Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;4(3):183–195. doi: 10.1111/j.1582-4934.2000.tb00116.x

Molecular cloning and three‐dimensional structure prediction of a novel α‐tubulin in Caenorhabditis elegans

Camelia Baleanu‐Gogonea 1,2,, SS Siddiqui 2
PMCID: PMC6741322  PMID: 12167287

Abstract

This paper reports on the isolation of a cDNA clone (tba‐6) encoded by a novel a‐tubulin gene in the nematode C. elegans. The tba‐6 gene is located on chromosome I, that encode a protein of 460 amino acids, as well as the expression of the gene during the development. Here we discuss the structure of the coding region and the regulatory sequences in the promoter region. The comparison of the amino acid sequence of TBA6 with other α‐tubulin isotypes of C. elegans, suggests that these proteins are highly conserved in most of the N‐terminal and intermediate sequence, but they have highly divergent C‐terminal sequences. TBA6 has also high homology with other α‐tubulin families (e.g. human, mouse, Drosophila melangaster). The in situ experiment results suggest that the tba‐6α‐tubulin gene is required during the entire embryonic development, therefore it is required during the early cell division stages. Further, we determined the 3D structure of C. elegans TBA6 α‐tubulin by altering (computationally) the crystal structure of the α‐tubulin (TBA_pig) from porcine α‐β tubulin dimer. We discuss structural conservation and changes in the pattern of interactions between secondary structure elements of TBA_pig and TBA6, respectively.

Keywords: α‐tubulin, C. elegans, primary sequence analysis, 3D structure

References

  • 1. Dustin P., Microtubules, Springer Verlag: New York , 1984. [Google Scholar]
  • 2. Field, D. J. , Lee, J. C. , Isoelectric focusing and two‐dimensional electrophoresis of tubulin using immobilized pH gradients under denaturating conditions, Anal. Biochem., 144: 584–592, 1985. [DOI] [PubMed] [Google Scholar]
  • 3. Cleveland D. W., Sullivan K. F., Molecular biology and genetics of tubulin, Annu. Rev. Biochem., 54: 331–365, 1985. [DOI] [PubMed] [Google Scholar]
  • 4. Aamodt E. J., Cullotti J. G., Microtubules and microtubule associated proteins from the nematode Caenorhabditis elegans: periodic cross‐links connect microtubules in vitro J. Cell Biol., 103: 23–31, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Chalfie M., Thomson J. N., Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans J. Cell Biol., 93: 15–23, 1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Siddiqui S. S., Aamodt E. J., Rastinejad F., Culotti J. G., Anti‐tubulin monoclonal antibodies that bind to specific neurons in Caenorhabditis elegans J. Neurosc, 9: 2963–2972, 1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Shakir, M. A. , Fukushige, T. , Yasuda, H. , Miwa, J. , Siddiqui, S. S. , C. elegans osm‐3 gene mediating osmotic avoidance behavior encodes a kinesin like protein, Neuroreport, 4: 891–894, 1993. [DOI] [PubMed] [Google Scholar]
  • 8. Tabish M., Siddiqui Z. K., Nishikawa K., Sidiqqui S. S., Exclusive expression of C. elegans osm‐3 kinesin gene in chemosensory neurons open to the external environment, J. Mol. Biol., 247: 377–389, 1995. [DOI] [PubMed] [Google Scholar]
  • 9. Khan M. L. A., Gogonea C. B., Siddiqui Z. K., Ali M. Y., Kikuno R., Nishikawa K., Sidiqqui S. S., Molecular cloning and expression of the Caenorhabditis elegans klp‐3, an ortholog of C‐terminus motor kinesin kar3, and ncd, J. Mol. Biol., 270: 627–639, 1997. [DOI] [PubMed] [Google Scholar]
  • 10. Gremke L., Cloning and molecular characterization of the tubulin genes of Caenorhabditis elegans: nucleotide sequence analysis of a β‐tubulin gene. Ph.D. Thesis, Northwestern University, Evanston , Illinois , USA 1986. [Google Scholar]
  • 11. Savage C., Chalfie M.,Genetic aspects of microtubule biology in the nematode Caenorhabditis elegans Cell Motil. Cytoskel., 18: 159–163, 1989. [DOI] [PubMed] [Google Scholar]
  • 12. Driscoll M., Dean E., Reilly E., Bergholz E., Chalfie M., Genetic and molecular analysis of a Caenorhabditis elegansβ‐tubulin, the conveys benzimidazole sensitivity, J. Cell Biol., 109: 2993–3003, 1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Fukushige T., Yasuda H., Siddiqui S. S., Molecular cloning and developmental expression of the α‐2 tubulin gene of Caenorhabditis elegans J. Mol. Biol., 234: 1290–1300, 1993. [DOI] [PubMed] [Google Scholar]
  • 14. Fukushige T., Molecular and genetic studies of α‐tubulin gene family during the development of Caenorhabditis elegans Toyohashi University of Technology, Ph.D. Thesis, Toyohashi , Japan , 1994. [Google Scholar]
  • 15. Fukushige T., Siddiqui S. S., Effect of the dpy‐20 and rol‐6 co‐transformation markers on α‐tubulin gene expression in C. elegans Transgen. Res., 4: 332–340, 1995. [DOI] [PubMed] [Google Scholar]
  • 16. Fukushige T., Yasuda H., Siddiqui S. S., Selective expression of the tba‐1 α‐tubulin gene in a set of mechanosensory and motor neurons during the development of Caenorhabditis elegans Biochim. Biopys. Acta, 1261: 401–416, 1995. [DOI] [PubMed] [Google Scholar]
  • 17. Fukushige T., Siddiqui Z. K., Chou M., Culotti J. G., Gogonea C. B., Siddiqui S. S., Hamelin M., MEC‐12, an α‐tubulin required for touch sensitivity in C. elegans J. Cell Sci., 112: 395–403, 1999. [DOI] [PubMed] [Google Scholar]
  • 18. Nogales E., Wolf S. G., Downing K. H., Structure of the αβtubulin dimer by electron crystallography, Nature, 391: 199–203, 1998. [DOI] [PubMed] [Google Scholar]
  • 19. Perlman D. A., Case D. A., Caldwell J. C., Seibel G. L., Sigh U. C., Werner P., Kollman P. A., AMBER 4, University of California, San Francisco , 1990. [Google Scholar]
  • 20. Jarvis L., Huang C., Ferrin T., Langridge T., UCSF MIDAS.; University of California, San Francisco , 1986. [Google Scholar]
  • 21. Gogonea C. B., Ali M. Y., Matsushige S., Gogonea V., Siddiqui S. S., 3D protein structure analysis of normal and mutant α‐tubulin isotypes in Caenorhabditis elegans Roum. Biotech. Lett., 4: 1–13, 1999. [Google Scholar]
  • 22. Gogonea C. B., Gogonea V., Ali M. Y., Merz J. K. M., Siddiqui S. S., Computational prediction of the threedimensional structures for the Caenorhabditis elegans tubulin family, J. Mol. Graph. Model., 1999. [DOI] [PubMed] [Google Scholar]
  • 23. Tabara H., Motohashi T., Kohara, Y. , A multi‐well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans Nucl. Acids Res., 24: 2119–2124, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Thompson J. D., Higgins D. G., Gibson T. J., CLUSTAL W: improving sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties, Nucleic Acids Res., 22: 4673–480, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. WebLab Viewer, Molecular Simulations, San Diego CA , 1997. [Google Scholar]
  • 26. Martin A. C. R., ProFit, University College London, London , 1996. [Google Scholar]
  • 27. Ruoslahti E., Pierscbacher M. D., Arg‐Gly‐Asp: a versatile cell recognition signal, Cell, 44: 517–518, 1986. [DOI] [PubMed] [Google Scholar]
  • 28. D'Souza S. E., Ginsberg M. H., Plow E. F., Arginyl‐glycyl‐aspartic acid (RGD): a cell adhesion motif, Trends Biochem. Sci., 16: 246–250, 1991. [DOI] [PubMed] [Google Scholar]
  • 29. Marshall R. D., Glycoproteins, Annu. Rev. Biochem., 41: 673–702 (1972). [DOI] [PubMed] [Google Scholar]
  • 30. Pless, D. D. , Lennarz W. J., Enzymatic conversion of proteins to glycoproteins, Proc. Natl. Acad. Sci. U.S.A., 74: 134–138, 1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Towler D. A., Gordon J. I., Adams S. P., Glaser L., Grand R. J. A., The biology and enzymology of eukaryotic protein acylation, Annu. Rev. Biochem., 57: 69–99, 1988. [DOI] [PubMed] [Google Scholar]
  • 32. Woodget J. R., Gloud K. L., Hunter T., Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements, Eur. J. Biochem., 161: 177–184, 1986. [DOI] [PubMed] [Google Scholar]
  • 33. Kishimoto A., Nishiyama K., Nakanishi H., Uratsuji Y., Nomura H., Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3′:5′‐monophosphate‐dependent protein kinase, J. Biol. Chem., 260: 12492–12499, 1985. [PubMed] [Google Scholar]
  • 34. Kreil G., Occurance, detection, and biosynthesis of carboxyl‐terminal amides, Meth. Enzymol., 106: 218–223, 1984. [DOI] [PubMed] [Google Scholar]
  • 35. Bradbury A. F., Smyth D. G., Biosynthesis of the C‐terminal amidein peptide hormones, Biosci. Rep., 7: 907–916, 1987. [DOI] [PubMed] [Google Scholar]
  • 36. Burns R. G., Surride C. D., In: Microtubules, Hyams J. S. and Lloyds C. W., Ed., Wiley: New York , 1993, pp. 3–32 [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES