Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(1):85–102. doi: 10.1111/j.1582-4934.2005.tb00339.x

Gene activation and protein expression following ischaemic stroke: strategies towards neuroprotection

M Slevin 1, J Krupinski 2, P Kumar 1, J Gaffney 1, S Kumar 3
PMCID: PMC6741338  PMID: 15784167

Abstract

Current understanding of the patho‐physiological events that follow acute ischaemic stroke suggests that treatment regimens could be improved by manipulation of gene transcription and protein activation, especially in the penumbra region adjacent to the infarct. An immediate reduction in excitotoxicity in response to hypoxia, as well as the subsequent inflammatory response, and beneficial control of reperfusion via collateral revascularization near the ischaemic border, together with greater control over apoptotic cell death, could improve neuronal survival and ultimately patient recovery. Highly significant differences in gene activation between animal models for stroke by middle cerebral artery occlusion, and stroke in patients, may explain why current treatment strategies based on animal models of stroke often fail. We have highlighted the complexities of cellular regulation and demonstrated a requirement for detailed studies examining cell specific protective mechanisms after stroke in humans.

Keywords: stroke, gene expression, angiogenesis

References

  • 1. Dirnagl U., Iadecola C., Moskowitz M.A. Pathobiology of ischaemic stroke: an integrated view, Trends. Neurol. Sci., 22: 391–397, 1999. [DOI] [PubMed] [Google Scholar]
  • 2. Obrenovitch T.P., The ischaemic penumbra: twenty years on, Cerebrovasc. Brian. Metab., 7: 297–323, 1995. [PubMed] [Google Scholar]
  • 3. Strong A., Smith S., Whittington D., Meldrum B., Parsons A., Krupinski J., Hunter J., Patel S., Robertson C., Factors influencing the frequency of fluorescence transients as markers of peri‐infarct depolarisation in focal cerebral ischaemia, Stroke, 31: 214–222, 2000. [DOI] [PubMed] [Google Scholar]
  • 4. Phan T. G., Wright P.M., Markus R. et al. Salvaging the ischaemic penumbra: more than just reperfusion, Clin. Exptl. Pharmacol., 29: 1–10, 2002. [DOI] [PubMed] [Google Scholar]
  • 5. Endres M., Dirnagl U., Ischaemia and stroke, Adv. Exp. Med. Biol., 513: 455–473, 2002. [DOI] [PubMed] [Google Scholar]
  • 6. Choi D.W., Excitotoxicity, apoptosis, and ischaemic stroke, J.Biochem. Mol. Biol., 34: 8–14, 2001. [Google Scholar]
  • 7. Iadecola C., Alexander M., Cerebral ischaemia and inflammation, Curr. Opin. Neurol., 14: 89–94, 2001. [DOI] [PubMed] [Google Scholar]
  • 8. Carlson N.G., Wieggel W.A., Chen J. et al. Inflammatory cytokines IL‐1 alpha, IL‐1 beta, IL‐6 and TNF‐alpha impart neuroprotection to an excitotoxin through disinct pathways, J. Immunol., 163: 3963–3968, 1999. [PubMed] [Google Scholar]
  • 9. Zhang Z.G., Chopp M., Vascular endothelial growth factor and angiopoietins in focal cerebral ischaemia, Trends. Cardiovasc. Med., 12: 62–66, 2002. [DOI] [PubMed] [Google Scholar]
  • 10. Saura M., Zaragoza C., Bao C., McMillan A., Lowenstein C.J., Interaction of IRF‐1 and NFkB during activation of inducible nitric oxide synthase tanscription, J. Mol. Biol., 289: 459–471, 1999. [DOI] [PubMed] [Google Scholar]
  • 11. Kim O.S., Park E. J., Joe E.H., Jou I., JAK‐STAT signaling mediaters ganglioside‐induced inflammatory responses in brain microglial cells, J. Biol. Chem., 277: 40594–40601, 2002. [DOI] [PubMed] [Google Scholar]
  • 12. Krupinski J., Slevin M., Marti E. et al. Time‐course phosphorylation of the MAP kinase group of signalling proteins and relate molecules following midddle cerebral artery occulusion in the rat, Neuropath. & App. Neurobiol., 29: 144–158, 2003a. [DOI] [PubMed] [Google Scholar]
  • 13. Takagi Y., Harada J., Chiarugi A., Moskowitz M.A. STAT1 is activated in neurons after ischaemia and contributes to ischaemic brain injury, J. Cereb. Blood. Flow Metab., 22: 1311–1318, 2002. [DOI] [PubMed] [Google Scholar]
  • 14. Bos C.L., Richel D.J., Risema T., Peppelenbosch M.P., Versteeg H.H., Prostanoids and prostanoid receptors in signal transduction, Int. J. Biochem. Cell. Biol., 36: 1187–1205, 2004. [DOI] [PubMed] [Google Scholar]
  • 15. Iadecola C., Ross M.E., Molecular pathology of cerebral ischaemia: delayed gene expression and strategies for neuroprotection, Ann. N.Y. Acad. Sci., 835: 203–217, 1997. [DOI] [PubMed] [Google Scholar]
  • 16. Del Zoppo G.J., Schmid‐Schonbein G.W., Mori E. et al. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons, Stroke, 10: 1276–1283, 1991. [DOI] [PubMed] [Google Scholar]
  • 17. Danton G.H., Dietrich W.D., Iflammatory mechanisms after ischaemia and stroke, J. Neurophath. Exp. Neurol., 62: 127–136, 2003. [DOI] [PubMed] [Google Scholar]
  • 18. Forman H.J., Torres M., Redox signaling in macrophages, Mol. Aspects Med., 22: 189–216, 2001. [DOI] [PubMed] [Google Scholar]
  • 19. Fassbender, Ragoshke A. , Kuhl S. et al. Inflammatory leukocyte infiltration in focal cerebral ischaemia: unrelated to infarct size, Cerebrovasc. Dis., 13: 198–203, 2002. [DOI] [PubMed] [Google Scholar]
  • 20. Bond A., Lodge D., Hicks C.A. et al. NMDA receptor antagonism, but not AMPA receptor antagonism attenuates induced ischaemic tolerance in the gerbil hippocampus, Eur. J. Pharmacol., 380: 91–99, 1999. [DOI] [PubMed] [Google Scholar]
  • 21. Legos J.J., Tuma R.F., Barone F.C., Pharmacological interventions for stroke: failures and future, Expert. Opin. Investig. Drugs., 11: 603–614, 2002. [DOI] [PubMed] [Google Scholar]
  • 22. Ikonomidou C., Turski L., Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?, Lancet Neurol., 1: 383–386, 2002. [DOI] [PubMed] [Google Scholar]
  • 23. Luttun A., Carmeliet G., Carmeliet P., Vascular progenitors: from biology to treatment, Trends. Cardiovasc. Med., 2: 88–96, 2002. [DOI] [PubMed] [Google Scholar]
  • 24. Shintani S., Murohara T., Ikeda H. et al, Mobilization of endothelial progenitor cells in patients with acute myocardial infarction, Circulation, 103: 2776–2779, 2001. [DOI] [PubMed] [Google Scholar]
  • 25. Castillo J., Rodriguez I., Biochemical changes and inflammatory response as markers of brain ischaemia: molecular markers of diagnostic utility and prognosis in human practice, Cerebrovasc. Dis., 17: 7–18, 2004. [DOI] [PubMed] [Google Scholar]
  • 26. Zheng Z., Zhao H., Steinberg G.K. et al, Cellular and molecular events underlying ischaemia‐induced neuronal apoptosis, Drug. News. Perspect., 16: 497–503, 2003. [DOI] [PubMed] [Google Scholar]
  • 27. MacManus J.P. and Buchan A.M., Apaptosis after experimental stroke: Facts or fashion, J. Neurotrauma, 17: 899–914, 2000. [DOI] [PubMed] [Google Scholar]
  • 28. Love S., Apoptosis and brain ischaemia, Prog. Neuropsychoparmacol. Biol. Psychiat., 27: 267–282, 2003. [DOI] [PubMed] [Google Scholar]
  • 29. Ferrer I., Planas A.M., Signaling of cell death and cell survival following focal cereral ischaemia: life and death struggle in the penumbra, J. Neuropath. Exp. Neurol., 62: 329–339, 2003. [DOI] [PubMed] [Google Scholar]
  • 30. Fujimura M., Morita‐Fujimura Y., Kawase M. et al, Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subseuent DNA fragmentation after permanent focal cerebral ischaemia in mice. J. Neurosci., 19: 3414–3422, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Krupinski J., Lopez E., Marti F. et al, Expression of caspases and their substrates in the rat model of focal cerebral ischaemia, Neurobiol. Dis., 7: 332–342, 2000. [DOI] [PubMed] [Google Scholar]
  • 32. Rosenbaum D.M., Gupta D., D'Amore J., Singh M., Weidenheim K., Zhang H., Kessler J.A., Fas (CD95/APO‐1) plays a role in the pathophysiology of focal cerebral ischaemia, J. Neurosci. Res., 61: 686–692, 2000. [DOI] [PubMed] [Google Scholar]
  • 33. Sedarous M., Keramaris E., O'Hare M. et al, Calpains mediate p53 activation and neuronal death evoked by DNA damage, J Biol Chem, 278: 26031–26038, 2003. [DOI] [PubMed] [Google Scholar]
  • 34. Thorburn A., Death receptor‐induced cell killing, Cellular Signalling, 16: 139–144, 2003. [DOI] [PubMed] [Google Scholar]
  • 35. Salvesen G.S., Dixit V.M., Caspase activation: the induced‐proximity model, Proc. Natl. Acad. Sci. USA, 96: 10964–10967, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Harper S.J., LoGrasso P., Signalling for survival and death in neurones. The role of the stress‐activated kinases, JNK and p38, Cell Signal., 13: 299–310, 2001. [DOI] [PubMed] [Google Scholar]
  • 37. Forgarty M.P., Downer E.J., Campbell V. A., role for c‐jun N‐terminal kinase 1 (JNK 1) but not JNK 2 in the beta‐amyloid mediated stablization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons, Biochem. J., 371: 789–798, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Hayashi T., Sakai K., Zhang W.R. et al, C‐Jun N‐terminal kinase (JNK) and JNK interacting protein response in rat brain after transient middle cerebral artery occulusion, Neurosci. Lett., 284: 195–199, 2000. [DOI] [PubMed] [Google Scholar]
  • 39. Herdegen T., Claret FX., Kallunki T. et al, Lasting N‐terminal phosphorylation of c‐Jun and activation of Jun N terminal kinases after neuronal injury, J. Neurosci., 17: 5124–5135, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Wang X.Z. Ron D., Stress‐induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase, Science, 272: 1347–1349, 1996. [DOI] [PubMed] [Google Scholar]
  • 41. Kawamura H., Otsuka T., Matsuno H. et al, Endothelin‐1 stimulates heat shock protein 27 induction in osteoblasts: involvement of p38 MAP kinase, Am. J. Physiol., 277: 1046–1054, 1999. [DOI] [PubMed] [Google Scholar]
  • 42. Cregan S.P., Dawson V.L., Slack R.S., Role of AIF in caspase‐dependent and caspase‐independent cell death, Oncogene, 23: 2785–2796, 2004. [DOI] [PubMed] [Google Scholar]
  • 43. Zhan R.Z., Wu C., Fujihara H., Taga K., Qi S., Naito M., Shimoji K. , Both caspase‐dependent and caspase‐independent pathyways may be involved in hippocampal CA1 neuronal death because of loss of cytochrome C from mitochondria in a rat forebrain ischaemia model, J. Cereb. Blood Flow Metab., 21: 529–540, 2001. [DOI] [PubMed] [Google Scholar]
  • 44. Weishaupt J.H., Neusch C., Bahr M., Cyclin‐dependent kinase 5 (CDK‐5) and neuronal cell death, Cell Tissues Res., 312: 1–8, 2003. [DOI] [PubMed] [Google Scholar]
  • 45. Zhang J., Krishnamurthy P.K., Johnson G.V. Cdk5 phoysphorylates p53 and regulated its activity, Neurochem., 81: 307–313, 2002. [DOI] [PubMed] [Google Scholar]
  • 46. Liot G., Gabriel C., Cacquevel M., Ali C., MacKenzie E.T., Buisson A.V.D., Neurotrophin‐3‐induced PI‐3 kinase/AKT signalling rescues cortical neurons from apoptosis, Exptl. Neurol., 187: 38–46, 2004. [DOI] [PubMed] [Google Scholar]
  • 47. Culmsee C., Gerling, Lehmann M. , Nikolova‐Karakashian M., Prehn J.H.M., Mattson M.P., Krieglstein J., Nerve growth factor survival signaling in cultured haippocampal neurons is mediated through TRKA and requires the common neurotrophin receptor P75, Neuroscience, 115: 1089–1108, 2002. [DOI] [PubMed] [Google Scholar]
  • 48. Brunet A., Datta S.R., Greenberg M.E., Transcription‐dependent and independent control of neuronal survival by the PI3K‐AKT signalling pathway, Curr. Opin. Neurobiol., 11: 397–305, 2001. [DOI] [PubMed] [Google Scholar]
  • 49. Ferrer I., Friguls B., Dalfo E., Justicia C., Planas A.M., Caspase‐dependent and caspase‐independent signaling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat, Neuropath. Appl. Neurobiol., 29: 472–481, 2003. [DOI] [PubMed] [Google Scholar]
  • 50. Fujiwara K., Date I., Shingo T., Yoshida H., Kobayashi K., Takeuchi A., Yano A., Tamiya T., Ohmoto T., Reduction of infarct volume and apoptosis by grafting of encapsulated basic fibroblast growth factor‐secreting cells in a model of middle cerebral artery occlusion in rats, J. Neurosurg., 99: 1053–1062, 2003. [DOI] [PubMed] [Google Scholar]
  • 51. Caraglia M., Tagliaferri P., Marra M., Giuberti G., Budillon A., Gennar E.D., Pepe S., Vitale G., Improta S., Tassone P., Venuta S., Bianco A.R., Abbruzzese A., EGF activates an inducible survival response via the RAS‐ERK1/2 pathway to counteract interferon‐alpha‐mediated apoptosis in epidermoid cancer cells, Cell Death Differ., 10: 218–229, 2003. [DOI] [PubMed] [Google Scholar]
  • 52. Irving E.A., Barone F.C., Reith A.D. et al, Differential activation of MAPK/ERK and p38/SAPK in a neurones and glia following focal cerebral ischaemia in the rat, Brain Res. Mol. Brain Res., 77:65–75, 2000. [DOI] [PubMed] [Google Scholar]
  • 53. Zaremba J., Contribution of tumour necrosis factor alpha to the pathogenesis of strokes, Folia Morphol., 59: 137–143, 2000. [PubMed] [Google Scholar]
  • 54. Justicia C., Planas A.M., Transforming growth factor‐alpha acting at the epidermal growth factor receptor reduces infarct volume after permanent middle cerebral artery occlusion in rats, J. Cereb. Blood Flow. Metab., 19: 128–132, 1999. [DOI] [PubMed] [Google Scholar]
  • 55. Dubois‐Dauphin M., Pfister Y., Vallet P.G. et al, Prevention of apoptotic neuronal death by controlling procaspases? A point of view, Brain Res. Rev., 2–3: 196–203, 2001. [DOI] [PubMed] [Google Scholar]
  • 56. Skaper S.D., Facci L., Strijbos P.J., Neuronal protein kinase signalling cascades and excitotoxic cell death, Ann. N.Y. Acad. Sci., 939: 11–22, 2001. [DOI] [PubMed] [Google Scholar]
  • 57. Xia Z., Dickens M., Raingeaud J. et al, Opposing effects of ERK and JNK‐p38 MAP kinases on apoptosis, Science, 270: 1326–1331, 1995. [DOI] [PubMed] [Google Scholar]
  • 58. Hong H., Liu G.Q., Current status and perspectives on the development of neuroprotectants for ischaemic vascular disease, Drugs today (Barc.), 39: 213–222, 2003. [DOI] [PubMed] [Google Scholar]
  • 59. Jonas S., Aiyagari V., Vieira D. et al, The failiure of neuroprotective agents versus the success of thrombolysis in the treatment of ischaemic stroke, Ann. N.Y. Acad. Sci., 939: 257–267, 2001. [DOI] [PubMed] [Google Scholar]
  • 60. Denicourt C., Dowdy S.F., Protein transduction technology offers novel terapeutic approach for brain ischaemia, Trends. Pharmacol. Sci., 24: 216–218, 2003. [DOI] [PubMed] [Google Scholar]
  • 61. Cao G., Pei W., Ge H., Liang Q., Luo Y., Sharp F.R., Lu A., Ran R., Graham S.H., Chen J., In Vivo delivery of a Bcl‐xl fusion protein containing the TAT protein transduction domain protects against ischaemic brain injury and neuronal apoptosis, J. Neurosci., 22: 5423–5431, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Slevin M., Krupinski J., Slowik A., et al, Activation of MAP kinase (ERK‐1/ERK‐2) tryosine kinase and VEGF in the human brain following acute ischaemic stroke, Neuroreport, 11: 2759–2764, 2000b. [DOI] [PubMed] [Google Scholar]
  • 63. Krupinski J., Issa R., Bujny T., et al, A putative role for platelet derived groth factor in angiogenesis and neuroprotection after ischaemic stroke in humans, Stroke, 28: 564–13, 1997. [DOI] [PubMed] [Google Scholar]
  • 64. Krupinski J., Kaluza J., Kumar P. et al, Prognostic value of blood vessel density in ischemic stroke, Lancet, 342: 742, 1993. [DOI] [PubMed] [Google Scholar]
  • 65. Krupinski J., Kaluza J., Kumar P. et al, Role of angiogenesis in patients with cerebral ischaemic stroke, Stroke, 25: 1794–8, 1994. [DOI] [PubMed] [Google Scholar]
  • 66. Krupinski J., Stroemer P., Slevin M. et al, Three‐deimensional structure of newly‐formed blood vessels after focal cerebral ischaemia in rat, Neuroreport, 14: 1171–1176, 2003b. [DOI] [PubMed] [Google Scholar]
  • 67. Segura I., Serrano A., De Buitrago G.G. et al, Inhibition of programmed cell death impairs in vitro vascular‐like structure formation and reduces in vivo angionenesis, FASEB. J., 16: 833–841, 2002. [DOI] [PubMed] [Google Scholar]
  • 68. Wei L., Erinjeri J.P., Rovainen C.M. et al, Collateral growth and angiogenesis around cortical growth, Stroke, 32: 2179–2184, 2001. [DOI] [PubMed] [Google Scholar]
  • 69. Gu W., Brannstrom T., Jiang W. et al, Vascular endothelial growth factor‐A and ‐C protein up‐regulation and early angiogenesis in a rat photothrombotic ring stroke model with spontaneous reperfusion, Acta. Neuropathol., 102: 216–226, 2001. [DOI] [PubMed] [Google Scholar]
  • 70. Slevin M, Krupinski J, Slowik A et al Serial measurement of vascular endothelial growth factor and transforming growth factor betal in serum of patients with actute ischaemic stroke, Stroke, 31: 1863–1870, 2000s. [DOI] [PubMed] [Google Scholar]
  • 71. Kim J.S., Yoon S.S., Kim Y.H. et al, Serial measurement of interleukin‐6, transforming growth factor‐beta and S‐100 protein in patients with acute stroke, Stroke, 27: 1553–1557, 1996. [DOI] [PubMed] [Google Scholar]
  • 72. Berra E., Pages G., Pouyssegur J., MAP kinases and hypoxia in the control of gene expression, Cancer Metast. Rev., 19: 139–145, 2000. [DOI] [PubMed] [Google Scholar]
  • 73. Lee Y.J., Corry P.M., Hypoxia‐induced bFGF gene expression is mediated through the JNK signal transduction pathway, Mol. Cell. Biochem., 202: 1–8, 1999. [DOI] [PubMed] [Google Scholar]
  • 74. Croll S.D., Wiegand S.J., Vascular growth factors in cerebral ischaemia, Mol. Neurobiol., 23: 121–135, 2001. [DOI] [PubMed] [Google Scholar]
  • 75. Ward N.L., Dumont D.J., The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development, Semin. Cell. Dev. Biol., 13: 19–27, 2002. [DOI] [PubMed] [Google Scholar]
  • 76. Sun Y., Jin K., Xie L. et al, VEGF‐induced neuroprotection, neurogenesis and angiogenesis after focal cerebral ischaemia, J. Clin. Invest., 111: 1843–1851, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Marti H. J., Bernaudin M., Bellail A., et al, Hypoxia‐induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischaemia, Am. J. Pathol., 156: 965–976, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Ruocco A., Nicole O., Docagne F. et al, A transforming growth factor‐beta antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischaemic brain injury, J. Cereb, Blood. Flow. Metab., 19: 1345–1353, 1999. [DOI] [PubMed] [Google Scholar]
  • 79. Gerwins P., Skoldenberg E., Claesson‐Welsh L., Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis, Crit. Rev. Oncol. Haematol., 34: 185–194, 2000. [DOI] [PubMed] [Google Scholar]
  • 80. Malbon C.C., Karoor V., G‐protein‐linked receptors as tyrosine kinase substrates: New paradigms in signal integration, Cell Signal., 10: 523–7, 1998. [DOI] [PubMed] [Google Scholar]
  • 81. Slevin M., Kumar S., Gaffney J., Angiogenic oligosaccharides of hyaluronan induce multiple signalling pathways affecting endothelial mitogenic and wound healing processes, J. Biol. Chem., 277: 41046–41059, 2002. [DOI] [PubMed] [Google Scholar]
  • 82. Slevin M., Krupinski J., Kumar S., Gaffney J., Angiogenic oligosaccharides of hyaluronan induce protein tyrosine kinase activity in endothelial cells and activate a cytoplasmic signal transduction pathway resulting in proliferation, Lab. Invest., 78: 987–1003, 1998. [PubMed] [Google Scholar]
  • 83. Neufeld G., Cohen T., Gengrinovitch S. et al, Vascular endothelial growth factor (VEGF) and its receptors. FASEB. J., 13: 9–22, 1999. [PubMed] [Google Scholar]
  • 84. Pintucci G., Moscatelli D., Saponara F. et al, Lack of ERK activation and cell, FASEB. J., 16: 598–600, 2002. [DOI] [PubMed] [Google Scholar]
  • 85. Kjoller L., Hall A., Signaling to Rho GTPases, Expt. Cell. Res., 253: 166–179, 1999. [DOI] [PubMed] [Google Scholar]
  • 86. Matsumoto T., Turesson I., Book M. et al, p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF‐2‐stimulated angiogenesis, J. Cell Biol., 156: 149–160, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Tanaka K., Abe M., Sato Y., Roles of extracellular signal‐regulated kinase 1/2 and p38 mitogen‐activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis, Jpn. J. Cancer. Res., 90: 647–654, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Michiels C., Arnould T., Remacle J., Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions, Biochim. Biophys. Acta., 1497: 1–10, 2000. [DOI] [PubMed] [Google Scholar]
  • 89. Xu J., Ahmed S.H., Chen S.W. et al, Oxygen‐glucose deprivation induces inducible nitric oxide synthase and nitrotyrosine expression in cerebral endothelial cells Stroke, 31: 1744–1751, 2000. [DOI] [PubMed] [Google Scholar]
  • 90. Yamaoka J., Kabashima K., Kawanashi M., Toda K., Miyachi Y., Cytotoxicity of IFN‐gamma amd TMF‐alpha for vascular endothelial cell is mediated by nitiric noide, Biochem. Biophys. Res. Commun., 291: 780–786, 2002. [DOI] [PubMed] [Google Scholar]
  • 91. Deshpande S.S., Angkeow P., Huang J. et al, Rac 1 inhibits TNF‐alpha‐induced endothelial cell apoptosis: duel regulation by reactive oxygen species, FASEB. J., 12: 1705–1714, 2000. [DOI] [PubMed] [Google Scholar]
  • 92. Li D., Yang B., Mehta J.L., Tumour necrosis factor‐alpha enhances hypoxia‐reoxygenation‐mediated apoptosis in cultured human coronary artery endothelial cells: critical role of protein kinase C, Cardiovasc. Res., 42: 805–81, 1999. [DOI] [PubMed] [Google Scholar]
  • 93. Scarabelli T.M., Stephanou A., Pasini E. et al, Different signalling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischaemia/reperfusion injury, Circ. Res., 90: 745–748, 2002. [DOI] [PubMed] [Google Scholar]
  • 94. Lee S.R., Lo E.H., Interactions between p38 mitogenactivated protein kinase and caspase‐3 in cerebral endothelial cell death after hypoxia‐reoxygenation, Stroke, 34: 2704–2709 2003. [DOI] [PubMed] [Google Scholar]
  • 95. Machino T., Hashimoto S., Maruoka S., Gon Y., Hayashi S., Mizumura K., Nishitoh H., Ichijo H., Horie T., Apoptosis signal‐regulating kinase 1‐mediated signalling pathway regulates hydrogen peroxide‐induced apoptosis in human pulmonary vascular endothelial cells, Crit. Care Med., 31: 2776–278, 2003. [DOI] [PubMed] [Google Scholar]
  • 96. Issa R., Krupinski J., Bujny T. et al, Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischaemic stroke, Lab. Invest., 79: 411425, 1999. [PubMed] [Google Scholar]
  • 97. Krupinski J., Kumar P., Kumar S. et al, Increased expression of TGF‐ 1 in brain tissue after ischaemic stoke in humans, Stroke, 27: 852–7, 1996. [DOI] [PubMed] [Google Scholar]
  • 98. Ay H., Ay I., Koroshetz W.J. et al, Potential usefulness of basic fibroblast growth factor as a treatment for stroke, Cerebrovasc. Dis., 9: 131–135, 2000. [DOI] [PubMed] [Google Scholar]
  • 99. Shimamura M., Sato N., Oshima K. et al, Novel therapeutic strategy to treat brain ischaemia: overexpression of hepatocyte growth factor gene reduced ischaemic injury without cerebral endema in rat model, Circulation, 109: 424–431, 2004. [DOI] [PubMed] [Google Scholar]
  • 100. Roth A., Gill R., Certa U., Temporal and spatial gene expression patterns after experimental stroke in a rat model and characterization of PC4 as a potential regulator of transcription, Mol. Cell. Neurosci., 22: 353–364, 2003. [DOI] [PubMed] [Google Scholar]
  • 101. Jin K., Mao X.O., Eshoo M. W., Nagayama T., Minami M., Simon R. P., Greenberg D.A., Microarray analysis of hippocampal gene expression in global cerebral ischaemia, Ann. Neurol., 50: 93–103, 2001. [DOI] [PubMed] [Google Scholar]
  • 102. Factor P Gene therapy for acute diseases, Mol. Therapeut., 4 515–524, 2001. [DOI] [PubMed] [Google Scholar]
  • 103. Yenari M.A., Dumas T.C., Sapolsky R.M. et al, Gene therapy for treatment of cerebral ischaemia using defective herpes simplex viral vectors, Neurol. Res., 23: 543–552, 2001. [DOI] [PubMed] [Google Scholar]
  • 104. Ooboshi H., Ibayashi S., Heitshad D.D. et al. Adenovirus‐mediated gene transfer to cerebral circulation, Mech. Ageing. Dev., 116: 95–101, 2000. [DOI] [PubMed] [Google Scholar]
  • 105. Lowenstein P.R., Castro M.G., Progress and challenges in viral vector‐mediated gene transfer to teh brain, Curr. Opin. Mol Therapeut., 4: 359–371, 2002. [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES