Abstract
After myocardial infarction, injured cardiomyocytes are replaced by fibrotic tissue promoting the development of heart failure. Cell transplantation has emerged as a potential therapy and stem cells may be an important and powerful cellular source. Embryonic stem cells can differentiate into true cardiomyocytes, making them in principle an unlimited source of transplantable cells for cardiac repair, although immunological and ethical constraints exist. Somatic stem cells are an attractive option to explore for transplantation as they are autologous, but their differentiation potential is more restricted than embryonic stem cells. Currently, the major sources of somatic cells used for basic research and in clinical trials originate from the bone marrow. The differentiation capacity of different populations of bone marrow‐derived stem cells into cardiomyocytes has been studied intensively. The results are rather confusing and difficult to compare, since different isolation and identification methods have been used to determine the cell population studied. To date, only mesenchymal stem cells seem to form cardiomyocytes, and only a small percentage of this population will do so in vitro or in vivo. A newly identified cell population isolated from cardiac tissue, called cardiac progenitor cells, holds great potential for cardiac regeneration. Here we discuss the potential of the different cell populations and their usefulness in stem cell based therapy to repair the damaged heart.
Keywords: embryonic stem cell, somatic stem cell, cardiac progenitor cell, cardiomyocyte differentiation
References
- 1. American Heart Association, Heart Disease and Stroke Statistics‐2004 Update, Dallas , Tex. : American Heart Association, 2003. [Google Scholar]
- 2. Hassink R.J., Dowell J.D., Brutel D.l.R., Doevendans P.A., Field L.J., Stem cell therapy for ischemic heart disease, Trends Mol. Med., 9: 436–441, 2003. [DOI] [PubMed] [Google Scholar]
- 3. Zwaginga J.J., Doevendans P., Stem cell‐derived angiogenic/vasculogenic cells: possible therapies for tissue repair and tissue engineering, Clin. Exp. Pharmacol. Physio.l, 30: 900–908, 2003. [DOI] [PubMed] [Google Scholar]
- 4. Thomson J.A., Itskovitz‐Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M., Embryonic stem cell lines derived from human blastocysts, Science, 282: 1145–1147, 1998. [DOI] [PubMed] [Google Scholar]
- 5. Doevendans P.A., Kubalak S.W., An R.H., Becker D.K., Chien K.R., Kass R.S., Differentiation of cardiomyocytes in floating embryoid bodies is comparable to fetal cardiomyocytes, J. Mol. Cell. Cardiol., 32: 839–851, 2000. [DOI] [PubMed] [Google Scholar]
- 6. Passier R., Mummery C., Origin and use of embryonic and adult stem cells in differentiation and tissue repair, Cardiovasc. Res., 58: 324–335, 2003. [DOI] [PubMed] [Google Scholar]
- 7. Gepstein L., Derivation and potential applications of human embryonic stem cells, Circ. Res., 91: 866–876, 2002. [DOI] [PubMed] [Google Scholar]
- 8. Heng B.C., Haider H.K., Sim E.K., Cao T., Ng S.C., Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro, Cardiovasc. Res., 62: 34–42, 2004. [DOI] [PubMed] [Google Scholar]
- 9. Hodgson D.M., Behfar A., Zingman L.V., Kane G.C., Perez‐Terzic C., Alekseev A.E., Puceat M., Terzic A., Stable benefit of embryonic stem cell therapy in myocardial infarction, Am. J. Physiol. Heart Circ. Physiol., 287: H471–H479, 2004. [DOI] [PubMed] [Google Scholar]
- 10. Kehat I., Khimovich L., Caspi O., Gepstein A., Shofti R., Arbel G., Huber I., Satin J., Itskovitz‐Eldor J., Gepstein L., Electromechanical integration of cardiomyocytes derived from human embryonic stem cells, Nat. Biotechnol., 22: 1282–1289, 2004. [DOI] [PubMed] [Google Scholar]
- 11. Wingard J.R., Vogelsang G.B., Deeg H.J., Stem cell transplantation: supportive care and long‐term complications, Hematology (Am. Soc. Hematol. Educ. Program) , 422–444, 2002. [DOI] [PubMed]
- 12. Bonnet D., Haematopoietic stem cells, J. Pathol., 197: 430–440, 2002. [DOI] [PubMed] [Google Scholar]
- 13. Pittenger M.F., Martin B.J., Mesenchymal stem cells and their potential as cardiac therapeutics, Circ. Res., 95: 9–20, 2004. [DOI] [PubMed] [Google Scholar]
- 14. Jiang Y., Jahagirdar B.N., Reinhardt R.L., Schwartz R.E., Keene C.D., X.R., Reyes M., Lenvik T., Lund T., Blackstad M., Du J., Aldrich S., Lisberg A., Low W.C., Largaespada D.A., Verfaillie C.M., Pluripotency of mesenchymal stem cells derived from adult marrow, Nature, 418: 41–49, 2002. [DOI] [PubMed] [Google Scholar]
- 15. Krause D.S., Plasticity of marrow‐derived stem cells, Gene. Ther., 9: 754–758, 2002. [DOI] [PubMed] [Google Scholar]
- 16. Makino S., Fukuda K., Miyoshi S., Konishi F., Kodama H., Pan J., Sano M., Takahashi T., Hori S., Abe H., Hata J., Umezawa A., Ogawa S., Cardiomyocytes can be generated from marrow stromal cells in vitro, J. Clin. Invest., 103: 697–705, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Hakuno D., Fukuda K., Makino S., Konishi F., Tomita Y., Manabe T., Suzuki Y., Umezawa A., Ogawa S., Bone marrow‐derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors, Circulation, 105: 380–386, 2002. [DOI] [PubMed] [Google Scholar]
- 18. Rangappa S., Fen C., Lee E.H., Bongso A., Wei E.K., Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes, Ann Thorac. Surg., 75: 775–779, 2003. [DOI] [PubMed] [Google Scholar]
- 19. Gaustad K.G., Boquest A.C., Anderson B.E., Gerdes A.M., Collas P., Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes, Biochem. Biophys. Res. Commun., 314: 420–427, 2004. [DOI] [PubMed] [Google Scholar]
- 20. Wakitani S., Saito T., Caplan A.I., Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5‐azacytidine, Muscle Nerve, 18: 1417–1426, 1995. [DOI] [PubMed] [Google Scholar]
- 21. Xu W., Zhang X., Qian H., Zhu W., Sun X., Hu J., Zhou H., Chen Y., Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro, Exp. Biol. Med. (Maywood), 229: 623–631, 2004. [DOI] [PubMed] [Google Scholar]
- 22. Tomita S., Li R.K., Weisel R.D., Mickle D.A., Kim E.J., Sakai T., Jia Z.Q., Autologous transplantation of bone marrow cells improves damaged heart function, Circulation, 100: II247–II256, 1999. [DOI] [PubMed] [Google Scholar]
- 23. Fukuhara S., Tomita S., Yamashiro S., Morisaki T., Yutani C., Kitamura S., Nakatani T., Direct cell‐cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro, J. Thorac. Cardiovasc. Surg., 125: 1470–1480, 2003. [DOI] [PubMed] [Google Scholar]
- 24. Bittner R.E., Schofer C., Weipoltshammer K., Ivanova S., Streubel B., Hauser E., Freilinger M., Hoger H., Elbe‐Burger A., Wachtler F., Recruitment of bone‐marrow‐derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice, Anat. Embryol. (Berl), 199: 391–396, 1999. [DOI] [PubMed] [Google Scholar]
- 25. Nygren J.M., Jovinge S., Breitbach M., Sawen P., Roll W., Hescheler J., Taneera J., Fleischmann B.K., Jacobsen S.E., Bone marrow‐derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation, Nat. Med., 10: 494–501, 2004. [DOI] [PubMed] [Google Scholar]
- 26. Jackson K.A., Majka S.M., Wang H., Pocius J., Hartley C.J., Majesky M.W., Entman M.L., Michael L.H., Hirschi K.K., Goodell M.A., Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells, J. Clin. Invest., 107: 1395–1402, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Orlic D., Kajstura J., Chimenti S., Jakoniuk I., Anderson S.M., Li B., Pickel J., McKay R., Nadal‐Ginard B., Bodine D.M., Leri A., Anversa P., Bone marrow cells regenerate infarcted myocardium, Nature, 410: 701–705, 2001. [DOI] [PubMed] [Google Scholar]
- 28. Balsam L.B., Wagers A.J., Christensen J.L., Kofidis T., Weissman I.L., Robbins R.C., Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium, Nature, 428: 668–673, 2004. [DOI] [PubMed] [Google Scholar]
- 29. Murry C.E., Soonpaa M.H., Reinecke H., Nakajima H., Nakajima H.O., Rubart M., Pasumarthi K.B., Ismail V.J., Bartelmez S.H., Poppa V., Bradford G., Dowell J.D., Williams D.A., Field L.J., Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts, Nature, 428: 664–668, 2004. [DOI] [PubMed] [Google Scholar]
- 30. Wang J.S., Shum‐Tim D., Galipeau J., Chedrawy E., Eliopoulos N., Chiu R.C., Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages, J. Thorac. Cardiovasc. Surg., 120: 999–1005, 2000. [DOI] [PubMed] [Google Scholar]
- 31. Toma C., Pittenger M.F., Cahill K.S., Byrne B.J., Kessler P.D., Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart, Circulation, 105: 93–98, 2002. [DOI] [PubMed] [Google Scholar]
- 32. Mangi A.A., Noiseux N., Kong D., He H., Rezvani M., Ingwall J.S., Dzau V.J., Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts, Nat. Med., 9: 1195–1201, 2003. [DOI] [PubMed] [Google Scholar]
- 33. Quaini F., Urbanek K., Beltrami A.P., Finato N., Beltrami C.A., Nadal‐Ginard B., Kajstura J., Leri A., Anversa P., Chimerism of the transplanted heart, N. Engl. J. Med., 346: 5–15, 2002. [DOI] [PubMed] [Google Scholar]
- 34. Laflamme M.A., Myerson D., Saffitz J.E., Murry C.E., Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts, Circ. Res., 90: 634–640, 2002. [DOI] [PubMed] [Google Scholar]
- 35. Orlic D., Kajstura J., Chimenti S., Limana F., Jakoniuk I., Quaini F., Nadal‐Ginard B., Bodine D.M., Leri A., Anversa P., Mobilized bone marrow cells repair the infarcted heart, improving function and survival, Proc. Natl. Acad. Sci. U S A, 98: 10344–10349, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Norol F., Merlet P., Isnard R., Sebillon P., Bonnet N., Cailliot C., Carrion C., Ribeiro M., Charlotte F., Pradeau P., Mayol J.F., Peinnequin A., Drouet M., Safsafi K., Vernant J.P., Herodin F., Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model, Blood, 102: 4361–4368, 2003. [DOI] [PubMed] [Google Scholar]
- 37. Kawada H., Fujita J., Kinjo K., Matsuzaki Y., Tsuma M., Miyatake H., Muguruma Y., Tsuboi K., Itabashi Y., Ikeda Y., Ogawa S., Okano H., Hotta T., Ando K., Fukuda K., Non‐hematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction, Blood, [Epub ahead of print]: 2004. [DOI] [PubMed]
- 38. Schwarz E.R., Pollick C., Dow J., Patterson M., Birnbaum Y., Kloner R.A., A small animal model of non‐ischemic cardiomyopathy and its evaluation by transthoracic echocardiography, Cardiovasc. Res., 39: 216–223, 1998. [DOI] [PubMed] [Google Scholar]
- 39. Kalyanaraman B., Joseph J., Kalivendi S., Wang S., Konorev E., Kotamraju S., Doxorubicin‐induced apoptosis: implications in cardiotoxicity, Mol. Cell. Biochem., 234–235: 119–124, 2002. [PubMed]
- 40. Agbulut O., Menot M.L., Li Z., Marotte F., Paulin D., Hagege A.A., Chomienne C., Samuel J.L., Menasche P., Temporal patterns of bone marrow cell differentiation following transplantation in doxorubicin‐induced cardiomyopathy, Cardiovasc. Res., 58: 451–459, 2003. [DOI] [PubMed] [Google Scholar]
- 41. Ishida M., Tomita S., Nakatani T., Fukuhara S., Hamamoto M., Nagaya N., Ohtsu Y., Suga M., Yutani C., Yagihara T., Yamada K., Kitamura S., Bone marrow mononuclear cell transplantation had beneficial effects on doxorubicin‐induced cardiomyopathy, J. Heart Lung Transplant., 23: 436–445, 2004. [DOI] [PubMed] [Google Scholar]
- 42. Tomita S., Ishida M., Nakatani T., Fukuhara S., Hisashi Y., Ohtsu Y., Suga M., Yutani C., Yagihara T., Yamada K., Kitamura S., Bone marrow is a source of regenerated cardiomyocytes in doxorubicin‐induced cardiomyopathy and granulocyte colony‐stimulating factor enhances migration of bone marrow cells and attenuates cardiotoxicity of doxorubicin under electron microscopy, J. Heart Lung Transplant., 23: 577–584, 2004. [DOI] [PubMed] [Google Scholar]
- 43. Anversa P., Nadal‐Ginard B., Myocyte renewal and ventricular remodelling, Nature, 415: 240–243, 2002. [DOI] [PubMed] [Google Scholar]
- 44. Hierlihy A.M., Seale P., Lobe C.G., Rudnicki M.A., Megeney L.A., The post‐natal heart contains a myocardial stem cell population, FEBS Lett., 530: 239–243, 2002. [DOI] [PubMed] [Google Scholar]
- 45. Beltrami A.P., Barlucchi L., Torella D., Baker M., Limana F., Chimenti S., Kasahara H., Rota M., Musso E., Urbanek K., Leri A., Kajstura J., Nadal‐Ginard B., Anversa P., Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell, 114: 763–776, 2003. [DOI] [PubMed] [Google Scholar]
- 46. Matsuura K., Nagai T., Nishigaki N., Oyama T., Nishi J., Wada H., Sano M., Toko H., Akazawa H., Sato T., Nakaya H., Kasanuki H., Komuro I., Adult cardiac Sca‐1‐positive cells differentiate into beating cardiomyocytes, J. Biol. Chem., 279: 11384–11391, 2004. [DOI] [PubMed] [Google Scholar]
- 47. Oh H., Bradfute S.B., Gallardo T.D., Nakamura T., Gaussin V., Mishina Y., Pocius J., Michael L.H., Behringer R.R., Garry D.J., Entman M.L., Schneider M.D., Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction, Proc. Natl. Acad. Sci. U S A, 100: 12313–12318, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Urbanek K., Quaini F., Tasca G., Torella D., Castaldo C., Nadal‐Ginard B., Leri A., Kajstura J., Quaini E., Anversa P., Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy, Proc. Natl. Acad. Sci. U S A, 100: 10440–10445, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Messina E., De Angelis L., Frati G., Morrone S., Chimenti S., Fiordaliso F., Salio M., Battaglia M., Latronico M.V., Coletta M., Vivarelli E., Frati L., Cossu G., Giacomello A., Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart, Circ. Res., 95: 911–921, 2004. [DOI] [PubMed] [Google Scholar]
- 50. Lee M.S., Lill M., Makkar R.R., Stem cell transplantation in myocardial infarction, Rev. Cardiovasc. Med., 5: 82–98, 2004. [PubMed] [Google Scholar]
- 51. Schachinger V., Assmus B., Britten M.B., Honold J., Lehmann R., Teupe C., Abolmaali N.D., Vogl T.J., Hofmann W.K., Martin H., Dimmeler S., Zeiher A.M., Trasplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one‐year results of the TOPCARE‐AMI Trial, J. Am. Coll. Cardiol., 44: 1690–1699, 2004. [DOI] [PubMed] [Google Scholar]
- 52. Perin E.C., Dohmann H.F., Borojevic R., Silva S.A., Sousa A.L., Silva G.V., Mesquita C.T., Belem L., Vaughn W.K., Rangel F.O., Assad J.A., Carvalho A.C., Branco R.V., Rossi M.I., Dohmann H.J., Willerson J.T., Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy, Circulation, 110: II213–II218, 2004. [DOI] [PubMed] [Google Scholar]
- 53. Wollert K.C., Meyer G.P., Lotz J., Ringes‐Lichtenberg S., Lippolt P., Breidenbach C., Fichtner S., Korte T., Hornig B., Messinger D., Arseniev L., Hertenstein B., Ganser A., Drexler H., Intracoronary autologous bone‐marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial, Lancet, 364: 141–148, 2004. [DOI] [PubMed] [Google Scholar]
- 54. Kang H.J., Kim H.S., Zhang S.Y., Park K.W., Cho H.J., Koo B.K., Kim Y.J., Soo L.D., Sohn D.W., Han K.S., Oh B.H., Lee M.M., Park Y.B., Effects of intracoronary infusion of peripheral blood stem‐cells mobilised with granulocytecolony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial, Lancet, 363: 751–756, 2004. [DOI] [PubMed] [Google Scholar]
- 55. Masino A.M., Gallardo T.D., Wilcox C.A., Olson E.N., Williams R.S., Garry D.J., Transcriptional regulation of cardiac progenitor cell populations, Circ. Res., 95: 389–397, 2004. [DOI] [PubMed] [Google Scholar]
- 56. Doevendans P.A., Chien K.R., Mummery C., Toward Stem Cell Therapy In: Chien K.R., eds., The Molecular Basis of Cardiovascular Disease, Saunders, Philadelphia 2004, pp. 107–122. [Google Scholar]
- 57. Hassink R.J., Passier R., Goumans M.J., Mummery C.L., Doevendans P.A., New and viable cells to replace lost and malfunctioning myocardial tissue, Minerva Cardioangiol., 52: 433–445, 2004. [PubMed] [Google Scholar]
- 58. Liu Y., Song J., Liu W., Wan Y., Chen X., Hu C., Growth and differentiation of rat bone marrow stromal cells: does 5‐azacytidine trigger their cardiomyogenic differentiation?, Cardiovasc. Res., 58: 460–468, 2003. [DOI] [PubMed] [Google Scholar]
- 59. Assmus B., Schachinger V., Teupe C., Britten M., Lehmann R., Dobert N., Grunwald F., Aicher A., Urbich C., Martin H., Hoelzer D., Dimmeler S., Zeiher A.M., Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE‐AMI), Circulation, 106: 3009–3017, 2002. [DOI] [PubMed] [Google Scholar]