Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(1):11–24. doi: 10.1111/j.1582-4934.2005.tb00333.x

Intestinal stem cells

S J Leedham 1,, M Brittan 1, S A C McDonald 1, N A Wright 1
PMCID: PMC6741333  PMID: 15784161

Abstract

The intestinal tract has a rapid epithelial cell turnover, which continues throughout life. The process is regulated and maintained by a population of stem cells, which give rise to all the intestinal epithelial cell lineages. Studies in both the mouse and the human show that these cells are capable of forming clonal crypt populations. Stem cells remain hard to identify, however it is thought that they reside in a ‘niche’ towards the base of the crypt and their activity is regulated by the paracrine secretion of growth factors and cytokines from surrounding mesenchymal cells. Stem cell division is usually asymmetric with the formation of an identical daughter stem cell and committed progenitor cells. Progenitor cells retain the ability to divide until they terminally differentiate. Occasional symmetric division produces either 2 daughter cells with stem cell loss, or 2 stem cells and eventual clone dominance. This stochastic extinction of stem cell lines with eventual dominance of one cell line is called ‘niche succession’. The discovery of plasticity, the ability of stem cells to engraft into, and in some cases replace the function of damaged host tissues has generated a large amount of scientific and clinical interest: however the concept remains controversial and is still a subject of hot debate. Studies are beginning to identify the complex molecular, genetic and cellular pathways underlying stem cell function such as Wnt signalling, bone morphogenetic protein (BMP) and Notch/Delta pathways. The derangement of these pathways within stem cells plays an integral part in the development of malignancy within the intestinal tract.

Keywords: stem cell, niche, clonality, Unitarian hypothesis, plasticity, Wnt signalling

References

  • 1. Thomson J. A., Itskovitz‐Eldor J., Shapiro S. S., Waknitz M. A., Swiergiel J. J., Marshall V. S., Jones J. M., Embryonic stem cell lines derived from human blastocysts, Science, 282: 1145–1147, 1998. [DOI] [PubMed] [Google Scholar]
  • 2. Hall P. A., Coates P. J., Ansari B., Hopwood D., Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis, J. Cell. Sci, 107 (Pt 12): 3569–3577, 1994. [DOI] [PubMed] [Google Scholar]
  • 3. Ouellette A. J., Defensin‐mediated innate immunity in the small intestine, Best Pract. Res. Clin. Gastroenterol, 18: 405–419, 2004. [DOI] [PubMed] [Google Scholar]
  • 4. Bjerknes M., Cheng H., The stem‐cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse, Am. J. Anat, 160: 51–63, 1981. [DOI] [PubMed] [Google Scholar]
  • 5. Gebert A., The role of M cells in the protection of mucosal membranes, Histochem. Cell Biol, 108: 455–470, 1997. [DOI] [PubMed] [Google Scholar]
  • 6. Powell D. W., Mifflin R. C., Valentich J. D., Crowe S. E., Saada J. I., West A. B., Myofibroblasts. II. Intestinal subepithelial myofibroblasts, Am. J. Physiol, 277: C183–201, 1999. [DOI] [PubMed] [Google Scholar]
  • 7. Spradling A., Drummond‐Barbosa D., Kai T., Stem cells find their niche, Nature, 414: 98–104, 2001. [DOI] [PubMed] [Google Scholar]
  • 8. Marshman E., Booth C., Potten C. S., The intestinal epithelial stem cell, Bioessays, 24: 91–98, 2002. [DOI] [PubMed] [Google Scholar]
  • 9. Bjerknes M., Cheng H., Clonal analysis of mouse intestinal epithelial progenitors, Gastroenterology, 116: 7–14, 1999. [DOI] [PubMed] [Google Scholar]
  • 10. Cheng H., Leblond C. P., Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types, Am J Anat, 141: 537–561, 1974. [DOI] [PubMed] [Google Scholar]
  • 11. Withers H. R., Elkind M. M., Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation, Int J Radiat Biol Relat Stud Phys Chem Med, 17: 261–267, 1970. [DOI] [PubMed] [Google Scholar]
  • 12. Schmidt G. H., Winton D. J., Ponder B. A., Development of the pattern of cell renewal in the cryptvillus unit of chimaeric mouse small intestine, Development, 103: 785–790, 1988. [DOI] [PubMed] [Google Scholar]
  • 13. Ponder B. A., Schmidt G. H., Wilkinson M. M., Wood M. J., Monk M., Reid A., Derivation of mouse intestinal crypts from single progenitor cells, Nature, 313: 689–691, 1985. [DOI] [PubMed] [Google Scholar]
  • 14. Winton D. J., Blount M. A., Ponder B. A., A clonal marker induced by mutation in mouse intestinal epithelium, Nature, 333: 463–466, 1988. [DOI] [PubMed] [Google Scholar]
  • 15. Park H. S., Goodlad R. A., Wright N. A., Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus‐mutated crypts after treatment with mutagens, Am J Pathol, 147: 1416–1427, 1995. [PMC free article] [PubMed] [Google Scholar]
  • 16. Winton D. J., Ponder B. A., Stem‐cell organization in mouse small intestine, Proc R Soc Lond B Biol Sci, 241: 13–18, 1990. [DOI] [PubMed] [Google Scholar]
  • 17. Fuller C. E., Davies R. P., Williams G. T., Williams E. D., Crypt restricted heterogeneity of goblet cell mucus glycoprotein in histologically normal human colonic mucosa: a potential marker of somatic mutation, Br. J. Cancer, 61: 382–384, 1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Campbell F., Williams G. T., Appleton M. A., Dixon M. F., Harris M., Williams E. D., Post‐irradiation somatic mutation and clonal stabilisation time in the human colon, Gut, 39: 569–573, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Novelli M., Cossu A., Oukrif D., Quaglia A., Lakhani S., Poulsom R., Sasieni P., Carta P., Contini M., Pasca A., Palmieri G., Bodmer W., Tanda F., Wright N., Xinactivation patch size in human female tissue confounds the assessment of tumor clonality, Proc. Natl. Acad. Sci. USA, 100: 3311–3314, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Novelli M. R., Williamson J. A., Tomlinson I. P., Elia G., Hodgson S. V., Talbot I. C., Bodmer W. F., Wright N. A., Polyclonal origin of colonic adenomas in an XO/XY patient with FAP, Science, 272: 1187–1190, 1996. [DOI] [PubMed] [Google Scholar]
  • 21. Taylor R. W., Barron M. J., Borthwick G. M., Gospel A., Chinnery P. F., Samuels D. C., Taylor G. A., Plusa S. M., Needham S. J., Greaves L. C., Kirkwood T. B., Turnbull D. M., Mitochondrial DNA mutations in human colonic crypt stem cells, J. Clin. Invest, 112: 1351–1360, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Loeffler M., Birke A., Winton D., Potten C., Somatic mutation, monoclonality and stochastic models of stem cell organization in the intestinal crypt, J. Theor. Biol, 160: 471–491, 1993. [DOI] [PubMed] [Google Scholar]
  • 23. Potten C. S., Owen G., Booth D., Intestinal stem cells protect their genome by selective segregation of template DNA strands, J. Cell. Sci, 115: 2381–2388, 2002. [DOI] [PubMed] [Google Scholar]
  • 24. Yatabe Y., Tavare S., Shibata D., Investigating stem cells in human colon by using methylation patterns, Proc. Natl. Acad. Sci. U S A, 98: 10839–10844, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Kim K. M., Shibata D., Methylation reveals a niche: stem cell succession in human colon crypts, Oncogene, 21: 5441–5449, 2002. [DOI] [PubMed] [Google Scholar]
  • 26. Maskens A. P., Dujardin‐Loits R. M., Kinetics of tissue proliferation in colorectal mucosa during post‐natal growth, Cell Tissue Kinet, 14: 467–477, 1981. [DOI] [PubMed] [Google Scholar]
  • 27. Cairnie A. B., Millen B. H., Fission of crypts in the small intestine of the irradiated mouse, Cell Tissue Kinet, 8: 189–196, 1975. [DOI] [PubMed] [Google Scholar]
  • 28. Totafurno J., Bjerknes M., Cheng H., The crypt cycle. Crypt and villus production in the adult intestinal epithelium, Biophys J, 52: 279–294, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Bjerknes M., A test of the stochastic theory of stem cell differentiation, Biophys. J, 49: 1223–1227, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Poulsom R., Alison M. R., Forbes S. J., Wright N. A., Adult stem cell plasticity, J. Pathol, 197: 441–456, 2002. [DOI] [PubMed] [Google Scholar]
  • 31. Jackson K., Mi T., Goodell M., Hematopoietic potential of stem cells isolated from murine skeletal muscle, Proc. Natl. Acad. Sci. U S A, 96: 14482–14486, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Bjornson C., Rietze R., Reynolds B., Magli M., Vescovi A., Turning brain into blood: a hematopoietic fate adopted by neural stem cells in vivo Science, 283: 534–537, 1999. [DOI] [PubMed] [Google Scholar]
  • 33. Alison M. R., Poulsom R., Otto W. R., Vig P., Brittan M., Direkze N. C., Preston S. L., Wright N. A., Plastic adult stem cells: will they graduate from the school of hard knocks?, J. Cell. Sci, 116: 599–603, 2003. [DOI] [PubMed] [Google Scholar]
  • 34. Lagasse E., Connors H., Al‐Dhalimy M., Reitsma M., Dohse M., Osborne L., Wang X., Finegold M., Weissman I. L., Grompe M., Purified hematopoietic stem cells can differentiate into hepatocytes in vivo, Nat. Med, 6: 1229–1234, 2000. [DOI] [PubMed] [Google Scholar]
  • 35. Anderson D. J., Gage F. H., Weissman I. L., Can stem cells cross lineage boundaries?, Nat. Med, 7: 393–395, 2001. [DOI] [PubMed] [Google Scholar]
  • 36. Wang X., Willenbring H., Akkari Y., Torimaru Y., Foster M., Al‐Dhalimy M., Lagasse E., Finegold M., Olson S., Grompe M., Cell fusion is the principal source of bone‐marrow‐derived hepatocytes, Nature, 422: 897–901, 2003. [DOI] [PubMed] [Google Scholar]
  • 37. Vassilopoulos G., Wang P. R., Russell D. W., Transplanted bone marrow regenerates liver by cell fusion, Nature, 422: 901–904, 2003. [DOI] [PubMed] [Google Scholar]
  • 38. Wagers A. J., Sherwood R. I., Christensen J. L., Weissman I. L., Little evidence for developmental plasticity of adult hematopoietic stem cells, Science, 297: 2256–2259, 2002. [DOI] [PubMed] [Google Scholar]
  • 39. Krause D., Theise N., Collector M., Henegariu O., Hwang S., Gardner R., Neutzel S., Sharkis S., Multiorgan, multi‐lineage engraftment by a single bone marrow‐derived stem cell, Cell, 105: 369–377, 2001. [DOI] [PubMed] [Google Scholar]
  • 40. Brittan M., Hunt T., Jeffery R., Poulsom R., Forbes S. J., Hodivala‐Dilke K., Goldman J., Alison M. R., Wright N. A., Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon, Gut, 50: 752–757, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Brittan M., Wright N. A., Stem cell in gastrointestinal structure and neoplastic development, Gut, 53: 899–910, 2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Willert K., Nusse R., Beta‐catenin: a key mediator of Wnt signaling, Curr. Opin. Genet. Dev, 8: 95–102, 1998. [DOI] [PubMed] [Google Scholar]
  • 43. Giles R. H., Van Es J. H., Clevers H., Caught up in a Wnt storm: Wnt signaling in cancer, Biochim. Biophys. Acta, 1653: 1–24, 2003. [DOI] [PubMed] [Google Scholar]
  • 44. Kinzler K. W., Vogelstein B., Lessons from hereditary colorectal cancer, Cell, 87: 159–170, 1996. [DOI] [PubMed] [Google Scholar]
  • 45. Bienz M., Clevers H., Linking colorectal cancer to Wnt signaling, Cell, 103: 311–320, 2000. [DOI] [PubMed] [Google Scholar]
  • 46. Nohe A., Keating E., Knaus P., Petersen N. O., Singnal transduction of bone morphogenetic protein receptors, Cell Signal, 16: 291–299, 2004. [DOI] [PubMed] [Google Scholar]
  • 47. Hardwick J. C., Van Den Brink G. R., Bleuming S. A., Ballester I., Van Den Brande J. M., Keller J. J., Offerhaus G. J., Van Deventer S. J., Peppelenbosch M. P., Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon, Gastroenterology, 126: 111–121, 2004. [DOI] [PubMed] [Google Scholar]
  • 48. Haramis A. P., Begthel H., Van Den Born M., Van Es J., Jonkheer S., Offerhaus G. J., Clevers H., De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine, Science, 303: 1684–1686, 2004. [DOI] [PubMed] [Google Scholar]
  • 49. Sayed M. G., Ahmed A. F., Ringold J. R., Anderson M. E., Bair J. L., Mitros F. A., Lynch H. T., Tinley S. T., Petersen G. M., Giardiello F. M., Vogelstein B., Howe J. R., Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis, Ann. Surg. Oncol, 9: 901–906, 2002. [DOI] [PubMed] [Google Scholar]
  • 50. He X. C., Zhang J., Tong W. G., Tawfik O., Ross J., Scoville D. H., Tian Q., Zeng X., He X., Wiedemann L. M., Mishina Y., Li L., BMP signaling inhibits intestinal stem cell self‐renewal through suppression of Wnt‐betacatenin signaling, Nat. Genet, 36: 1117–1121, 2004. [DOI] [PubMed] [Google Scholar]
  • 51. Waite K. A., Eng C., Protean PTEN: form and function, Am. J. Hum. Genet, 70: 829–844, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Kaestner K. H., Silberg D. G., Traber P. G., Schutz G., The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation, Genes Dev, 11: 1583–1595, 1997. [DOI] [PubMed] [Google Scholar]
  • 53. Yang Q., Bermingham N. A., Finegold M. J., Zoghbi H. Y., Requirement of Math 1 for secretory cell lineage commitment in the mouse intestine, Science, 294: 2155–2158, 2001. [DOI] [PubMed] [Google Scholar]
  • 54. Jensen J., Pedersen E. E., Galante P., Hald J., Heller R. S., Ishibashi M., Kageyama R., Guillemot F., Serup P., Madsen O. D., Control of endodermal endocrine development by Hes‐1, Nat. Genet, 24: 36–44, 2000. [DOI] [PubMed] [Google Scholar]
  • 55. Nakamura Y., Sakakibara S., Miyata T., Ogawa M., Shimazaki T., Weiss S., Kageyama R., Okano H., The bHLH gene hes 1 as a repressor of the neuronal commitment of CNS stem cells, J. Neurosci, 20: 283–293, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Kayahara T., Sawada M., Takaishi S., Fukui H., Seno H., Fukuzawa H., Suzuki K., Hiai H., Kageyama R., Okano H., Chiba T., Candidate markers for stem and early progenitor cells, Musashi‐1 and Hes 1, are expressed in crypt base columnar cells of mouse small intestine, FEBS Lett, 535: 131–135, 2003. [DOI] [PubMed] [Google Scholar]
  • 57. Nishimura S., Wakabayashi N., Toyoda K., Kashima K., Mitsufuji S., Expression of Musashi‐1 in human normal colon crypt cells: a possible stem cell marker of human colon epithelium, Dig. Dis. Sci, 48: 1523–1529, 2003. [DOI] [PubMed] [Google Scholar]
  • 58. Sparks A. B., Morin P. J., Vogelstein B., Kinzler K. W., Mutational analysis of the APC/beta‐catenin/Tcf pathway in colorectal cancer, Cancer Res, 58: 1130–1134, 1998. [PubMed] [Google Scholar]
  • 59. Samowitz W. S., Powers M. D., Spirio L. N., Nollet F., Van Roy F., Slattery M. L., Beta‐catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas, Cancer Res, 59: 1442–1444, 1999. [PubMed] [Google Scholar]
  • 60. Shih I. M., Wang T. L., Traverso G., Romans K., Hamilton S. R., Ben‐Sasson S., Kinzler K. W., Vogelstein B., Top‐down morphogenesis of colorectal tumors, Proc. Natl. Acad. Sci. U S A, 98: 2640–2645, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Wong W. M., Mandir N., Goodlad R. A., Wong B. C., Garcia S. B., Lam S. K., Wright N. A., Histogenesis of human colorectal adenomas and hyperplastic polyps: the role of cell proliferation and crypt fission, Gut, 50: 212–217, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Cheng H., Bjerknes M., Amar J., Gardiner G., Crypt production in normal and diseased human colonic epithelium, Anat. Rec, 216: 44–48, 1986. [DOI] [PubMed] [Google Scholar]
  • 63. Preston S. L., Wong W. M., Chan A. O., Poulsom R., Jeffery R., Goodlad R. A., Mandir N., Elia G., Novelli M., Bodmer W. F., Tomlinson I. P., Wright N. A., Bottom‐up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission, Cancer Res, 63: 3819–3825, 2003. [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES