Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;4(3):196–206. doi: 10.1111/j.1582-4934.2000.tb00117.x

Messenger molecules of the phospholipase signaling system have dual effects on vascular smooth muscle contraction

Cristina Vidulescu 1,, J Mironneau 2, Chantal Mironneau 2, LM Popescu 1
PMCID: PMC6741324  PMID: 12167288

Abstract

Background and methods. In order to investigate the role of phospholipases and their immediately derived messengers in agonist‐induced contraction of portal vein smooth muscle, we used the addition in the organ bath of exogenous molecules such as: phospholipases C, A2, and D, diacylglycerol, arachidonic acid, phosphatidic acid, choline. We also used substances modulating activity of downstream molecules like protein kinase C, phosphatidic acid phosphohydrolase, or cyclooxygenase. Results. a) Exogenous phospholipases C or A2, respectively, induced small agonist‐like contractions, while exogenous phospholipase D did not. Moreover, phospholipase D inhibited spontaneous contractions. However, when added during noradrenaline‐induced plateau, phospholipase D shortly potentiated it. b) The protein kinase C activator, phorbol dibutyrate potentiated both the exogenous phospholipase C‐induced contraction and the noradrenaline‐induced plateau, while the protein kinase C inhibitor 1‐(‐5‐isoquinolinesulfonyl)‐2‐methyl‐piperazine relaxed the plateau. c) When added before noradrenaline, indomethacin inhibited both phasic and tonic contractions, but when added during the tonic contraction shortly potentiated it. Arachidonic acid strongly potentiated both spontaneous and noradrenaline‐induced contractions, irrespective of the moment of its addition. d) In contrast, phosphatidic acid inhibited spontaneous contractile activity, nevertheless it was occasionally capable of inducing small contractions, and when repetitively added during the agonist‐induced tonic contraction, produced short potentiations of the plateau. Pretreatment with propranolol inhibited noradrenaline‐induced contractions and further addition of phosphatidic acid augmented this inhibition. Choline augmented the duration and amplitude of noradrenaline‐induced tonic contraction and final contractile oscillations. Conclusions. These data suggest that messengers produced by phospholipase C and phospholipase A2 contribute to achieve the onset and maintenance of contraction, while phospholipase D‐yielded messengers appear to provide a delayed “on/off switch” that ultimately brings relaxation.

Keywords: phospholipases, proteinkinase C, phosphatidic acid, choline, arachidonic acid noradrenaline, portal vein, vascular smooth muscle

References

  • 1. Billah M. M., Anthes J. C., The regulation and cellular functions of phosphatidylcholine hydrolysis, Biochem. J., 269: 281, 1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Berridge M. J., Inositol trisphosphate and calcium signaling, Nature, 361: 315, 1993. [DOI] [PubMed] [Google Scholar]
  • 3. Nishizuka Y., Protein kinase C and lipid signaling for sustained cellular responses, FASEB J., 9: 484, 1995. [PubMed] [Google Scholar]
  • 4. Wakelam M. J. O., Diacylglycerol‐when is it a intracellular messenger Biochim. Biophys. Acta, 1436: 117, 1998. [DOI] [PubMed] [Google Scholar]
  • 5. Exton J. H., Signaling through phosphatidylcholine breakdown, J. Biol. Chem., 265: 1, 1990. [PubMed] [Google Scholar]
  • 6. Exton, J. H. , Phospholipase D: enzymology, mechanisms of regulation, and function, Physiol. Rev., 77: 303, 1997. [DOI] [PubMed] [Google Scholar]
  • 7. Exton, J. H. , New developments in phospholipase D, J. Biol. Chem., 272: 15579, 1997. [DOI] [PubMed] [Google Scholar]
  • 8. Gomez‐Cambronero J., Keire P., Phospholipase D: a novel major player in signal transduction, Cell. Signal., 10:387, 1998. [DOI] [PubMed] [Google Scholar]
  • 9. Griendling, K. K. , Taubman, M. B. , Akers, M. , Mendlowitz, M. , Alexander, W. , Characterization of phosphatidylinositol‐specific phospholipase C from cultured vascular smooth muscle cells, J. Biol. Chem., 266: 15498, 1991. [PubMed] [Google Scholar]
  • 10. Rapoport, R.M. , Campbell, A. K. , Norepinephrineinduced phosphatidylcholine hydrolysis in intact rat aorta, Eur. J. Pharmacol., 208: 89, 1991. [DOI] [PubMed] [Google Scholar]
  • 11. Ward D. T., Ohanian J., Heagerty A. M., Ohanian V., Phospholipase D‐induced phosphatidate production in intact small arteries during noradrenaline stimulation: involvement of both G‐protein and tyrosinephosphorylation‐linked pathways, Biochem. J., 307: 451, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Kondo T., Inui H., Konishi F., Inagami T., Phospholipase D mimics platelet‐derived growth factor as a competence factor in vascular smooth muscle cells, J. Biol. Chem., 267: 23609, 1992. [PubMed] [Google Scholar]
  • 13. Jinsi A., Paradise J., Deth, R. C. , A tyrosine kinase regulates alpha‐adrenoreceptor‐stimulated contraction and phospholipase D activation in rat aorta, Eur. J. Pharmacol., 302: 183, 1996. [DOI] [PubMed] [Google Scholar]
  • 14. Labelle E. F., Fulbright R. M., Barsotti R. J., Gu H., Polyak E, Phospholipase D is activated by G protein and not by Ca2+ in vascular smooth muscle, Am. J. Physiol., 270: H1031, 1996. [DOI] [PubMed] [Google Scholar]
  • 15. Cane A., Breton M., Béréziat G., Colard O., Phospholipase A2 ‐ dependent and independent pathways of arachidonate release from vascular smooth muscle cells, Biochem. Pharmacol., 53: 327, 1997. [DOI] [PubMed] [Google Scholar]
  • 16. Vidulescu C., Mironneau J., Mironneau C., Popescu L. M., Phospholipases C and A2 trigger and sustain contraction, while phospholipase D intermediates relaxation in noradrenaline‐stimulated portal vein smooth muscle, J.Med. Biochem., 4: 22, 2000. [Google Scholar]
  • 17. Pacaud P., Loirand G., Baron A., Mironneau C., Mironneau J., Ca2+ channel activation and membrane depolarization mediated by Cl channels in response to noradrenaline in vascular myocytes, Br. J. Pharmacol., 104: 1000, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Clark M. A., Littlejohn D., Conway T. M., Mong S., Steiner S., Crooke S. T., Leukotriene D4 treatment of bovine aortic endothelial cells and murine smooth muscle cells in culture results in an increase in phospholipase A2 activity, J. Biol. Chem., 261: 10713, 1986. [PubMed] [Google Scholar]
  • 19. Mironneau J., Mironneau, C. , Grosset, A , Hamon, G. , Savineau J. P., Action of angiotensin II on the electrical and mechanical activity of rat uterine smooth muscle, Eur. J. Parmacol., 68: 275, 1980. [DOI] [PubMed] [Google Scholar]
  • 20. Popescu, L. M. , Popescu, M. , Moraru, I.I. Phospholipase C contracts visceral smooth muscle, Eur. J. Pharmacol., 131: 149, 1986. [DOI] [PubMed] [Google Scholar]
  • 21. Vidulescu C., Deleanu D., Tzigaret C., Popescu L. M., Polymyxin B inhibits spontaneous and phospholipase C‐induced rhythmic contractions of smooth muscles, Rev. Roum. Biochim., 26: 159, 1989. [Google Scholar]
  • 22. Langer G. A., Rich T.L., Phospholipase D produces increased contractile force in rabbit ventricular muscle, Circ. Res., 56: 146, 1985. [DOI] [PubMed] [Google Scholar]
  • 23. Rassmussen H., Takuwa Y., Park S., Protein kinase C in the regulation of smooth muscle contraction, Faseb. J., 1: 177, 1987. [PubMed] [Google Scholar]
  • 24. Merkel L. A., Rivera L. M., Colussi D. J., Perrone M. H., Protein kinase C and vascular smooth muscle contractility, J. Pharmacol. Exp. Ther., 257: 134, 1991. [PubMed] [Google Scholar]
  • 25. Lassegue B., Alexander R. W., Clark, M. , Griendling, K. K. , Angiotensin II‐induced phosphatidylcholine hydrolysis in cultured vascular smooth muscle cells. Regulation and localization, Biochem. J., 276: 19, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. English D., Cui Y., Siddiqui R. A., Messenger functions of phosphatidic acid, Chemistry and Physics of Lipids, 80: 117, 1996. [DOI] [PubMed] [Google Scholar]
  • 27. Moolenar W. H., Kranenburg O., Postma F. R., Zondag G. C. M., Lysophosphatidic acid: G‐protein signaling and cellular responses, Curr. Op. Cell Biology, 9: 168, 1997. [DOI] [PubMed] [Google Scholar]
  • 28. Van Dijk M. C. M., Postma F., Hilkmann H., Jalink K., Van Blitterswijk W. J., Moolenar W. H., Exogenous phospholipase D generates lysophosphatidic acid and activates Ras, Rho and Ca2+ signaling pathways, Curr. Biol., 8: 386, 1998. [DOI] [PubMed] [Google Scholar]
  • 29. Athenstaedt K., Daum G., Phosphatidic acid ‐ a key intermediate in lipid metabolism, Eur. J. Biochem. (Germany), 266: 1, 1999. [DOI] [PubMed] [Google Scholar]
  • 30. Sciorra A. V., Morris A. J., Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells, Molecular Biology of the Cell, 10: 3863, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Vance D. E., Phosphatidylcholine metabolism, CRC Press, Boca Raton , Florida , 1989. [Google Scholar]
  • 32. Kudo I., Murakami M., Hara S., Inoue K., Mammalian non‐pancreatic phospholipases A2 , Biochim. Biophys. Acta, 1170: 217, 1993. [DOI] [PubMed] [Google Scholar]
  • 33. Kondo K., Okuno T., Suzuki H., Saruta T., The effects of prostaglandins E2 and I2, and arachidonic acid on vascular reactivity to norepinephrine in isolated rat mesenteric artery, hind limb and splenic artery, Prostaglandins Med, 4: 21, 1980. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES