Abstract
Atherosclerosis is a disease that begins in fetal life and represents a leading cause of morbidity and mortality associated with significant socioeconomic consequences. A central concept with regard to its pathogenesis is that of endothelial cell dysfunction, which is associated with the release of a large number of mediators secreted by leukocytes that are present in large numbers at the sites of atheroma formation. Neutrophil peptides defensins and cathelicidins are essential elements of the innate immunity and have been present in high concentrations in atherosclerotic plaques in humans. Recently, their role as potential mediators of vascular disease was investigated. Defensins are involved in the lipoprotein metabolism in the vessel wall, favoring LDL and lipoprotein (a) accumulation and modification in the endothelium and the extracellular matrix. They also interfere with the vascular smooth muscle cell function, exhibit prothrombotic activity, and play an inhibitory role in various phases of angiogenesis. Cathelicidins were recently found to enhance endothelial proliferation in cultures, induce functionally significant angiogenesis in animal models, and regulate endothelial cell apoptosis. Further study of these peptides could provide useful insight in the relationship between inflammation and atherosclerosis and is anticipated to have therapeutic and prognostic ramifications.
Keywords: Defensin, Cathelicidin, Neutrophil, Inflammation, Atherosclerosis, LDL, Vasomotor, Angiogenesis, Innate immunity
References
- 1. Napoli C., D'Armiento F. P., Mancini F. P., Postiglione A., Witztum J. L., Palumbo G., Palinski W., Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions, J. Clin. Invest., 100:2680–2690, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Breslow J.L., Cardiovascular disease burden increases, NIH funding decreases, Nat. Med., 3:600–601, 1997. [DOI] [PubMed] [Google Scholar]
- 3. Schreiner P.J., Heiss. G. , Tyroler, H.A. , Morrisett, J.D. , Davis, C. E. , Smith, R. , Race and Gender Differences in the Association of Lp(a) With Carotid Artery Wall Thickness: The Atherosclerosis Risk in Communities (ARIC) Study, Arterioscler. Thromb. Vasc. Biol., 16:471–478, 1996. [DOI] [PubMed] [Google Scholar]
- 4. Williams K.J., Tabas I., The Response‐to‐retention hypothesis of early atherogenesis, Arterioscler. Thromb. Vasc. Biol., 15:551–561, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Ross R, Glomset J.A., Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis, Science, 180:1332–1339, 1973. [DOI] [PubMed] [Google Scholar]
- 6. Ross R., Atherosclerosis ‐ an inflammatory disease, N. Engl. J. Med., 340:115–26, 1999. [DOI] [PubMed] [Google Scholar]
- 7. Sattar N., Inflammation and endothelial dysfunction: intimate companions in the pathogenesis of vascular disease?, Clin. Sci. (Lond.), 106:443–445, 2004. [DOI] [PubMed] [Google Scholar]
- 8. Ridker P. M., Cushman M., Stampfer M. J., Tracy R. P., Hennekens C. H., Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men, N. Engl. J. Med., 336:973–979, 1997. [DOI] [PubMed] [Google Scholar]
- 9. Hingorani A.D., Cross J., Kharbanda R.K., Mullen M.J., Bhagat K., Taylor M., Donald A.E., Palacios M., Griffin G.E., Deanfield J.E., MacAllister R.J., Vallance P., Acute systemic inflammation impairs endothelium‐dependent dilatation in humans, Circulation, 102:994–999, 2000. [DOI] [PubMed] [Google Scholar]
- 10. Kharbanda R.K., Walton B., Allen M., Klein N., Hingorani A.D., MacAllister R.J., Vallance P., Prevention of inflammation‐induced endothelial dysfunction: a novel vasculo‐protective action of aspirin, Circulation, 105: 2600–2604, 2002. [DOI] [PubMed] [Google Scholar]
- 11. Weijenberg M.P., Feskens E.J., Kromhout D., White blood cell count and the risk of coronary heart disease and all‐cause mortality in elderly men, Arterioscler. Thromb. Vasc. Biol., 16:499–503, 1996. [DOI] [PubMed] [Google Scholar]
- 12. Zalokar J.B., Richard J.L., Claude J.R., Leukocyte count, smoking, and myocardial infarction, N. Engl. J. Med., 304:465–308, 1981. [DOI] [PubMed] [Google Scholar]
- 13. Mohacsi A., Kozlovszky B., Kiss I., Seres I., Fulop T., Jr. , Neutrophils obtained from obliterative atherosclerotic patients exhibit enhanced resting respiratory burst and increased degranulation in response to various stimuli, Biochim. Biophys. Acta., 1316:210–216, 1996. [DOI] [PubMed] [Google Scholar]
- 14. Nedeljkovic Z.S., Gokce N., Loscalzo J., Mechanisms of oxidative stress and vascular dysfunction, Postgrad. Med. J., 79:195–199, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Koczulla R., von Degenfeld G., Kupatt C., Krotz F., Zahler S., Gloe T., Issbrucker K., Unterberger P., Zaiou M., Lebherz C., Karl A., Raake P., Pfosser A., Boekstegers P., Welsch U., Hiemstra P.S., Vogelmeier C., Gallo R.L., Clauss M., Bals R., An angiogenic role for the human peptide antibiotic LL‐37/hCAP‐18, J. Clin. Invest., 111:1665–1672, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Higazi A.A., Lavi E., Bdeir K., Ulrich A.M., Jamieson D.G., Rader D.J., Usher D.C., Kane W., Ganz T., Cines D.B., Defensin stimulates the binding of lipoprotein (a) to human vascular endothelial and smooth muscle cells, Blood, 89:4290–4298, 1997. [PubMed] [Google Scholar]
- 17. Barnathan E.S., Raghunath P.N., Tomaszewski J.E., Ganz T., Cines D.B., Higazi Aa‐R., Immunohistochemical localization of defensin in human coronary vessels. Am. J. Pathol., 150:1009–1020, 1997. [PMC free article] [PubMed] [Google Scholar]
- 18. Raj P.A., Dentino A.R., Current status of defensins and their role in innate and adaptive immunity, FEMS Microbiol. Lett., 206:9–18, 2002. [DOI] [PubMed] [Google Scholar]
- 19. Risso A., Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity, J. Leukoc. Biol., 68:785–792, 2000. [PubMed] [Google Scholar]
- 20. Ganz T., Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes, Infect. Immun., 55:568–571, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Selsted M.E., Harwig S.S. Ganz T., Schilling J.W., Lehrer R.I., Primary structures of three human neutrophil defensins, J. Clin. Invest., 76:1436–1439, 1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Hill C.P., Yee J., Selsted M.E., Eisenberg D., Crystal structure of defensin HNP‐3, an amphiphilic dimer: mechanisms of membrane permeabilization, Science, 251:1481–1485, 1991. [DOI] [PubMed] [Google Scholar]
- 23. Harwig S.S., Ganz T., Lehrer R.I., Neutrophil defensins: purification, characterization, and antimicrobial testing, Methods Enzymol., 236:160–172, 1994. [DOI] [PubMed] [Google Scholar]
- 24. Panyutich A.V., Panyutich E.A., Krapivin V.A., Baturevich E.A., Ganz T., Plasma defensin concentrations are elevated in patients with septicemia or bacterial meningitis, J. Lab. Clin. Med., 122:202–207, 1993. [PubMed] [Google Scholar]
- 25. Bdeir K., Cane W., Canziani G., Chaiken I., Weisel J., Koschinsky M.L., Lawn R.M., Bannerman P.G., Sachais B.S., Kuo A., Hancock M.A., Tomaszewski J., Raghunath P.N., Ganz T., Higazi A.A., Cines D.B., Defensin promotes the binding of lipoprotein(a) to vascular matrix, Blood, 94:2007–2019, 1999. [PubMed] [Google Scholar]
- 26. Chavakis T., Cines D.B., Rhee J.S., Liang O.D., Schubert U., Hammes H.P., Higazi A.A., Nawroth P.P., Preissner K.T., Bdeir K., Regulation of neovascularization by human neutrophil peptides (alpha‐defensins): a link between inflammation and angiogenesis, FASEB J., 18:1306–1308, 2004. [DOI] [PubMed] [Google Scholar]
- 27. Higazi A.A., Nassar T., Ganz T., Rader D.J., Udassin R., Bdeir K., Hiss E., Sachais B.S., Williams K.J., Leitersdorf E., Cines D.B., The alpha‐defensins stimulate proteoglycan‐dependent catabolism of low‐density lipoprotein by vascular cells: a new class of inflammatory apolipoprotein and a possible contributor to atherogenesis, Blood, 96:1393–1398, 2000. [PubMed] [Google Scholar]
- 28. Nassar T., Akkawi S., Bar‐Shavit R., Haj‐Yehia A., Bdeir K., Al‐Mehdi A.B., Tarshis M., Higazi A.A., Human alpha‐defensin regulates smooth muscle cell contraction: a role for low‐density lipoprotein receptor‐related protein/alpha 2‐macroglobulin receptor, Blood, 100:4026–4032, 2002. [DOI] [PubMed] [Google Scholar]
- 29. Higazi A.A., Ganz T., Kariko K., Cines D.B., Defensin modulates tissue‐type plasminogen activator and plasminogen binding to fibrin and endothelial cells, J. Biol. Chem., 271:17650–1765, 1996. [DOI] [PubMed] [Google Scholar]
- 30. Hu C.K., Kohnert U., Wilhelm O., Fischer S., Llinas M., Tissue‐type plasminogen activator domain‐deletion mutant BM 06.022: modular stability, inhibitor binding, and activation cleavage, Biochemistry, 33:11760–11766, 1994. [DOI] [PubMed] [Google Scholar]
- 31. Nassar T., Akkawi S.E., Shina A., Haj‐Yehia A., Bdeir K., Tarshis M., Heyman S.N., Higazi A.A‐R., In vitro and in vivo effects of tPA and PAI‐1 on blood vessel tone, Blood, 103:897–902, 2004. [DOI] [PubMed] [Google Scholar]
- 32. Gates J.D., Clair D.G., Hechtman D.H., Thoracic aortic dissection with renal artery involvement following blunt thoracic trauma: case report, J. Trauma, 36:430–432, 1994. [DOI] [PubMed] [Google Scholar]
- 33. Zanetti M., Gennaro R., Romeo D., Cathelicidins: a novel protein family with a common proregion and a variable C‐terminal antimicrobial domain, FEBS Lett., 374:1–5, 1995. [DOI] [PubMed] [Google Scholar]
- 34. Agerberth B., Charo J., Werr J., Olsson B., Idali F., Lindbom L., Kiessling R., Jornvall H., Wigzell H., Gudmundsson G.H., The human antimicrobial and chemotactic peptides LL‐37 and alpha‐defensins are expressed by specific lymphocyte and monocyte populations, Blood, 96:3086–3093, 2000. [PubMed] [Google Scholar]
- 35. Frohm M., Agerberth B., Ahangari G., Stahle‐Backdahl M., Liden S., Wigzell H., Gudmundsson G.H., The expression of the gene coding for the antibacterial peptide LL‐37 is induced in human keratinocytes during inflammatory disorders, J. Biol. Chem., 272:15258–15263, 1997. [DOI] [PubMed] [Google Scholar]
- 36. Gudmundsson G.H., Agerberth B., Odeberg J., Bergman T., Olsson B., Salcedo R., The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL‐37 in granulocytes, Eur. J. Biochem., 238:325–332, 1996. [DOI] [PubMed] [Google Scholar]
- 37. Bals R., Wang X., Zasloff M., Wilson J.M., The peptide antibiotic LL‐37/hCAP‐18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface, Proc. Natl. Acad. Sci. U. S. A., 95:9541–9546, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Sorensen O., Cowland J.B., Askaa J., Borregaard N., An ELISA for hCAP‐18, the cathelicidin present in human neutrophils and plasma, J. Immunol. Methods., 206:53–59, 1997. [DOI] [PubMed] [Google Scholar]
- 39. Agerberth B., Grunewald J., Castanos‐Velez E., Olsson B., Jornvall H., Wigzell H., Eklund A., Gudmundsson G.H., Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am. J. Respir. Crit. Care Med., 160:283–290, 1999. [DOI] [PubMed] [Google Scholar]
- 40. Frohm M., Gunne H., Bergman A.C., Agerberth B., Bergman T., Boman A., Liden S., Jornvall H., Boman H.G., Biochemical and antibacterial analysis of human wound and blister fluid, Eur. J. Biochem., 237:86–92, 1996. [DOI] [PubMed] [Google Scholar]
- 41. Bals R., Epithelial antimicrobial peptides in host defense against infection, Respir. Res., 1:141–150, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. De Y., Chen Q., Schmidt A.P., Anderson G.M., Wang J.M., Wooters J., Oppenheim J.J., Chertov O., LL‐37, the neutrophil granule‐ and epithelial cell‐derived cathelicidin, utilizes formyl peptide receptor‐like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells, J Exp Med., 2000: 192:1069–1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Beasley D., Cohen R.A., Levinsky N.G., Interleukin 1 inhibits contraction of vascular smooth muscle, J. Clin. Invest., 83:331–335, 1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Liu S., Adcock I.M., Old R.W., Barnes P.J., Evans T.W., Lipopolysaccharide treatment in vivo induces widespread tissue expression of inducible nitric oxide synthase mRNA, Biochem. Biophys. Res. Commun., 196:1208–1213, 1993. [DOI] [PubMed] [Google Scholar]
- 45. Ciornei C.D., Egesten A., Bodelsson M., Effects of human cathelicidin antimicrobial peptide LL‐37 on lipopolysaccharide‐induced nitric oxide release from rat aorta in vitro , Acta. Anaesthesiol. Scand., 47:213–220, 2003. [DOI] [PubMed] [Google Scholar]
- 46. Johansson J., Gudmundsson G.H., Rottenberg M.E., Berndt K.D., Agerberth B., Conformation‐dependent antibacterial activity of the naturally occurring human peptide LL‐37, J. Biol. Chem., 273:3718–3724, 1998. [DOI] [PubMed] [Google Scholar]
