Abstract
Autorhythmicity in the upper urinary tract (UUT) has long been considered to arise in specialized atypical smooth muscle cells (SMC) predominately situated in the most proximal regions of the pyeloureteric system. These atypical SMC pacemakers have been thought to trigger adjacent electrically‐quiescent typical SMC to fire action potentials which allow an influx of Ca2+ and the generation of muscle contraction. More recently, the presence of cells with many of the morphological, electrical and immunohistochemical characteristics of interstitial cells of Cajal (ICC), the pacemaker cells of the gastrointestinal tract, have been located in many regions of both the upper and lower urinary tract. This article reviews the evidence from the literature and from our laboratory supporting a role of both of both atypical SMC and ICC‐like cells in the initiation and propagation of pyeloureteric peristalsis in the UUT. We propose a new model in which there are 2 populations of pacemaker cells, high frequency atypical SMC and lower frequency ICC‐like cells, both of which can drive electrically‐quiescent typical SMC. The relative presence of these 2 populations of pacemaker cells and the relatively‐long refractoriness of typical SMC determines the decreasing frequency of contraction with distance from the renal fornix. In the absence of the proximal pacemaker drive from atypical SMC after pyeloureteral/ureteral obstruction or surgery, ICC‐like cell pacemaking provides a compensatory mechanism allowing the ureter to maintain rudimentary peristaltic waves and movement of urine from the pyelon towards the bladder.
Keywords: interstitial cells of Cajal, pyeloueteric peristalsis, upper urinary tract, prostate, lower urinary tract
References
- 1. Sleator W, Butcher HR. Action potentials and pressure changes in ureteral peristaltic waves. Am J Physiol. 1955; 180: 261–76. [DOI] [PubMed] [Google Scholar]
- 2. Golenhofen K, Hannappel J. Normal spontaneous activity of the pyeloureteral system in the guinea‐pig. Pflügers Archiv - Eur J Physiol. 1973; 341; 257–70. [DOI] [PubMed] [Google Scholar]
- 3. Santicioli P, Maggi CA. Myogenic and neurogenic factors in the control of pyeloureteral motility and ureteral peristalsis. Pharmacol Rev. 1998; 50: 683–722. [PubMed] [Google Scholar]
- 4. Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells Adv Anat Embryol Cell Biol. 1982; 71: 1–130. [PubMed] [Google Scholar]
- 5. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 1996; 111: 492–515. [DOI] [PubMed] [Google Scholar]
- 6. David SG, Cebrian C, Vaughan ED, Herzlinger D. C‐kit and ureteral peristalsis. J Urol. 2005; 173: 292–5. [DOI] [PubMed] [Google Scholar]
- 7. Morita T, Ishizuka G, Tsuchida S. Initiation and propagation of stimulus from the renal pelvic pacemaker in pig kidney. Invest Urol. 1981; 19: 157–60. [PubMed] [Google Scholar]
- 8. Constantinou CE. Renal pelvic pacemaker control of ureteral peristaltic rate. Am J Physiol. 1974; 226: 1413–9. [DOI] [PubMed] [Google Scholar]
- 9. Hrynczuk JR, Schwartz TW. Rhythmic contractions in the renal pelvis correlated to ureteral peristalsis. Invest Urol. 1975; 13: 25–9. [PubMed] [Google Scholar]
- 10. Constantinou CE, Hrynczuk JR. The incidence of ecotpic peristaltic contractions. Urol Int. 1976; 31: 476–88. [DOI] [PubMed] [Google Scholar]
- 11. Constantinou CE, Hrynczuk JR. Urodynamics of the upper urinary tract. Invest Urol. 1976; 14: 233–40. [PubMed] [Google Scholar]
- 12. Morita T, Kondo S, Suzuki T, Tsuchida S. Effect of calyceal resection on pelviureteral peristalsis in isolated pig kidney. J Urol. 1986; 135: 151–4. [DOI] [PubMed] [Google Scholar]
- 13. Patacchini R, Santicioli P, Zagorodnyuk V, Lazzeri M, Turini D, Maggi CA. Excitatory motor and electrical effects produced in the human and guinea‐pig isolated ureter and guinea‐pig renal pelvis. Brit J Pharmacol 1998; 125: 987–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Gosling JA, Waas AN. The behaviour of the isolated rabbit calix and pelvis compared with that of the ureter. Eur J Pharmacol. 1971; 16: 100–4. [DOI] [PubMed] [Google Scholar]
- 15. Teele ME, Lang RJ. Stretch‐evoked inhibition of spontaneous migrating contractions in a whole mount preparation of the guinea‐pig upper urinary tract. Brit J Pharmacol. 1998; 123: 1143–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Lang RJ, Takano H, Davidson M E, Suzuki H, Klemm MF. Characterization of the spontaneous electrical and contractile activity of smooth muscle cells in the rat upper urinary tract. J Urol. 2001; 166: 329–34. [PubMed] [Google Scholar]
- 17. Hannappel J, Lutzeyer W. Pacemaker localization in the renal pelvis of the unicalyceal kidney. In vitro study in the rabbit. Europ Urol. 1978; 4: 192–4. [DOI] [PubMed] [Google Scholar]
- 18. Constantinou CE. Contractility of the pyeloureteral pacemaker system. Urologia Internationalis 1978; 33: 399–416. [DOI] [PubMed] [Google Scholar]
- 19. Hannappel J, Golenhofen K, Hohnsbein J, Lutzeyer W. Pacemaker process of ureteral peristalsis in multicalyceal kidneys. Urol Int. 1982; 37: 240–6. [DOI] [PubMed] [Google Scholar]
- 20. Yamaguchi O, Constantinou CE. Renal calyceal and pelvic contraction rhythms. Am J Physiol. 1989; 257: R788–95. [DOI] [PubMed] [Google Scholar]
- 21. Morita T. Characteristics of spontaneous contraction and effects of isoproterenol on contractility in isolated rabbit renal pelvic smooth muscle strips. J Urol. 1986; 135: 604–7. [DOI] [PubMed] [Google Scholar]
- 22. Potjer RM, Kimoto Y, Constantinou CE. Topological localization of the frequency and amplitude characteristics of the whole and segmented renal pelvis. Urol Int. 1992; 48: 278–83. [DOI] [PubMed] [Google Scholar]
- 23. Zhang Y, Lang RJ. Effects of intrinsic prostaglandins on the spontaneous contractile and electrical activity of the proximal renal pelvis of the guinea‐pig. Br J Pharmacol. 1994; 113: 431–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Weiss RM, Wagner ML, Hoffman BF. Localisation of the pacemaker for peristalsis in the intact canine ureter. Invest Urol. 1967; 5: 42–8. [Google Scholar]
- 25. Notley RG. The musculature of the human ureter. Brit J Urol. 1970; 42: 724–7. [DOI] [PubMed] [Google Scholar]
- 26. Notley RG. Ureteral morphology: anatomic and clinical considerations. Urology 1978; 12: 8–14. [DOI] [PubMed] [Google Scholar]
- 27. Gosling JA, Dixon JS. Structural evidence in support of an urinary tract pacemaker. Brit J Urol. 1972; 44: 550–60. [DOI] [PubMed] [Google Scholar]
- 28. Gosling JA, Dixon JS. Species variation in the location of upper urinary tract pacemaker cells. Invest Urol. 1974; 11: 418–23. [PubMed] [Google Scholar]
- 29. Dixon JS, Gosling JA. Electron microscopic observations on the renal caliceal wall in the rat. Z Zellforsch Mikrosk Anat. 1970; 103: 328–40. [DOI] [PubMed] [Google Scholar]
- 30. Gosling JA, Dixon JS. Morphologic evidence that the renal calyx and pelvis control ureteric activity in the rabbit. Am J Anat. 1971; 130: 393–408. [DOI] [PubMed] [Google Scholar]
- 31. Dixon JS, Gosling JA. The fine structure of pacemaker cells in the pig renal calices. Anat Res. 1973; 175: 139–53. [DOI] [PubMed] [Google Scholar]
- 32. Dixon JS, Gosling JA. The musculature of the human renal calices, pelvis and upper ureter. J Anat. 1982; 135: 129–37. [PMC free article] [PubMed] [Google Scholar]
- 33. Klemm MF, Exintaris B, Lang RJ. Identification of the cells underlying pacemaker activity in the guinea‐pig upper urinary tract. J Physiol. 1999; 519: 867–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Gosling JA, Dixon JS. Further observations on upper urinary tract smooth muscle. A light and electron microscope study. Z Zellforsch Mikrosk Anat. 1970; 108: 127–34. [DOI] [PubMed] [Google Scholar]
- 35. Dixon JS, Gosling JA. Fine structural observations on the attachment of the calix to the renal parenchyma in the rat. J Anat. 1970; 106: 181–2. [PubMed] [Google Scholar]
- 36. Bozler E. The activity of the pacemaker previous to the discharge of a muscular impulse. Am J Physiol. 1942; 136: 543–52. [Google Scholar]
- 37. Kuriyama H, Osa T, Toida N. Membrane properties of the smooth muscle of guinea‐pig ureter. J Physiol. 1967; 191: 225–38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Kuriyama H, Tomita T. The action potential in the smooth muscle of the guinea pig taenia coli and ureter studied by the double sucrose‐gap method. J Gen Physiol. 1970; 55: 147–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Kobayashi M. Relationship between membrane potential and spike configuration recorded by sucrose gap method in the ureter smooth muscle. Comp Biochem Physiol A. 1971; 38: 301–8. [DOI] [PubMed] [Google Scholar]
- 40. Zawalinski VC, Constantinou CE, Burnstock G. Ureteral pacemaker potentials recorded with the sucrose gap technique. Experientia 1975; 31: 931–3. [DOI] [PubMed] [Google Scholar]
- 41. Shuba MF. The effect of sodium‐free and potassium‐free solutions, ionic current inhibitors and ouabain on electrophysiological properties of smooth muscle of guinea‐pig ureter. J Physiol. 1977; 264: 837–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Exintaris B, Lang RJ. Effects of nerve stimulation on spontaneously active preparations of the guinea pig ureter. Urol Res. 1999; 27: 328–35. [DOI] [PubMed] [Google Scholar]
- 43. Exintaris B, Lang RJ. K+ channel blocker modulation of the refractory period in spontaneously active guinea‐pig ureters. Urol Res. 1999; 27: 319–27. [DOI] [PubMed] [Google Scholar]
- 44. Lang RJ, Exintaris B, Teele ME, Harvey J, Klemm, MF . Electrical basis of peristalsis in the mammalian upper urinary tract. Clin Exp Pharmacol Physiol. 1998; 25: 310–21. [DOI] [PubMed] [Google Scholar]
- 45. Lang RJ, Davidson, ME , Exintaris B. Pyeloureteral motility and ureteral peristalsis: essential role of sensory nerves and endogenous prostaglandins. Exp Physiol. 2002; 87: 129–46. [DOI] [PubMed] [Google Scholar]
- 46. Seki N, Suzuki H. Electrical properties of smooth muscle cell membrane in renal pelvis of rabbits. Am J Physiol. 1990; 259: F888–94. [DOI] [PubMed] [Google Scholar]
- 47. Tsuchida S, Suzuki T. Pacemaker activity of the pelvicalyceal border recorded by an intracellular glass microelectrode. Urol Int. 1992; 48: 121–4. [DOI] [PubMed] [Google Scholar]
- 48. Lang RJ, Zhang Y, Exintaris B, Vogalis F. Effects of nerve stimulation on the spontaneous action potentials recorded in the proximal renal pelvis of the guinea‐pig. Urol Res. 1995; 23: 343–50. [DOI] [PubMed] [Google Scholar]
- 49. Santicioli P, Maggi CA. Pharmacological modulation of electromechanical coupling in the proximal and distal regions of the guinea‐pig renal pelvis. J Auton Pharmacol. 1997; 17: 43–52. [DOI] [PubMed] [Google Scholar]
- 50. Takano H, Nakahira Y, Suzuki H. Properties of spontaneous electrical activity in smooth muscle of the guinea‐pig renal pelvis. Jpn J Physiol. 2000; 50: 597–603. [DOI] [PubMed] [Google Scholar]
- 51. Constantinou CE, Yamaguchi O. Multiple‐coupled pacemaker system in renal pelvis of the unicalyceal kidney. Am J Physiol. 1981; 241: 412–8. [DOI] [PubMed] [Google Scholar]
- 52. Lammers WJ, Ahmad HR, Arafat K. Spatial and temporal variations in pacemaking and conduction in the isolated renal pelvis. Am J Physiol. 1996; 270: F567–74. [DOI] [PubMed] [Google Scholar]
- 53. Tsuchida S, Yamaguchi O. A constant electrical activity of the renal pelvis correlated to ureteral peristalsis. Tohoku J Exp Med. 1977; 121: 133–41. [DOI] [PubMed] [Google Scholar]
- 54. Constantinou CE, Neubarth JL, Mensah‐Dwumah M. Frequency gradient in the autorhythmicity of the pyeloureteral pacemaker system. Experientia 1978; 34: 614–5. [DOI] [PubMed] [Google Scholar]
- 55. Tsuchida S, Morita T, Harada T, Kimura Y. Initiation and propagation of canine renal pelvic peristalsis. Urol Int. 1981; 36: 307–14. [DOI] [PubMed] [Google Scholar]
- 56. Huizinga JD, Thuneberg L, Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders. Trends Pharmacol Sci. 1997; 18: 393–403. [DOI] [PubMed] [Google Scholar]
- 57. Huizinga JD. Frontiers in research into interstitial cells of Cajal. J Cell Mol Med. 2005; 9: 230–1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Solari V, Piotrowska AP, Puri P. Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol. 2003; 170: 2420–2. [DOI] [PubMed] [Google Scholar]
- 59. Metzger R, Schuster T, Till H, Stehr M, Franke FE, Dietz HG. Cajal‐like cells in the human upper urinary tract. J Urol. 2004; 172: 769–772. [DOI] [PubMed] [Google Scholar]
- 60. Blyweert W, van der Aa F, Ost D, Stagnaro M, Ridder D. Interstitial cells of the bladder: the missing link BJOG. 2004; 111: 57–60. [DOI] [PubMed] [Google Scholar]
- 61. van der Aa F, Roskams T, Blyweert W, Ost D, Bogaer G, De Ridder D. Identification of kit positive cells in the human urinary tract. J Urol. 2004:171: 2492–6. [DOI] [PubMed] [Google Scholar]
- 62. Pezzone MA, Watkins SC, Albe SM, King WE, de Groat W C, Chancellor MB, Fraser MO. Identification of c‐kitpositive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol. 2003; 284: F925–9. [DOI] [PubMed] [Google Scholar]
- 63. Metzger R, Schuster T, Till H, Franke FE, Dietz HG. Cajal‐like cells in the upper urinary tract: comparative study in various species. Pediatr Surg Internat. 2005; 21: 169–74. [DOI] [PubMed] [Google Scholar]
- 64. Lang RJ, Hashitani H, Keller S, Takano H, Mulholland EL, Fukuta H, Suzuki H. Modulators of internal Ca2+ stores and the spontaneous electrical and contractile activity of the guinea‐pig renal pelvis. Brit J Pharmacol. 2002; 135: 1363–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Davidson ME, Lang RJ. Effects of selective inhibitors of cyclooxygenase‐1 (COX‐1) and cyclooxygenase‐2 (COX‐2) on the spontaneous myogenic contractions in the upper urinary tract of the guinea‐pig and rat. Brit J Pharmacol. 2000; 129: 661–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66. Lang RJ, Zhang Y. The effects of K+ channel blockers on the spontaneous electrical and contractile activity in the proximal renal pelvis of the guinea pig. J Urol. 1996; 155: 332–6. [PubMed] [Google Scholar]
- 67. Tillig B, Mutschke O, Rolle U, Gaunitz U, Asmussen G, Constantinou CE. Effects of artificial obstruction on the function of the upper urinary tract of guinea pigs, rats and pigs. Eur J Pediatr Surg. 2004; 14: 303–15. [DOI] [PubMed] [Google Scholar]
- 68. Starr NT, Maizels M, Chou P, Brannigan R, Shapiro E. Microanatomy and morphometry of the hydronephrotic “obstructed” renal pelvis in asymptomatic infants. J Urol. 1992; 148: 519–24. [DOI] [PubMed] [Google Scholar]
- 69. Murakumo M, Nonomura K, Yamashita T, Ushiki T, Abe K, Koyanagi T. Structural changes of collagen components and diminution of nerves in congenital ureteropelvic junction obstruction. J Urol. 1997; 157: 1963–8. [PubMed] [Google Scholar]
- 70. Piotrowska AP, Solari V, Puri P. Distribution of heme oxygenase‐2 in nerves and interstitial cells of Cajal in the normal pylorus and in infantile hypertrophic pyloric stenosis. Arch Pathol Lab Med. 2003; 127: 1182–6. [DOI] [PubMed] [Google Scholar]
- 71. Ekinci S, Ertunc M, Ciftci AO, Senocak ME, Buyukpamukcu N, Onur R. Evaluation of pelvic contractility in ureteropelvic junction obstruction: an experimental study. Eur J Pediatr. Surg. 2004; 14: 93–9. [DOI] [PubMed] [Google Scholar]
- 72. Wiseman OJ, Fowler CJ, Landon DN. The role of the human bladder lamina propria myofibroblast. BJU Int. 2003; 91: 89–3. [DOI] [PubMed] [Google Scholar]
- 73. Sui GP, Rothery S, Dupont E, Fry C H, Severs NJ. Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int. 2002; 90: 118–29. [DOI] [PubMed] [Google Scholar]
- 74. Drake MJ, Hedlund P, Andersson KE, Brading AF, Hussain I, Fowler C, Landon DN. Morphology phenotype and ultrastructure of fibroblastic cells from normal and neuropathic human detrusor: Absence of myofibroblast characteristics. J Urol. 2003; 169: 1573–6. [DOI] [PubMed] [Google Scholar]
- 75. Davidson RA, McCloskey KD. Morphology and localization of interstitial cells in the guinea pig bladder: Structural relationships with smooth muscle and neurons. J Urol. 2005; 173: 1385–90. [DOI] [PubMed] [Google Scholar]
- 76. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder. J Urol. 2002; 168: 832–6. [PubMed] [Google Scholar]
- 77. Lammie A, Drobnjak M, Gerald, W , Saad A, Cote R, Cordoncardo C. Expression of C‐Kit and kit‐ligand proteins in normal human tissues. J Histochem Cytochem. 1994; 42: 1417–25. [DOI] [PubMed] [Google Scholar]
- 78. Hashitani H, Van Helden DF, Suzuki H. Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Brit J Pharmacol. 1996; 118: 1627–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79. Hashitani H, Edwards FR. Spontaneous and neurally activated depolarizations in smooth muscle cells of the guinea‐pig urethra. J Physiol 15-1-1999; 514: 459–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80. Sergeant GP, Hollywood MA, McCloskey KD, Thornbury KD, McHale NG. Specialised pacemaking cells in the rabbit urethra. J Physiol. 2000; 526: 359–66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81. Exintaris B, Klemm MF, Lang RJ. Spontaneous slow wave and contractile activity of the guinea pig prostate. J Urol. 2002; 168: 315–22. [PubMed] [Google Scholar]
- 82. Shafik A. Electroprostatogram: an experimental study. Mol Androl. 1996; 8: 73–9. [Google Scholar]
- 83. Van der Aa F, Roskams T, Blyweert W, De Ridder D. Interstitial cells in the human prostate: A new therapeutic target Prostate 2003; 56: 250–5. [DOI] [PubMed] [Google Scholar]
- 84. Aumuller G, Habenich, UF , el Etreby MF. Pharmacologically induced ultrastructural and immunohistochemical changes in the prostate of the castrated dog. Prostate 1987; 11: 211–8. [DOI] [PubMed] [Google Scholar]
- 85. Hashitani H, Suzuki H. Identification of interstitial cells of Cajal in corporal tissues of the guinea‐pig penis. Brit J Pharmacol. 2004; 141: 199–204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86. Burton LD, Housley GD, Salih SG, Jarlebark L, Christie DL, Greenwood D. P2X2 receptor expression by interstitial cells of Cajal in vas deferens implicated in semen emission. Auton Neurosci. 2000; 84: 147–61. [DOI] [PubMed] [Google Scholar]
- 87. Duquette RA, Schmygol A, Valliant C, Mobasheri A, Pope M, Burdyga T, Wray S. Vimentin‐positive, c‐kit negative interstitial cells in human and rat uterus: a role in pacemaking. Biol Reprod. 2005; 72: 276–83. [DOI] [PubMed] [Google Scholar]
- 88. Ciontea SM, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga R I, Matincenco M, Zagrean L, Hinescu M E, Popescu LM. C‐kit immunopositive interstitial cells (Cajal‐type) in human myometrium. J Cell Mol Med. 2005; 9: 407–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89. Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal‐like) in human fallopian tube. J Cell Mol Med. 2005; 9: 479–523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90. Popescu LM, Hineseu ME, Ionescu N, Ciontea SM, Cretoiu D, Ardeleanu C. Interstitial cells of Cajal in pancreas. J Cell Mol Med. 2005; 9: 169–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91. McCloskey KD, Hollywood MA, Thornbury KD, Ward SM, McHale NG. Kit‐like immunopositive cells in sheep mesenteric lymphatic vessels. Cell Tissue Res. 2002; 310: 77–84. [DOI] [PubMed] [Google Scholar]
- 92. Popescu LM, Andrei F, Hinescu ME. Snapshots of mammary gland interstitial cells: methylene‐blue vital staining and c‐kit immunopositivity. J Cell Mol Med. 2005; 9: 476–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93. Povstyan OV, Gordienko DV, Harhun MI, Bolton TB. Identification of interstitial cells of Cajal in the rabbit portal vein. Cell Calcium 2003; 33: 223–39. [DOI] [PubMed] [Google Scholar]
- 94. Bolton TB, Gordienko DV, Povstyan O, Harhun MI, Pucovsky V. Smooth muscle cells and interstitial cells of blood vessels. Cell Calcium 2004; 35: 643–57. [DOI] [PubMed] [Google Scholar]
- 95. Harhun MI, Pucovsky V, Povstyan OV, Gordienko DV, Bolton TB. Interstitial cells in the vasculature. J Cell Mol Med. 2005; 9: 232–43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96. Klemm M F, Lang RJ. Distribution of Ca2+‐activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea‐pig. Clin Exp Pharmacol Physiol. 2002; 29: 18–25. [DOI] [PubMed] [Google Scholar]
- 97. Huizinga JD, Faussone‐Pellegrini MS. About the presence of interstitial cells of Cajal outside the musculature of the gastrointestinal tract. J Cell Mol Med. 2005; 9: 468–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98. Drake M. Interstitial cells of Cajal in the human normal urinary bladder and in the bladder of patients with megacystismicrocolon intestinal hypoperistalsis syndrome. BJU Int. 2004; 94: 1402. [DOI] [PubMed] [Google Scholar]
- 99. Faussone‐Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal. Microsc Res Tech. 1999; 47: 248–66. [DOI] [PubMed] [Google Scholar]