Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(4):643–647. doi: 10.1111/j.1582-4934.2002.tb00462.x

Significance of platelet‐activating factor acetylhydrolase in patients with non‐insulin‐dependent (type 2) diabetes mellitus

M Serban 1, Cristina Tanaseanu 2, T Kosaka 3, Cristina Vidulescu 4, Irina Stoian 5, Daciana S Marta 6, S Tanaseanu 7, Elena Moldoveanu 6,
PMCID: PMC6741328  PMID: 12611648

Abstract

Background: Non‐insulin dependent diabetes mellitus (NIDDM) represents an independent risk factor for cardiovascular diseases (CVD), being characterized by a continnous low‐grade inflammation and endothelial activation state. Plasma platelet ‐ activating factor ‐ acetylhydrolases (PAF‐AHs) are a subgroup of Ca2+ ‐independent phospholipase A2 family (also known as lipoprotein‐associated phospholipases A2) that hydrolyze and inactivate the lipid mediator platelet‐activating factor (PAF) and/or oxidized phospholipids. This enzyme is considered to play an important role in inflammatory diseases and atherosclerosis. The present study aims to investigate the relations between the levels of PAF‐AH activity and LDL‐cholesterol/HDL‐cholesterol (LDL‐ch/HDL‐ch) ratio in NIDDM patients as compared to controls. Methods: serum PAF‐AH activity was measured in 50 patients with dyslipidemia, in 50 NIDDM patients and in 50 controls (normal lipid and glucose levels). Total cholesterol, LDL‐ch, HDL‐ch, triglyceride and blood glucose were determined in all subjects. Results: All NIDDM patients display hiperlipidemia, with increased LDL‐ch and triglyceride levels. There is a significant correlation between LDL‐ch levels (especially LDL‐ch / HDL‐ch ratio) and PAF‐AH activity in dyslipidemic and NIDDM patients. Conclusion: Diabetic and dyslipidemic patients have an increased plasma PAF‐AH activity correlated with their LDL‐ch levels and mainly with LDL‐ch / HDL‐ch ratio. Plasma PAF‐AH high levels appear to be important as a risk marker for endothelial dysfunction in patients with NIDDM.

Keywords: platelet‐activating factor acetylhydrolase, non‐insulindependent diabetes mellitus, endothelial cell dysfunction

References

  • 1. Murakami M., Kudo I., Phospholipase A2 , J. Biochem., 131: 285–292, 2002. [DOI] [PubMed] [Google Scholar]
  • 2. Arai H., Platelet‐activating factor acetylhydrolase, Prostaglandins Other Lipid Mediat. 68–69: 83–94, 2002. [DOI] [PubMed]
  • 3. Tsimihodimos V., Karabina S.A., Tambaki A.P., Bairaktari E., Goudevenos J.A., Chapman M.J., Elisaf M., Tselepis A.D., Atorvastatin preferentially reduces LDL‐associated platelet‐activating factor acetylhydrolase activity in dyslipidemias of type IIA and type IIB, Arterioscler. Thromb. Vasc. Biol., 22: 306–311, 2002. [DOI] [PubMed] [Google Scholar]
  • 4. Asano K., Okamoto S., Fukunaga K., Shiomi T., Mori T., Iwata M., Ikeda Y., Yamaguchi K., Cellular source(s) of platelet‐activating‐factor acetylhydrolase activity in plasma, Biochem. Biophys. Res. Commun., 261: 511–514, 1999. [DOI] [PubMed] [Google Scholar]
  • 5. Hattori K., Hattori M., Adachi H., Tsujimoto M., Arai H., Inoue K., Purification and characterization of platelet‐activating factor acetylhydrolase II from bovine liver cytosol, J. Biol. Chem., 270: 22308–22313, 1995. [DOI] [PubMed] [Google Scholar]
  • 6. Packard C.J., O'Reilly D.S., Caslake M.J., McMahon A.D., Ford I., Cooney J., Macphee C.H., Suckling K.E., Krishna M., Wilkinson F.E., Rumley A., Lowe G.D., Lipoprotein‐associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group, N. Engl. J. Med., 343: 1148–1155, 2000. [DOI] [PubMed] [Google Scholar]
  • 7. Kosaka T., Yamaguchi M., Miyanaga K., Mizuno K., Serum platelet‐activating factor acetylhydrolase (PAF‐AH) activity in more than 3000 healthy Japanese, Clin. Chim. Acta., 312: 179–183, 2001. [DOI] [PubMed] [Google Scholar]
  • 8. Unno N., Nakamura T., Kaneko H., Uchiyama T., Yamamoto N., Sugatini J., Miwa M., Nakamura S., Plasma platelet‐activating factor acetylhydrolase deficiency is associated with atherosclerotic occlusive disease in Japan, J. Vasc. Surg., 32: 263–267, 2000. [DOI] [PubMed] [Google Scholar]
  • 9. Macphee C.H., Lipoprotein‐associated phospholipase A2: a potential new risk factor for coronary artery disease and a therapeutic target, Current Opinion in Pharmacology, 1: 121–125, 2001. [DOI] [PubMed] [Google Scholar]
  • 10. Henry R.R., Preventing cardiovascular complications of type 2 diabetes: focus on lipid management, Clin. Diabet, 19: 113–120, 2001. [Google Scholar]
  • 11. Kosaka T., Yamaguchi M., Soda Y., Kishimoto T., Tago A., Toyosato M., Mizuno K., Spectrophotometric assay for serum platelet‐activating factor acetyl‐hydrolase activity, Clin. Chim. Acta, 296: 151–161, 2000. [DOI] [PubMed] [Google Scholar]
  • 12. Lyons T.J., Oxidized low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes Diabet. Med., 8: 411–419, 1991. [DOI] [PubMed] [Google Scholar]
  • 13. Abuja P.M., Albertini R., Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins, Clin. Chim. Acta, 306: 1–17, 2001. [DOI] [PubMed] [Google Scholar]
  • 14. Tan K.C., Chow W.S., Ai V.H., Metz C., Bucala R., Lam K.S., Advanced glycation end products and endothelial dysfunction in type 2 diabetes, Diabetes Care, 25: 1055–1059, 2002. [DOI] [PubMed] [Google Scholar]
  • 15. Wassmann S., Laufs U., Muller K., Konkol C., Ahlbory K., Baumer A.T., Linz W., Bohm M., Nickenig G., Cellular antioxidant effects of atorvastatin in vitro and in vivo , Arterioscler. Thromb. Vasc. Biol., 22: 300–305, 2002. [DOI] [PubMed] [Google Scholar]
  • 16. Lopes‐Virella M.F., Virella G., Cytokines, modified lipoproteins, and arteriosclerosis in diabetes, Diabetes 45: Suppl 3:S40–44, 1996. [DOI] [PubMed] [Google Scholar]
  • 17. Yamakawa T., Tanaka S., Yamakawa Y., Kamei J., Numaguchi K., Motley E.D., Inagami T., Eguchi S., Lysophosphatidylcholine activates extracellular signal‐regulated kinases 1/2 through reactive oxigen species in rat vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol. 22: 752–758, 2002. [DOI] [PubMed] [Google Scholar]
  • 18. Cieslik K., Abrams C.S., Wu K.K., Up‐regulation of endothelial nitric‐oxide synthase promoter by the phosphatidylinositol 3‐kinase gamma /Janus kinase 2/MEK‐1‐dependent pathway, J. Biol. Chem., 276: 1211–1219, 2001. [DOI] [PubMed] [Google Scholar]
  • 19. Katso R., Okkenhaug K., Ahmadi K., White S., Timms J., Waterfield M.D., Cellular function of phosphoinositide 3‐kinases, implications for development, homeostasis, and cancer, Annu. Rev. Cell Dev. Biol., 17: 615–675, 2001. [DOI] [PubMed] [Google Scholar]
  • 20. Cockerill G.W., Huehns T.Y., Weerasinghe A., Stocker C., Lerch P.G., Miller N.E., Haskard D.O., Elevation of plasma high‐density lipoprotein concentration reduces interleukin‐1‐induced expression of E‐selectin in an in vivo model of acute inflammation, Circulation, 103: 108–112, 2001. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES