Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(3):583–591. doi: 10.1111/j.1582-4934.2005.tb00490.x

Progenitor cells in vascular disease

Neil Roberts 1, Marjan Jahangiri 1, Qingbo Xu 1,
PMCID: PMC6741403  PMID: 16202207

Abstract

Stem cell research has the potential to provide solutions to many chronic diseases via the field of regeneration therapy. In vascular biology, endothelial progenitor cells (EPCs) have been identified as contributing to angiogenesis and hence have therapeutic potential to revascularise ischaemic tissues. EPCs have also been shown to endothelialise vascular grafts and therefore may contribute to endothelial maintenance. EPC number has been shown to be reduced in patients with cardiovascular disease, leading to speculation that atherosclerosis may be caused by a consumptive loss of endothelial repair capacity. Animal experiments have shown that EPCs reendothelialise injured vessels and that this reduces neointimal formation, confirming that EPCs have an atheroprotective effect. Smooth muscle cell accumulation in the neointimal space is characteristic of many forms of atherosclerosis, however the source of these cells is now thought to be from smooth muscle progenitor cells (SMPCs) rather than the adjacent media. There is evidence for the presence of SMPCs in the adventitia of animals and that SMPCs circulate in human blood. There is also data to support SMPCs contributing to neointimal formation but their origin remains unknown. This article will review the roles of EPCs and SMPCs in the development of vascular disease by examining experimental data from in vitro studies, animal models of atherosclerosis and clinical studies.

Keywords: endothelial progenitor cells, smooth muscle progenitor cells, atherosclerosis

References

  • 1. Ashahara T, Murohara T, Sullivan A, Silver M, Van der Zee R, Li T, Witzenbichler B, Schatterman G, Isner JM. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science 1997; 275: 964–7. [DOI] [PubMed] [Google Scholar]
  • 2. Kalka C, Masuda H, Takahashi T, Kalka‐Moll W, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularisation. Proc Natl Acad Sci USA. 2000; 97: 3422–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCAREAMI). Circulation 2002; 106: 3009–17. [DOI] [PubMed] [Google Scholar]
  • 4. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990's. Nature 1993; 362: 801–9. [DOI] [PubMed] [Google Scholar]
  • 5. Schatteman G, Awad O. In vivo and in vitro properties of CD34+ and CD14+ endothelial cell precursors. Adv Exp Med Biol. 2003; 522: 9–16. [DOI] [PubMed] [Google Scholar]
  • 6. Rumpold H, Wolf D, Koeck R, Gunsilius E. Endothelial progenitor cells: a source for therapeutic vasculogenesis. J Cell Mol Med. 2004; 8: 509–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Shi Q, Rafii S, Wu M, Wijelath E, Yu C, Ishada A, Fujita Y, Kothari S, Mohle R, Sauvage L, Moore M, Storb R, Hammond W. Evidence for circulating bone marrow‐derived endothelial cells. Blood 1998; 92: 362–7. [PubMed] [Google Scholar]
  • 8. Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348: 593–600. [DOI] [PubMed] [Google Scholar]
  • 9. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001; 89: e1–7. [DOI] [PubMed] [Google Scholar]
  • 10. Urbich C, Dimmeler S. Endothelial progenitor cells characterization and role in vascular biology. Circ Res. 2004; 95: 343–53. [DOI] [PubMed] [Google Scholar]
  • 11. Iwami Y, Masuda H, Asahara T. Endothelial progenitor cells: past, state of the art, and future. J Cell Mol Med. 2004; 8: 488–97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Hristov M, Weber C. Endothelial progenitor cells: characterisation, pathophsiology, and possible clinical relevance. J Cell Mol Med. 2004; 8: 498–508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. George J, Goldstein E, Abashidze S, Deutsch V, Shmilovich H, Finkelstein A, Herz I, Miller H, Keren G. Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J. 2004; 25: 1003–8. [DOI] [PubMed] [Google Scholar]
  • 14. George J, Herz I, Goldstein E, Abashidze S, Deutch V, Finkelstein A, Michowitz Y, Miller H, Keren G. Number and adhesive properties of circulating endothelial progenitor cells in patients with in‐stent restenosis. Arterioscler Thromb Vasc Biol. 2003; 23: 57e–60. [DOI] [PubMed] [Google Scholar]
  • 15. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC. Human endothelial progenitor cells from Type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002; 106: 2781–6. [DOI] [PubMed] [Google Scholar]
  • 16. Ghani U, Shuaib A, Salam A, Nasir A, Shuaib U, Jeerakathil T, Sher F, O'Rourke F, Nasser AM, Schwindt B, Todd K. Endothelial progenitor cells during cerebrovascular disease. Stroke 2005; 36: 151–3. [DOI] [PubMed] [Google Scholar]
  • 17. Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Seidinger D, Weigel G, Schwarzinger I, Wolozcszuk W, Steiner G, Smolen JS. Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 2005; 111: 204–11. [DOI] [PubMed] [Google Scholar]
  • 18. Choi J‐H, Kim KL, Huh W, Kim B, Byun J, Suh W, Sung J, Jeon E‐S, Oh H‐Y, Kim D‐K. Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol. 2004; 24: 1246–52. [DOI] [PubMed] [Google Scholar]
  • 19. Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S, Inden Y, Murohara T. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol. 2004; 24: 1442–7. [DOI] [PubMed] [Google Scholar]
  • 20. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004; 109: 220–6. [DOI] [PubMed] [Google Scholar]
  • 21. Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow‐mediated dilation to ankle‐brachial pressure index. Circulation 2003; 108: 2093–8. [DOI] [PubMed] [Google Scholar]
  • 22. Simper D, Wang S, Deb A, Holmes D, McGregor C, Frantz R, Kushwaha SS, Caplice NM. Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of non‐cardiac origin are enriched in transplant atherosclerosis. Circulation 2003; 108: 143–9. [DOI] [PubMed] [Google Scholar]
  • 23. Powell TM, Paul JD, Hill JM, Thompson M, Benjamin M, Rodrigo M, McCoy JP, Read EJ, Khuu HM, Leitman SF, Finkel T, Cannon RO III. Granulocyte colony‐stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2005; 25: 296–301. [DOI] [PubMed] [Google Scholar]
  • 24. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, Dimmeler S. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001; 103: 2885–90. [DOI] [PubMed] [Google Scholar]
  • 25. Adams V, Lenk K, Linke A, Lenz D, Erbs S, Sandri M, Tarnok A, Gielen S, Emmrich F, Schuler G, Hambrecht R. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise‐induced ischemia. Arterioscler Thromb Vasc Biol. 2004; 24: 684–90. [DOI] [PubMed] [Google Scholar]
  • 26. Zou Y, Dietrich H, Hu Y, Metzler B, Wick G, Xu Q. Mouse model of venous bypass graft arteriosclerosis. Am J Pathol. 1998; 153: 1301–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Mayr M, Li C, Zou Y, Huemer U, Hu Y, Xu Q. Biomechanical‐stress‐induced apoptosis in vein grafts involves p38 mitogen‐activated protein kinases. FASEB J. 2000; 14: 261–70. [DOI] [PubMed] [Google Scholar]
  • 28. Xu Q, Zhang Z, Davison F, Hu Y. Circulating progenitor cells regenerate endothelium of vein graft atherosclerosis, which is diminished in ApoE‐deficient mice. Circ Res. 2003; 93: e76–86. [DOI] [PubMed] [Google Scholar]
  • 29. Torsney E, Mayr U, Zou Y, Thompson WD, Hu Y, Xu Q. Thrombosis and neointima formation in vein grafts are inhibited by locally applied aspirin through endothelial protection. Circ Res. 2004; 94: 1466–73. [DOI] [PubMed] [Google Scholar]
  • 30. Indolfi C, Cioppa A, Stabile E, Di Lorenzo E, Esposito G, Pisani A, Leccia A, Cavuto L, Stingone A, Chieffo A, Capozzolo C, Chiariello M. Effects of hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin on smooth muscle cell proliferation in vitro and neointimal formation in vivo after vascular injury. J Am Coll Cardiol. 2000; 35: 214–21. [DOI] [PubMed] [Google Scholar]
  • 31. Corsini A, Pazzucconi F, Pfister P, Paoletti R, Sirtori C. Inhibitor of proliferation of arterial smooth‐muscle cells by fluvastatin. Lancet 1996; 348: 1584. [DOI] [PubMed] [Google Scholar]
  • 32. Bustos C, Hernandez‐Presa M, Ortego M, Tunon J, Ortega L, Perez F, Diaz C, Hernandez G, Egido J. HMG‐CoA reductase inhibition by atorvastatin reduces neointiaml inflammation in a rabbit model of atherosclerosis. J Am Coll Cardiol. 1998; 32: 2057–64. [DOI] [PubMed] [Google Scholar]
  • 33. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow‐derived endothelial progenitor cells. Circulation 2002; 105: 3017–24. [DOI] [PubMed] [Google Scholar]
  • 34. Werner N, Priller J, Laufs U, Endres M, Bohm M, Dirnagl U, Nickenig G. Bone marrow‐derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibition. Arterioscler Thromb Vasc Biol. 2002; 22: 1567–72. [DOI] [PubMed] [Google Scholar]
  • 35. Strehlow K, Werner N, Berweiler J, Link A, Dirnagl U, Priller J, Laufs K, Ghaeni L, Milosevic M, Bohm M, Nickenig G. Estrogen increases bone marrow‐derived endothelial progenitor cell production and diminishes neointima formation. Circulation 2003; 107: 3059–65. [DOI] [PubMed] [Google Scholar]
  • 36. Kong D, Melo LG, Mangi AA, Zhang L, Lopez‐Ilasaca M, Perrella MA, Liew CC, Pratt RE, Dzau VJ. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation 2004; 109: 1769–75. [DOI] [PubMed] [Google Scholar]
  • 37. Nowak G, Karrar A, Holmen C, Nava S, Uzunel M, Hultenby K, Sumitran‐Holgersson S. Expression of vascular endothelial growth factor receptor‐2 or Tie‐2 on peripheral blood cells defines functionally competent cell populations capable of reendothelialization. Circulation 2004; 110: 3699–707. [DOI] [PubMed] [Google Scholar]
  • 38. Rauscher FM, Goldschmidt‐Clermont PJ, Davis BH, Wang T, Gregg D, Ramaswami P, Pippen AM, Annex BH, Dong C, Taylor DA. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 2003; 108: 457–63. [DOI] [PubMed] [Google Scholar]
  • 39. Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, Symes JF. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000; 70: 829–34. [DOI] [PubMed] [Google Scholar]
  • 40. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K‐i, Shimada T, Oike Y, Imaizumi T. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001; 103: 2776–9. [DOI] [PubMed] [Google Scholar]
  • 41. Hu Y, Mayr M, Metzler B, Erdel M, Davison F, Xu Q. Both donor and recipient origins of smooth muscle cells in vein graft atherosclerotic lesions. Circ Res. 2002; 91: e13–20. [DOI] [PubMed] [Google Scholar]
  • 42. Hu Y, Davison F, Ludewig B, Erdel M, Mayr M, Url M, Dietrich H, Xu Q. Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation 2002; 106: 1834–9. [DOI] [PubMed] [Google Scholar]
  • 43. Hillebrands J‐L, Klatter FA, van den Hurk BMH, Popa ER, Nieuwenhuis P, Rozing J. Origin of neointimal endothelium and α‐actin‐positive smooth muscle cells in transplant arteriosclerosis. J Clin Invest. 2001; 107: 1411–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Hillebrands J‐L, Klatter FA, Rozing J. Origin of vascular smooth muscle cells and the role of circulating stem cells in transplant arteriosclerosis. Arterioscler Thromb Vasc Biol. 2003; 23: 380–7. [DOI] [PubMed] [Google Scholar]
  • 45. Han C, Campbell G, Campbell J. Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res. 2001; 38: 113–9. [DOI] [PubMed] [Google Scholar]
  • 46. Caplice NM, Bunch TJ, Stalboerger PG, Wang S, Simper D, Miller DV, Russell SJ, Litzow MR, Edwards WD. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA. 2003; 100: 4754–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Li J, Han X, Jiang J, Zhong R, Williams G, Pickering J, Chow L. Vascular smooth muscle cells of recipient origin mediate intimal expansion after aortic allotransplantation in mice. Am J Pathol. 2001; 158: 1943–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atheroscerosis. Nat Med. 2002; 8: 403–9. [DOI] [PubMed] [Google Scholar]
  • 49. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell R. Host bone marrow cells are a source of donor intimal smooth muscle like cells in murine aortic transplant arteriopathy. Nat Med. 2001; 7: 738–41. [DOI] [PubMed] [Google Scholar]
  • 50. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M. Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med. 2001; 7: 382–3. [DOI] [PubMed] [Google Scholar]
  • 51. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM. Smooth muscle progenitor cells in human blood. Circulation 2002; 106: 1199–204. [DOI] [PubMed] [Google Scholar]
  • 52. Groot ACG‐d, DeRuiter MC, Bergwerff M, Poelmann RE. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol. 1999; 19: 1589–94. [DOI] [PubMed] [Google Scholar]
  • 53. Hao H, Gabbiani G, Bochaton‐Piallat M‐L. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol. 2003; 23: 1510–20. [DOI] [PubMed] [Google Scholar]
  • 54. Hu Y, Zhang Z, Torsney E, Afzal A, Davison F, Metzler B, Xu Q. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE‐deficient mice. J Clin Invest. 2004; 113: 1258–65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 1996; 93: 2178–87. [DOI] [PubMed] [Google Scholar]
  • 56. Shi Y, O'brien J, Fard A, Mannion J, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 1996; 94: 1655–64. [DOI] [PubMed] [Google Scholar]
  • 57. Shi Y, O'Brien JE, Jr , Mannion JD, Morrison RC, Chung W, Fard A, Zalewski A. Remodeling of autologous saphenous vein grafts: the role of perivascular myofibroblasts. Circulation 1997; 95: 2684–93. [DOI] [PubMed] [Google Scholar]
  • 58. Lardenoye JHP, de Vries MR, Grimbergen JM, Havekes LM, Knaapen MWM, Kockx MM, van Hinsbergh VWM, van Bockel JH, Quax PHA. Inhibition of accelerated atherosclerosis in vein grafts by placement of external stent in ApoE*3‐leiden transgenic mice. Arterioscler Thromb Vasc Biol. 2002; 22: 1433–8. [DOI] [PubMed] [Google Scholar]
  • 59. Majka S, Jackson K, Kienstra K, Majesky M, Goodell M, Hirschi K. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest. 2003; 111: 71–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Beltrami A, Barlucchi L, Torella D, Torella M B, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Levi A, Kajstura J, Nadal‐Ginard B, Anversa P. Adult cardiac stem cells are multi‐potent and support myocardial regeneration. Cell 2003; 114: 763–76. [DOI] [PubMed] [Google Scholar]
  • 61. Planat‐Benard V, Silvestre J‐S, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan‐Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004; 109: 656–63. [DOI] [PubMed] [Google Scholar]
  • 62. Planat‐Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia‐Verdugo J‐M, Penicaud L, Casteilla L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res. 2004; 94: 223–9. [DOI] [PubMed] [Google Scholar]
  • 63. Fukuda D, Sata M, Tanaka K, Nagai R. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells. Circulation 2005; 111: 926–31. [DOI] [PubMed] [Google Scholar]
  • 64. Moldovan NI. Functional adaptation: the key to plasticity of cardiovascular “stem” cells Stem Cells Dev. 2005; 14: 111–21. [DOI] [PubMed] [Google Scholar]
  • 65. Rotmans JI, Heyligers JMM, Verhagen HJM, Velema E, Nagtegaal MM, de Kleijn DPV, de Groot FG, Stroes ESG, Pasterkamp G. In vivo cell seeding with anti‐CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 2005; 112: 12–8. [DOI] [PubMed] [Google Scholar]
  • 66. Kang H‐J, Kim H‐S, Zhang SY, Park K, Cho H‐J, Koo BK, Kim YJ, Soo LD, Sohn DW, Han KS, Oh B‐H, Lee M‐M, Park Y‐B. Effects of intracoronary infusion of peripheral blood stem‐cells mobilised with granulocytecolony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004; 363: 751–6. [DOI] [PubMed] [Google Scholar]
  • 67. Smits A, van Vliet P, Hassink R, Goumans M, Doevendans P. The role of stem cells in cardiac regeneration. J Cell Mol Med. 2005; 9: 25–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest. 2005; 115: 572–84. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES