Abstract
Repair of large bone defects is still a challenge for the orthopaedic, reconstructive and maxillo‐facial surgeon. Availability of pluripotent stem cells from either autologous or allogenic sources and the potential of inducing the osteogenic phenotype is motivating exploration and development of custom‐tailored materials known as “bioengineered bone constructs”. In such cases, the clinical scenario involves either expansion of stem cells in monolayer and loading them into a porous scaffold prior to surgery or direct cell expansion within the scaffold, and implanting this novel construct back into the donor patient. In this review, we delineate, from an engineering perspective, the progress that has been made to date and the challenges remaining in successfully translating this promising (but not yet definitively established) approach from bench to the bedsite.
Keywords: tissue engineering, bone, biomaterials, stem cells
References
- 1. Praemer A., Furner S., Rice D., Musculoskeletal conditions in the United States. T. A. A. o. Surgeons O., ed., Park Ridge , Illinois , 1992, 85–124.
- 2. Einhorn T. A., Enhancement of fracture‐healing, J. Bone. Joint. Surg. Am., 77:940–956, 1995. [DOI] [PubMed] [Google Scholar]
- 3. Shors E. C.: Coralline bone graft substitutes, Orthop. Clin. North. Am., 30:599–613, 1999. [DOI] [PubMed] [Google Scholar]
- 4. Damien C., Parsons R., Bone graft and bone graft substitutes: a review of current technology and applications, J. of Applied Biomaterials, 2:187–208, 1991. [DOI] [PubMed] [Google Scholar]
- 5. Friedenstein A. J., Petrakova K. V., Kurolesova A. I., Frolova G. P., Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues, Transplantation, 6: 230–247, 1968. [PubMed] [Google Scholar]
- 6. Triffitt J. T., The stem cell of the osteoblast Bilezikian J. P., Raisz L. G. and R. G.A. eds., In: Principles of bone biology, Academic Press, San Diego , 1996, 39–50. [Google Scholar]
- 7. Owen M. E., Cave J., Joyner C. J., Clonal analysis in vitro of osteogenic differentiation of marrow CFU‐F, J Cell Sci, 87:731–738, 1987. [DOI] [PubMed] [Google Scholar]
- 8. Otto W. R., Rao J., Tomorrow's skeleton staff: mesenchymal stem cells and the repair of bone and cartilage, Cell Prolif., 37:97–110, 2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Javazon E. H., Beggs K. J., Flake A. W., Mesenchymal stem cells: paradoxes of passaging, Exp. Hematol., 32:414–425, 2004. [DOI] [PubMed] [Google Scholar]
- 10. Goshima J., Goldberg V. M., Caplan A. I., Osteogenic potential of culture‐expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic, Biomaterials, 12:253–258, 1991. [DOI] [PubMed] [Google Scholar]
- 11. Haynesworth S. E., Goshima J., Goldberg V. M., Caplan A. I., Characterization of cells with osteogenic potential from human marrow, Bone, 13:81–88, 1992. [DOI] [PubMed] [Google Scholar]
- 12. Bruder S. P., Jaiswal N., Haynesworth S. E., Growth kinetics, self‐renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation, J. Cell. Biochem., 64:278–294, 1997. [DOI] [PubMed] [Google Scholar]
- 13. Jaiswal N., Haynesworth S. E., Caplan A. I., Bruder S. P., Osteogenic differentiation of purified, cultureexpanded human mesenchymal stem cells in vitro, J. Cell Biochem., 64:295–312, 1997. [PubMed] [Google Scholar]
- 14. Krebsbach P. H., Kuznetsov S. A., Satomura K., Emmons R. V., Rowe D. W., Robey P. G., Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts, Transplantation, 63:1059–1069, 1997. [DOI] [PubMed] [Google Scholar]
- 15. Barry F. P., Murphy J. M., Mesenchymal stem cells: clinical applications and biological characterization, Int. J. Biochem. Cell. Biol., 36:568–584, 2004. [DOI] [PubMed] [Google Scholar]
- 16. D'Ippolito G., Schiller P. C., Ricordi C., Roos B. A., Howard G. A., Age‐related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow, J. Bone. Miner. Res., 14:1115–1122, 1999. [DOI] [PubMed] [Google Scholar]
- 17. Nishida S., Endo N., Yamagiwa H., Tanizawa T., Takahashi H. E., Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation, J. Bone. Miner. Metab., 17:171–177, 1999. [DOI] [PubMed] [Google Scholar]
- 18. Majors A. K., Boehm C. A., Nitto H., Midura R. J., Muschler G. F., Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation. J Orthop Res 15:546–557, 1997. [DOI] [PubMed] [Google Scholar]
- 19. Petite H., Hannouche D., Marrow stromal stem cells for repairing the skeleton, Biotechnol. Genet. Eng. Rev., 19:83–101, 2002. [PubMed] [Google Scholar]
- 20. Tse W. T., Pendleton J. D., Beyer W. M., Egalka M. C., Guinan E. C., Suppression of allogeneic T‐cell proliferation by human marrow stromal cells: implications in transplantation, Transplantation, 75:389–397, 2003. [DOI] [PubMed] [Google Scholar]
- 21. Di Nicola M., Carlo‐Stella C., Magni M., Milanesi M., Longoni P. D., Matteucci P., Grisanti S., Gianni A. M., Human bone marrow stromal cells suppress Tlymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli, Blood, 99:3838–3843, 2002. [DOI] [PubMed] [Google Scholar]
- 22. Le Blanc K., Tammik L., Sundberg B., Haynesworth S. E., Ringden O., Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex, Scand J Immunol, 57:11–20, 2003. [DOI] [PubMed] [Google Scholar]
- 23. Bartholomew A., Sturgeon C., Siatskas M., Ferrer K., McIntosh K., Patil S., Hardy W., Devine S., Ucker D., Deans R., Moseley A., Hoffman R., Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo , Exp. Hematol., 30:42–48, 2002. [DOI] [PubMed] [Google Scholar]
- 24. Djouad F., Plence P., Bony C., Tropel P., Apparailly F., Sany J., Noel D., Jorgensen C., Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals, Blood, 102:3837–3844, 2003. [DOI] [PubMed] [Google Scholar]
- 25. Kuboki Y., Takita H., Kobayashi D., Tsuruga E., Inoue M., Murata M., Nagai N., Dohi Y., Ohgushi H., BMP‐induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis, J. Biomed. Mater. Res., 39:190–199, 1998. [DOI] [PubMed] [Google Scholar]
- 26. Jin Q. M., Takita H., Kohgo T., Atsumi K., Itoh H., Kuboki Y., Effects of geometry of hydroxyapatite as a cell substratum in BMP‐induced ectopic bone formation, J. Biomed. Mater. Res., 51:491–499, 2000. [PubMed] [Google Scholar]
- 27. Ripamonti U., Ma S., Reddi A. H., The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein, Matrix, 12:202–212, 1992. [DOI] [PubMed] [Google Scholar]
- 28. Sampath T. K., Reddi A. H., Importance of geometry of the extracellular matrix in endochondral bone differentiation, J. Cell Biol., 98:2192–2197, 1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Boyan B. D., Hummert T. W., Dean D. D., Schwartz Z., Role of material surfaces in regulating bone and cartilage cell response, Biomaterials, 17:137–146, 1996. [DOI] [PubMed] [Google Scholar]
- 30. Fisher J. P., Lalani Z., Bossano C. M., Brey E. M., Demian N., Johnston C. M., Dean D., Jansen J. A., Wong M. E., Mikos A. G., Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model, J. Biomed. Mater. Res. A, 68:428–438, 2004. [DOI] [PubMed] [Google Scholar]
- 31. Ohgushi H., Caplan A. I., Stem cell technology and bioceramics: from cell to gene engineering, J. Biomed. Mater. Res., 48:913–927, 1999. [DOI] [PubMed] [Google Scholar]
- 32. Bruder S. P., Kurth A. A., Shea M., Hayes W. C., Jaiswal N., Kadiyala S., Bone regeneration by implantation of purified, culture‐expanded human mesenchymal stem cells, J. Orthop. Res., 16:155–162, 1998. [DOI] [PubMed] [Google Scholar]
- 33. Kadiyala S., Jaiswal N., Bruder S., Culture‐expanded bone marrow‐derived mesenchymal stem cells can regenerate a critical‐sized segmental bone defect, Tissue Engineering, 3:173–185, 1997. [Google Scholar]
- 34. Giannoni P., Cancedda R., Regulatories issues: down to the bare bones Petite H. and Quarto R., eds., Engineering bone, Landes, Austin , 2005. [Google Scholar]
- 35. Bruder S. P., Kraus K. H., Goldberg V. M., Kadiyala S., The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects, J. Bone. Joint. Surg. Am., 80:985–996, 1998. [DOI] [PubMed] [Google Scholar]
- 36. Kon E., Muraglia A., Corsi A., Bianco P., Marcacci M., Martin I., Boyde A., Ruspantini I., Chistolini P., Rocca M., Giardino R., Cancedda R., Quarto R., Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical‐size defects of sheep long bones, J. Biomed. Mater. Res., 49:328–337, 2000. [DOI] [PubMed] [Google Scholar]
- 37. Kruyt M. C., de Bruijn J. D., Wilson C. E., Oner F. C., van Blitterswijk C. A., Verbout A. J., Dhert W. J., Viable osteogenic cells are obligatory for tissue‐engineered ectopic bone formation in goats, Tissue Eng., 9:327–336, 2003. [DOI] [PubMed] [Google Scholar]
- 38. Sutherland R. M., Sordat B., Bamat J., Gabbert H., Bourrat B., Mueller‐Klieser W., Oxygenation and differentiation in multicellular spheroids of human colon carcinoma, Cancer Res., 46:5320–5329, 1986. [PubMed] [Google Scholar]
- 39. Folkman J., Hochberg M., Self‐regulation of growth in three dimensions, J. Exp. Med., 138:745–753, 1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Colton C. K., Implantable biohybrid artificial organs, Cell Transplant, 4:415–436, 1995. [DOI] [PubMed] [Google Scholar]
- 41. Potier E., Feirrera E., Meunier A., Sedel L., Petite H. (2004), Facteurs influenant la survie à court‐terme des cellules souches du mésenchyme en thérapie cellulaire osseuse, Journées Francaises de Biologie des Tissues Minéralisés, Arcachon, France . [Google Scholar]
- 42. Bensaïd W., Oudina K. K., Viateau V., Potier E., Bousson V., Blanchat C., Sedel L., Guillemin G., Petite H., De novo reconstruction of a functional bone by tissue engineering in the metatarsal sheep model, Tissue Engineering, In Press, 2005. [DOI] [PubMed] [Google Scholar]
- 43. Hubbell J. A., Biomaterials in tissue engineering, Biotechnology (N Y), 13:565–576, 1995. [DOI] [PubMed] [Google Scholar]
- 44. Laurencin C. T., Ambrosio A. M., Borden M. D., J. A. Cooper, Jr. , Tissue engineering: orthopedic applications, Annu. Rev. Biomed. Eng., 1:19–46, 1999. [DOI] [PubMed] [Google Scholar]
- 45. Mikos A. G., Thorsen A. J., Czerwonda L. A., Bao Y., Langer R., Winslow D. N., Vacanti J. P., Preparation and characterization of poly(L‐lactic acid) foams, Polymers, 35:1068–1077, 1994. [Google Scholar]
- 46. Salgado A. J., Coutinho O. P., Reis R. L., Bone tissue engineering: state of the art and future trends, Macromol Biosci., 4:743–765, 2004. [DOI] [PubMed] [Google Scholar]
- 47. Leong K. F., Cheah C. M., Chua C. K., Solid freeform fabrication of three‐dimensional scaffolds for engineering replacement tissues and organs, Biomaterials, 24:2363–2378, 2003. [DOI] [PubMed] [Google Scholar]
- 48. Ishaug‐Riley S. L., Crane G. M., Gurlek A., Miller M. J., Yasko A. W., Yaszemski M. J., Mikos A. G., Ectopic bone formation by marrow stromal osteoblast transplantation using poly (DL‐lactic‐co‐glycolic acid) foams implanted into the rat mesentery, J. Biomed. Mater. Res., 36:1–8, 1997. [DOI] [PubMed] [Google Scholar]
- 49. Holy C. E., Fialkov J. A., Davies J. E., Shoichet M. S., Use of a biomimetic strategy to engineer bone, J. Biomed. Mater. Res. A, 65:447–453, 2003. [DOI] [PubMed] [Google Scholar]
- 50. Cowan C. M., Shi Y. Y., Aalami O. O., Chou Y. F., Mari C., Thomas R., Quarto N., Contag C. H., Wu B., Longaker M. T., Adipose‐derived adult stromal cells heal critical‐size mouse calvarial defects, Nat. Biotechnol., 22:560–567, 2004. [DOI] [PubMed] [Google Scholar]
- 51. Shin H., Jo S., Mikos A. G., Biomimetic materials for tissue engineering, Biomaterials, 24:4353–4364, 2003. [DOI] [PubMed] [Google Scholar]
- 52. Rezania A., Healy K. E., Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast‐like cells, Biotechnol. Prog., 15:19–32, 1999. [DOI] [PubMed] [Google Scholar]
- 53. Healy K. E., Rezania A., Stile R. A., Designing biomaterials to direct biological responses, Ann. N. Y. Acad. Sci., 875:24–35, 1999. [DOI] [PubMed] [Google Scholar]
- 54. Reyes C. D., Garcia A. J., Alpha2beta1 integrin‐specific collagen‐mimetic surfaces supporting osteoblastic differentiation, J. Biomed. Mater. Res. A., 69A:591–600, 2004. [DOI] [PubMed] [Google Scholar]
- 55. Dee K. C., Andersen T. T., Bizios R., Design and function of novel osteoblast‐adhesive peptides for chemical modification of biomaterials, J. Biomed. Mater. Res., 40:371–377, 1998. [DOI] [PubMed] [Google Scholar]
- 56. Wozney J. M., The bone morphogenetic protein family: multifunctional cellular regulators in the embryo and adult, Eur. J. Oral. Sci., 106 Suppl 1:160–166, 1998. [DOI] [PubMed] [Google Scholar]
- 57. Bouhadir K. H., Mooney D. J., Promoting angiogenesis in engineered tissues, J. Drug. Target., 9:397–406, 2001. [DOI] [PubMed] [Google Scholar]
- 58. Jennissen H. P., Accelerated and improved osteointegration of implants biocoated with bone morphogenetic protein 2 (BMP‐2), Ann. N. Y. Acad. Sci., 961:139–142, 2002. [DOI] [PubMed] [Google Scholar]
- 59. Sakiyama‐Elbert S. E., Hubbell J. A., Development of fibrin derivatives for controlled release of heparin‐ binding growth factors, J. Control. Release, 65:389–402, 2000. [DOI] [PubMed] [Google Scholar]
- 60. Gittens S. A., Bagnall K., Matyas J. R., Lobenberg R., Uludag H., Imparting bone mineral affinity to osteogenic proteins through heparin‐bisphosphonate conjugates, J. Control. Release., 98:255–268, 2004. [DOI] [PubMed] [Google Scholar]
- 61. Maire M., Logeart‐Avramoglou D., Degat M. C., Chaubet F., Retention of transforming growth factor beta 1 using functionalized dextran‐based hydrogels, Biomaterials, 26:1771–1780, 2005. [DOI] [PubMed] [Google Scholar]
- 62. Li R. H., Wozney J. M., Delivering on the promise of bone morphogenetic proteins, Trends Biotechnol., 19:255–265, 2001. [DOI] [PubMed] [Google Scholar]
- 63. Uludag H., Gao T., Porter T. J., Friess W., Wozney J. M., Delivery systems for BMPs: factors contributing to protein retention at an application site, J. Bone Joint Surg. Am., 83‐A:S128–135, 2001. [PubMed] [Google Scholar]
- 64. Kirker‐Head C. A., Potential applications and delivery strategies for bone morphogenetic proteins, Adv. Drug Deliv. Rev., 43:65–92, 2000. [DOI] [PubMed] [Google Scholar]
- 65. Bonadio J., Tissue engineering via local gene delivery: update and future prospects for enhancing the technology, Adv. Drug. Deliv. Rev., 44:185–194, 2000. [DOI] [PubMed] [Google Scholar]
- 66. Martin L., Wendt D., Heberer M., The role of bioreactors in tissue engineering, Trends Biotechnol., 22:80–86, 2004. [DOI] [PubMed] [Google Scholar]
- 67. MacDermott R. P., Bragdon M. J.: Fetal calf serum augmentation during cell separation procedures accounts for the majority of human autologous mixed leukocyte reactivity, Behring Inst Mitt :122–128, 1983. [PubMed]
- 68. Kievits F., Boerenkamp W. J., Ivanyi P., H‐2‐dependent binding of xenogeneic beta 2‐microglobulin from culture media, J. Immunol., 140:4253–4255, 1988. [PubMed] [Google Scholar]