswijk CA, Lamme EN. Engineering of a dermal equivalent: seeding and culturing fibroblasts in PEGT/PBT copolymer scaffolds. Tissue Eng. 2003; 9: 909–17. [DOI] [PubMed] [Google Scholar]
  • 145. Wright KA, Nadire KB, Busto P, Tubo R, McPherson JM, Wentworth BM. Alternative delivery of keratinocytes using a polyurethane membrane and the implications for its use in the treatment of full‐thickness burn injury. Burns 1998; 24: 7–17. [DOI] [PubMed] [Google Scholar]
  • 146. Wu J, Barisoni D, Armato U. An investigation into the mechanisms by which human dermis does not significantly contribute to the rejection of allo‐skin grafts. Burns 1995; 21: 11–6. [DOI] [PubMed] [Google Scholar]
  • 147. Xu W, Germain L, Goulet F, Auger FA. Permanent grafting of living skin substitutes: surgical parameters to control for successful results. J Burn Care Rehabil. 1996; 17: 7–13. [DOI] [PubMed] [Google Scholar]
  • 148. Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 1982; 215: 174–6. [DOI] [PubMed] [Google Scholar]
  • 149. Yannas IV, Burke JF, Warpehoski M, Stasikelis P, Skrabut EM, Orgill D, Giard DJ. Prompt, long‐term functional replacement of skin. Trans Am Soc Artif Intern Organs 1981; 27: 19–23. [PubMed] [Google Scholar]
  • 150. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci USA. 1989; 86: 933–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151. Yasushi F, Koichi U, Yuka O, Kentaro K, Hiromichi M, Yoshimitsu K. 026 Treatment with autologous cultured dermal substitutes (CDS) for burn scar contracture in children. Wound Repair Regen. 2004; 12: A11. [Google Scholar]
  • 152. Zhao Y, Wang X, Lu S. Identifying the existence of cultured human epidermal allografts with PCR techniques. Zhonghua Wai Ke Za Zhi. 1995; 33: 387–9. [PubMed] [Google Scholar]
  • 153. Zhao YB. Primary observation of prolonged survival of cultured epidermal allografts. Zhonghua Wai Ke Za Zhi. 1992; 30: 104–6, 125–6. [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES