Abstract
There is now excellent experimental evidence demonstrating the remarkable ability of some differentiated cells to convert to a completely different phenotype. The conversion of one cellular phenotype to another is referred to as ‘transdifferentiation’ and belongs to a wider class of cell‐type switches termed ‘metaplasias’. Defining the molecular steps in transdifferentiation will help us to understand the developmental biology of the cells that interconvert, as well as help identify key regulatory transcription factors that may be important for the reprogramming of stem cells. Ultimately, being able to produce cells at will offers a compelling new approach to therapeutic transplantation and therefore the treatment and cure of diseases such as diabetes.
Keywords: transdifferentiation, metaplasia, liver, pancreas, stem cells
References
- 1. Tosh D, Slack JMW. How cells change their phenotype. Nat Rev Mol Cell Biol. 2002; 3: 187–94. [DOI] [PubMed] [Google Scholar]
- 2. Beresford WA. Direct transdifferentiation: can cells change their phenotype without dividing Cell Differ Dev. 1990; 29: 81–93. [DOI] [PubMed] [Google Scholar]
- 3. Slack JMW, Tosh D. Transdifferentiation and metaplasia ‐ switching cell types. Curr Opin Genet Dev. 2001; 11: 581–6. [DOI] [PubMed] [Google Scholar]
- 4. Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5‐azacytidine. Cell 1979; 17: 771–9. [DOI] [PubMed] [Google Scholar]
- 5. Konieczny SF, Emerson CP Jr. 5‐Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination, Cell 1984; 38: 791–800. [DOI] [PubMed] [Google Scholar]
- 6. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987; 51: 987–1000. [DOI] [PubMed] [Google Scholar]
- 7. Parker MH, Seale P, Rudnicki MA. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet. 2003; 4: 497–507. [DOI] [PubMed] [Google Scholar]
- 8. Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD. Activation of muscle specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD . Proc Natl Acad Sci USA. 1989; 86: 5434–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Hu E, Tontonoz P, Spiegelman BM. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBPα. Proc Natl Acad Sci USA. 1995; 92: 9856–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Yeh WC, Cao Z, Classon M, McKnight SL. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 1995; 9: 168–81. [DOI] [PubMed] [Google Scholar]
- 11. Wu Z, Xie Y, Bucher NL, Farmer SR. Conditional ectopic expression of C/EBPβ in NIH‐3T3 cells induces PPARγ and stimulates adipogenesis. Genes Dev. 1995; 9: 2350–63. [DOI] [PubMed] [Google Scholar]
- 12. Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferator‐activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPβ, C/EBPδ, and glucocorticoids. Mol Cell Biol. 1996; 16: 4128–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Freytag SO, Paielli DL, Gilbert JD. Ectopic expression of the CCAAT/enhancer‐binding protein α promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 1994; 8: 1654–63. [DOI] [PubMed] [Google Scholar]
- 14. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid‐activated transcription factor. Cell 1994; 79: 1147–56. [DOI] [PubMed] [Google Scholar]
- 15. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289: 950–3. [DOI] [PubMed] [Google Scholar]
- 16. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000; 14: 1293–307. [PubMed] [Google Scholar]
- 17. Wells JM, Melton DA. Vertebrate endoderm development. Annu Rev Cell Dev Biol. 1999; 15: 393–410. [DOI] [PubMed] [Google Scholar]
- 18. Slack JMW. Homoeotic transformations in man: implications for the mechanism of embryonic development and for the organization of epithelia. J Theor Biol. 1985; 114: 463–90. [DOI] [PubMed] [Google Scholar]
- 19. Shen CN, Horb ME, Slack JMW, Tosh D. Transdifferentiation of pancreas to liver. Mech Dev. 2003; 120: 107–16. [DOI] [PubMed] [Google Scholar]
- 20. Grompe M. Pancreatic‐hepatic switches in vivo . Mech Dev. 2003; 120: 99–106. [DOI] [PubMed] [Google Scholar]
- 21. Rao MS, Subbarao V, Reddy JK. Induction of hepatocytes in the pancreas of copper‐depleted rats following copper repletion. Cell Differ. 1986; 18: 109–17. [DOI] [PubMed] [Google Scholar]
- 22. Krakowski ML, Kritzik MR, Jones EM, Krahl T, Lee J, Arnush M, Gu D, Sarvetnick N. Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am J Pathol. 1999; 154: 683–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Shen CN, Slack JMW, Tosh D. Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol. 2000; 2: 879–87. [DOI] [PubMed] [Google Scholar]
- 24. Tosh D, Shen CN, Slack JMW. Conversion of pancreatic cells to hepatocytes. Biochem Soc Trans. 2002; 30: 51–5. [DOI] [PubMed] [Google Scholar]
- 25. Tosh D, Shen CN, Slack JMW. Differentiated properties of hepatocytes induced from pancreatic cells. Hepatology 2002; 36: 534–43. [DOI] [PubMed] [Google Scholar]
- 26. Kurash JK, Shen CN, Tosh D. Induction and regulation of acute phase proteins in transdifferentiated hepatocytes. Exp Cell Res. 2004; 292: 342–58. [DOI] [PubMed] [Google Scholar]
- 27. Descombes P, Schibler U. A liver‐enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 1991; 67: 569–79. [DOI] [PubMed] [Google Scholar]
- 28. St‐Onge L, Wehr R, Gruss P. Pancreas development and diabetes. Curr Opin Genet Dev. 1999; 9: 295–300. [DOI] [PubMed] [Google Scholar]
- 29. Wilson ME, Scheel D, German MS. Gene expression cascades in pancreatic development. Mech Dev. 2003; 120: 65–80. [DOI] [PubMed] [Google Scholar]
- 30. Kumar M, Melton D. Pancreas specification: a budding question. Curr Opin Genet Dev. 2003; 13: 401–7. [DOI] [PubMed] [Google Scholar]
- 31. Deutsch G, Jung J, Zheng M, Lora J, Zaret KS. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 2001; 128: 871–81. [DOI] [PubMed] [Google Scholar]
- 32. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV. PDX‐1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996; 122: 983–95. [DOI] [PubMed] [Google Scholar]
- 33. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002; 129: 2447–57. [DOI] [PubMed] [Google Scholar]
- 34. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997; 15: 106–10. [DOI] [PubMed] [Google Scholar]
- 35. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin‐induced hyperglycemia. Nat Med. 2000; 6: 568–72. [DOI] [PubMed] [Google Scholar]
- 36. Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti‐Zarum L, Meivar‐Levy I, Ferber S. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem. 2003; 278: 31950–7. [DOI] [PubMed] [Google Scholar]
- 37. Zalzman M, Gupta S, Giri RK, Berkovich I, Sappal BS, Karnieli O, Zern MA, Fleischer N, Efrat S. Reversal of hyperglycemia in mice by using human expandable insulin‐producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA 2003; 100: 7253–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Horb ME, Shen CN, Tosh D, Slack JM. Experimental conversion of liver to pancreas. Curr Biol. 2003; 13: 105–15. [DOI] [PubMed] [Google Scholar]
- 39. Li WC, Horb ME, Tosh D, Slack JMW. In vitro transdifferentiation of hepatoma cells into functional pancreatic cells. Mech Dev. 2005; 122: 835–47. [DOI] [PubMed] [Google Scholar]
- 40. Imai J, Katagiri H, Yamada T, Ishigaki Y, Ogihara T, Uno K, Hasegawa Y, Gao J, Ishihara H, Sasano H, Mizuguchi H, Asano T, Oka Y. Constitutively active PDX‐1 induced efficient insulin production in adult murine liver. Biochem Biophys Res Commun. 2005; 326: 402–9. [DOI] [PubMed] [Google Scholar]
- 41. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H. Notch signalling controls pancreatic cell differentiation. Nature 1999; 400: 877–81. [DOI] [PubMed] [Google Scholar]
- 42. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000; 97: 1607–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Sommer L, Ma Q, Anderson DJ. Neurogenins, a novel family of atonal‐related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci. 1996; 8: 221–41. [DOI] [PubMed] [Google Scholar]
- 44. Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F, Jensen J, Kedinger M, Gradwohl G. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 2002; 21: 6338–47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Heremans Y, Van De Casteele M, in't Veld P, Gradwohl G, Serup P, Madsen O, Pipeleers D, Heimberg H. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol. 2002; 159: 303–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Suzuki A, Nakauchi H, Taniguchi H. Glucagon‐like peptide 1 (1–37) converts intestinal epithelial cells into insulin‐producing cells. Proc Natl Acad Sci USA 2003; 100: 5034–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Krapp A, Knofler M, Frutiger S, Hughes GJ, Hagenbuchle O, Wellauer PK. The p48 DNA‐binding subunit of transcription factor PTF1 is a new exocrine pancreas‐specific basic helix‐loop‐helix protein. EMBO J. 1996; 15: 4317–29. [PMC free article] [PubMed] [Google Scholar]
- 48. Chiang MK, Melton DA. Single‐cell transcript analysis of pancreas development. Dev Cell. 2003; 4: 383–93. [DOI] [PubMed] [Google Scholar]
- 49. Lin JW, Biankin AV, Horb ME, Ghosh B, Prasad NB, Yee NS, Pack MA, Leach SD. Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol. 2004; 270: 474–86. [DOI] [PubMed] [Google Scholar]
- 50. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002; 32: 128–34. [DOI] [PubMed] [Google Scholar]
- 51. Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F. Targeted disruption of mammalian hairy and Enhancer of split homolog‐1 (HES‐1) leads to up‐regulation of neural helix‐loop‐helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 1995; 9: 3136–48. [DOI] [PubMed] [Google Scholar]
- 52. Kageyama R, Ohtsuka T. The Notch‐Hes pathway in mammalian neural development. Cell Res. 1999; 9: 179–88. [DOI] [PubMed] [Google Scholar]
- 53. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD. Control of endodermal endocrine development by Hes‐1. Nat Genet. 2000; 24: 36–44. [DOI] [PubMed] [Google Scholar]
- 54. Sumazaki R, Shiojiri N, Isoyama S, Masu M, Keino‐Masu K, Osawa M, Nakauchi H, Kageyama R, Matsui A. Conversion of biliary system to pancreatic tissue in Hes1‐deficient mice. Nat Genet. 2004; 36: 83–7. [DOI] [PubMed] [Google Scholar]
- 55. Burke ZD, Shen CN, Tosh D. Bile ducts as a source of pancreatic β cells. Bioessays 2004; 26: 932–7. [DOI] [PubMed] [Google Scholar]
- 56. Cardoso WV. Lung morphogenesis revisited: old facts, current ideas. Dev Dyn. 2000; 219: 121–30. [DOI] [PubMed] [Google Scholar]
- 57. Warburton D, Schwarz M, Tefft D, Flores‐Delgado G, Anderson KD, Cardaso WV. The molecular basis of lung morphogenesis. Mech Dev. 2000; 92: 55–81. [DOI] [PubMed] [Google Scholar]
- 58. Ball DW. Achaete‐scute homolog‐1 and Notch in lung neuroendocrine development and cancer. Cancer Lett. 2004; 204: 159–69. [DOI] [PubMed] [Google Scholar]
- 59. Ito T, Ukada N, Yazawa T, Okudela K, Hayashi H, Sudo T, Guillemot F, Kageyama R, Kitamura H. Basic helix‐loop‐helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 2000; 127: 3913–21. [DOI] [PubMed] [Google Scholar]
- 60. Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M, Baylin SB, Ball DW. An achaetescute homologue essential for neuroendocrine differentiation in the lung. Nature 1997; 386: 852–5. [DOI] [PubMed] [Google Scholar]
- 61. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004; 20: 781–810. [DOI] [PubMed] [Google Scholar]
- 62. Shu W, Jiang YQ, Lu MM, Morrisey EE. Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 2002; 129: 4831–42. [DOI] [PubMed] [Google Scholar]
- 63. Tebar M, Destree O, de Vree WJ, Ten Have‐Opbroek AA. Expression of Tcf/Lef and sFrp and localization of β‐catenin in the developing mouse lung. Mech Dev. 2001; 109: 437–40. [DOI] [PubMed] [Google Scholar]
- 64. Okubo T, Hogan BLM. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol. 2004; 3:11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Yang Q, Bermingham NA, Finegold MJ, Zoghby HY. Requirement of Math 1 for secretory cell lineage commitment in the mouse intestine. Science 2001; 294: 2155–8. [DOI] [PubMed] [Google Scholar]
- 66. Wallis D, Hamblen M, Zhou Y, Venken KJ, Schumacher A, Grimes HL, Zoghbi HY, Orkin SH, Bellen HJ. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 2003; 130: 221–32. [DOI] [PubMed] [Google Scholar]
- 67. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H. Depletion of epithelial stem‐cell compartments in the small intestine of mice lacking Tcf‐4. Nat Genet. 1998; 19: 379–83. [DOI] [PubMed] [Google Scholar]
- 68. Sharma P, McQuaid K, Dent J, Fennerty MB, Sampliner R, Spechler S, Cameron A, Corley D, Falk G, Goldblum J, Hunter J, Jankowski J, Lundell L, Reid B, Shaheen NJ, Sonnenberg A, Wang K, Weinstein W. A critical review of the diagnosis and management of Barrett's esophagus: the AGA Chicago workshop. Gastroenterology 2004; 127: 310–30. [DOI] [PubMed] [Google Scholar]
- 69. Haggit RC, Tryzelaar J, Ellis FH, Colcher H. Adenocarcinoma complicating columnar epithelium‐lined (Barrett's) esophagus. Am J Clin Pathol. 1978; 70: 1–5. [DOI] [PubMed] [Google Scholar]
- 70. Bollschweiler E, Wolfgarten E, Gutschow C, Holscher AH. Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 2001; 92: 549–55. [DOI] [PubMed] [Google Scholar]
- 71. Tytgat GNJ, Bartelink H, Bernards R, Giaccone G, van Lanschot JJB, Offerhaus GJA, Peters GJ. Cancer of the esophagus and gastric cardia: recent advances. Diseases of the Esophagus 2004; 17: 10–26. [DOI] [PubMed] [Google Scholar]
- 72. Murray L, Watson P, Johnston B, Sloan J, Mainie IM, Gavin A. Risk of adenocarcinoma in Barrett's oesophagus: population based study. Br Med J. 2003; 327: 534–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73. Montgomery E, Bronner MP, Goldblum JR, Greenson JK, Haber MM, Hart J, Lamps LW, Lauwers GY, Lazenby AJ, Lewin DN, Robert ME, Toleadano AY, Washington K. Reproducibility of the diagnosis of dysplasia in Barrett's esophagus: a reaffirmation. Hum Pathol. 2001; 32: 368–78. [DOI] [PubMed] [Google Scholar]
- 74. Jenkins GJS, Doak SH, Parry JM, D'Souza FR, Griffiths AP, Baxter JN. Genetic pathways involved in the progression of Barrett's metaplasia to adenocarcinoma. Br J Surg. 2002; 89: 824–37. [DOI] [PubMed] [Google Scholar]
- 75. German MS, Wang J, Fernald AA, Espinosa R. Localisation of the genes encoding two transcription factors, LMX1 and CDX3, regulating insulin gene expression to human chromosomes 1 and 13. Genomics 1994; 24: 403–4. [DOI] [PubMed] [Google Scholar]
- 76. Beck F, Erler T, Russell A, James R. Expression of Cdx‐2 in the mouse embryo and placenta: possible role in the patterning of the extra‐embryonic membranes. Dev Dyn. 1995; 204: 219–27. [DOI] [PubMed] [Google Scholar]
- 77. James R, Kazenwadel J. Homeobox gene expression in the intestinal epithelium of adult mice. J Biol Chem. 1991; 266: 3246–51. [PubMed] [Google Scholar]
- 78. Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J, Sund NJ, Sackett SD, Kaestner KH. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 2002; 122: 689–96. [DOI] [PubMed] [Google Scholar]
- 79. Mutoh H, Hakamata Y, Sato K, Eda A, Yanaka I, Honda S, Osawa H, Kaneko Y, Sugano K. Conversion of gastric mucosa to intestinal metaplasia in Cdx2‐expressing transgenic mice. Biochem Biophys Res Comm. 2002; 294: 470–9. [DOI] [PubMed] [Google Scholar]
- 80. Beck F., The role of Cdx genes in the mammalian gut. Gut 2004; 53: 1394–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81. Chawengsaksophak K, James R, Hammond VE, Köntgen F., Beck F., Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 1997; 386: 84–7. [DOI] [PubMed] [Google Scholar]
- 82. Beck F, Chawengsaksophak K, Waring P, Playford RJ, Furness JB. Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proc Natl Acad Sci USA 1999; 96: 7318–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83. Faller G, Dimmler A, Rau T, Spaderna S, Hlubek F, Jung A, Kirchner T. Evidence for acid‐induced loss of Cdx2 expression in duodenal gastric metaplasia. J Pathol. 2004; 203: 904–8. [DOI] [PubMed] [Google Scholar]
- 84. Eda A, Osawa H, Yanaka I, Satoh K, Mutoh H, Kihira K, Sugano K. Expression of homeobox gene CDX2 precedes that of CDX1 during the progression of intestinal metaplasia. J Gastroenterol. 2002; 37: 94–100. [DOI] [PubMed] [Google Scholar]
- 85. Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, Mutoh H, Sugano K. Aberrant expression of CDX2 in Barrett's epithelium and inflammatory esophageal mucosa. J Gastroenterol. 2003; 38: 14–22. [DOI] [PubMed] [Google Scholar]
- 86. Phillips RW, Frierson HF, Moskaluk CA. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol. 2003; 27: 1442–7. [DOI] [PubMed] [Google Scholar]
- 87. Moons LMG, Bax DA, Kuipers EJ, van Dekken H, Haringsma J, van Vliet AHM, Siersema PD, Kusters JG. The homeodomain protein CDX2 is an early marker of Barrett's oesophagus. J Clin Pathol. 2003; 57: 1063–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88. Mutoh H, Sakurai S, Satoh K, Osawa H, Hakamata Y, Takeuchi T, Sugano K. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut 2004; 53: 1416–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89. Pomerantz J, Blau HM. Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat Cell Biol. 2004; 6: 810–6. [DOI] [PubMed] [Google Scholar]
- 90. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose‐competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. 2003; 111: 843–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91. Ruhnke M, Ungefroren H, Nussler A, Martin F, Brulport M, Schormann W, Hengstler JG, Klapper W, Ulrichs K, Hutchinson JA, Soria B, Parwaresch RM, Heeckt P, Kremer B, Fandrich F. Differentiation of in vitroIbid., ‐modified human peripheral blood monocytes into hepatocyte‐like and pancreatic islet‐like cells. Gastroenterology 2005; 128: 1774–86. [DOI] [PubMed] [Google Scholar]
- 92. Zhang Y‐Q, Kritzik M, Sarvetnick N. Identification and expansion of pancreatic stem/progenitor cells. J Cell Mol Med. 2005; 9: 331–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Hematopoietic stem cells convert into liver cells with‐in days without fusion. Nat Cell Biol. 2004; 6: 532–539, 2004. [DOI] [PubMed] [Google Scholar]
- 94. Ishikawa F, Drake CJ, Yang S, Fleming PA, Minamiguchi H, Visconti RP, Crosby CV, Argraves WS, Harada M, Key LL, Livingston AG, Wingard JR, Ogawa M. Transplanted human cord blood cells give rise to hepatocytes in engrafted mice. Hematopoietic stem cells 2002: Ann NY Acad Sci. 2003; 996: 174–85. [DOI] [PubMed] [Google Scholar]
- 95. Newsome PN, Johannessen I, Boyle S, Dalakas E, McAulay KA, Samuel K, Rae F, Forrester L, Turner ML, Hayes PC, Harrison DJ, Bickmore WA, Plevris JN. Human cord blood‐derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology 2003; 124: 1891–900. [DOI] [PubMed] [Google Scholar]
- 96. LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 2002; 111: 589–601. [DOI] [PubMed] [Google Scholar]
- 97. Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM, Rossi FM. Contribution of hematopoietic stem cells to skeletal muscle. Nat Med. 2003; 9: 1528–32. [DOI] [PubMed] [Google Scholar]
- 98. Alvarez‐Dolado M, Pardal R, Garcia‐Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez‐Buylla A. Fusion of bone‐marrow‐derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968–73. [DOI] [PubMed] [Google Scholar]
- 99. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 2003; 100: 2088–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100. Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003; 5: 959–66. [DOI] [PubMed] [Google Scholar]
- 101. Lagasse E, Connors H, Al‐Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo . Nat Med. 2000; 6: 1229–34. [DOI] [PubMed] [Google Scholar]
- 102. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al‐Dhalimy M, Lagasse E, Finegold M, Olson S., Grompe M. Cell fusion is the principal source of bonemarrow‐derived hepatocytes. Nature 2003; 422: 897–901. [DOI] [PubMed] [Google Scholar]
- 103. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003; 422: 901–4. [DOI] [PubMed] [Google Scholar]
- 104. Willenbring H, Bailey AS, Foster M, Akkari Y, Dorrell C, Olson S, Finegold M, Fleming WH, Grompe M. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med. 2004; 10: 744–8. [DOI] [PubMed] [Google Scholar]