Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(4):599–608. doi: 10.1111/j.1582-4934.2002.tb00458.x

Beneficial effect of enalapril in spontaneously hypertensive rats cardiac remodeling with nitric oxide synthesis blockade

R L de Andrade Zorzi 1, Leila M Meirelles Pereira 1, C A Mandarim‐de‐Lacerda 1,
PMCID: PMC6741409  PMID: 12611644

Abstract

Aims. To study the efficiency of an angiotensin converting enzyme inhibitor on the blood pressure (BP) and the myocardium remodeling when spontaneously hypertensive rats (SHRs) are submitted to nitric oxide synthesis (NOs) blockade (with L‐NAME) and simultaneously treated.

Methods. Young adult male SHRs were separated in four groups (n = 5) and treated for 20 days: Control, L‐NAME, L‐NAME+Enalapril, and Enalapril. The alterations of the BP, heart mass/body mass ratio and stereological parameters for myocytes, connective tissue and intramyocardial vessels were studied among the groups.

Results. The SHRs with NOs blockade showed a great modification of the myocardium with extensive areas of reparative and interstitial fibrosis and accentuated hypertrophy of the cardiac myocytes (cross sectional area 60% higher in animals taking L‐NAME than in Control SHRs). Comparing the SHRs with NO deficiency (L‐NAME group), the Control SHRs and the Enalapril treated SHRs significant differences were found in the BP and in all stereological parameters. The NO deficiency caused an important BP increment in SHRs that was partially attenuated by Enalapril. This Enalapril effect was more pronounced in Control SHRs. A significant increment of the intramyocardial vessels was observed in NO deficient SHRs and Control SHRs treated with Enalapril demonstrated by the stereology (greater microvascular densities in treated SHRs).

Conclusion. Enalapril administration showed a beneficial effect on vascular remodeling and myocardial hypertrophy in SHRs. In SHRs with NO blockade, however, the beneficial effect of Enalapril occurred only in vascular remodeling.

Keywords: nitric oxide, spontaneously hypertensive rats, enalapril, L‐NAME, blod pressure, vascular remodeling

References

  • 1. Pereira L.M.M., Mandarim‐de‐Lacerda C.A., Stereology of cardiac hypertrophy induced by NO blockade in rats treated with Enalapril and verapamil, Analyt. Quant. Cytol. Histol., 23: 330–338, 2001. [PubMed] [Google Scholar]
  • 2. Ito N., Nitta Y., Ohtani H., Ooshima A., Isyama S., Remodeling of microvessels by coronary hypertension of cardiac hypertrophy in rats, J. Mol. Cell. Cardiol., 26: 49–54, 1994. [DOI] [PubMed] [Google Scholar]
  • 3. Mandarim‐de‐Lacerda C.A., Pereira L.M.M., Volume‐weighted mean nuclear volume and numerical nuclear density in the cardiomyocyte following Enalapril and verapamil treatment, Virchows Arch., 438: 92–95, 2001. [DOI] [PubMed] [Google Scholar]
  • 4. Pereira L.M.M., Mandarim‐de‐Lacerda C.A., Effect of antihypertensive drugs on the myocardial microvessels in rats with nitric oxide blockade, Pathol. Res. Pract., 196: 305–311, 2000. [DOI] [PubMed] [Google Scholar]
  • 5. Okamoto K., Aoki K., Development of a strain of spontaneously hypertensive rats, Japan Circ. J., 27: 282–293, 1963. [DOI] [PubMed] [Google Scholar]
  • 6. Pinto Y.M., Paul M., Ganten D., Lesson from rat models of hypertension: from Goldblatt to genetic engineering, Cardiovasc. Res., 39: 77–88, 1998. [DOI] [PubMed] [Google Scholar]
  • 7. Rothermund L., Paul M., Hypertension and the renin‐angiotensin system: evidence from genetic and transgenic studies, Basic. Res. Cardiol., 93 (Suppl. 2): 1–6, 1998. [DOI] [PubMed] [Google Scholar]
  • 8. Dogrell S.A., Brown L., Rat models of hypertension, cardiac hypertrophy and failure, Cardiovasc. Res., 39: 89–105, 1998. [DOI] [PubMed] [Google Scholar]
  • 9. Folkow B., Early structural changes in hypertension: pathophysiology and clinical consequences, J. Cardiovasc. Pharmacol., 22 (Suppl. 1): 1–6, 1993. [PubMed] [Google Scholar]
  • 10. Olivetti G., Cigola E., Maestri R., Lagrasta C., Corradi D., Quaini F., Recent advances in cardiac hypertrophy, Cardiovasc. Res., 45: 68–75, 2000. [DOI] [PubMed] [Google Scholar]
  • 11. Brunel P., Agabiti‐Rosi E., Effects of angiotensin‐converting enzyme inhibitors on the heart and vessels in clinical and experimental hypertension: a review, Clin. Drug. Invest., 12: 226–243, 1996. [Google Scholar]
  • 12. Furchgott R.F., Zawadski, J.V. , The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcocholine, Nature, 288: 373–376, 1980. [DOI] [PubMed] [Google Scholar]
  • 13. Palmer R.M.J., Ferrige A.G., Moncada S., Nitric oxide accounts for the biological activity of endothelium‐derived relaxing factor, Nature, 327: 524–526, 1987. [DOI] [PubMed] [Google Scholar]
  • 14. Palmer R.M.J., Ashton D.S., Moncada S., Vascular endothelial cells synthesize nitric oxide from L‐arginine, Nature, 333: 664–666, 1988. [DOI] [PubMed] [Google Scholar]
  • 15. Buchwalow I.B., Schulze W., Karczewski P., Kostic M.M., Wallukat G., Morwinski R., Krause E.G., Müller J., Paul M., Slezak J., Luft F.C., Haller H., Inducible nitric oxide synthase in the myocardium, Mol. Cell. Biochem., 217: 73–82, 2001. [DOI] [PubMed] [Google Scholar]
  • 16. Kone B. C., Molecular biology of natriuretic peptides and nitric oxide synthases, Cardiovasc. Res., 51: 429–441, 2001. [DOI] [PubMed] [Google Scholar]
  • 17. Patel K.P., Li Y.F., Hirooka Y., Role of nitric oxide in central sympathetic outflow, Exp. Biol. Med., 226: 814–824, 2001. [DOI] [PubMed] [Google Scholar]
  • 18. Mandarim‐de‐Lacerda C.A., Pereira L.M., Renal cortical remodelling by NO‐synthesis blockers in rats is prevented by angiotensin‐converting enzyme inhibitor and calcium channel blocker, J. Cell. Mol. Med., 5: 276–283, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Matsubara B.B., Matsubara L.S., Zornoff L.A.M., Franco M., Janicki J.S., Left ventricular adaptation to chronic pressure overload induced by inhibition of nitric oxide synthase in rats, Basic Res. Cardiol. 93: 173–181, 1998. [DOI] [PubMed] [Google Scholar]
  • 20. Weber K.T., Targeting pathological remodeling ‐ concepts of cardioprotection and reparation, Circulation, 102: 1342–1345, 2000. [DOI] [PubMed] [Google Scholar]
  • 21. Millatt L.J., Abdel‐Rahman E.M., Siragy H.M., Angiotensin II and nitric oxide: a question of balance, Regulatory Peptides, 81: 1–10, 1999. [DOI] [PubMed] [Google Scholar]
  • 22. Kahan T., The importance of left ventricular hypertrophy in human hypertension, J. Hypertens., 16: S23–S29, 1998. [PubMed] [Google Scholar]
  • 23. Frohlich E.D., Hypertension: evaluation and treatment, Williams & Wilkins, Baltimore , 1998. [Google Scholar]
  • 24. Bernátová I., Pecháòová O., Pelouch V., Šimko F., Regression of chronic L‐NAME‐treatment‐induced left ventricular hypertrophy: effect of captopril, J. Mol. Cell. Cardiol., 32: 177–185, 2000. [DOI] [PubMed] [Google Scholar]
  • 25. Brilla C.G., Renin‐angiotensin‐aldosterone system and myocardial fibrosis, Cardiovasc. Res., 47: 1–3, 2000. [DOI] [PubMed] [Google Scholar]
  • 26. Mandarim‐de‐Lacerda C.A., What is the interest of normal and pathological morphological research to be quantitative? The example of the stereology, Braz. J. Morphol. Sci., 16: 131–139, 1999. [Google Scholar]
  • 27. Gundersen H.J.G., Jensen E.B., Stereological estimation of the volume‐weighed mean volume of arbitrary particles observed in random sections, J. Microsc., 138: 127–142, 1985. [DOI] [PubMed] [Google Scholar]
  • 28. Sørensen F.B., Stereological estimation of the mean and variance of nuclear volume from vertical sections, J. Microsc., 162: 203–229, 1991. [DOI] [PubMed] [Google Scholar]
  • 29. Zar J.H., Biostatistical analysis, Prentice‐Hall, Upper Saddle River , 1999. [Google Scholar]
  • 30. Cruz‐Orive L.M., Weibel E.R., Recent stereological methods for cell biology: a brief survey, Am. J. Physiol., 258:L148–L156, 1990. [DOI] [PubMed] [Google Scholar]
  • 31. Pereira L.M.M., Mandarim‐de‐Lacerda C.A., Myocardial microcirculation stereological changes in rats subjected to nitric oxide synthesis inhibition, Pathol. Res. Pract., 195: 177–181, 1999. [DOI] [PubMed] [Google Scholar]
  • 32. Bernátová I., Pecháòová O., Šimko F., Captopril prevents NO‐deficient hypertension and left ventricular hypertrophy without affecting nitric oxide synthase activity in rats, Physiol. Res., 45: 311–316, 1996. [PubMed] [Google Scholar]
  • 33. Brilla C.G., Matsubara L., Weber K.T., Advanced hypertensive heart disease in spontaneously hypertensive rats: lisinopril‐mediated regression of myocardial fibrosis, Hypertension, 28: 269–275, 1996. [DOI] [PubMed] [Google Scholar]
  • 34. Numaguchi K., Egashira K., Takemoto M., Kadokami T., Shimokawa H., Sueishi K., Takeshita A., Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats, Hypertension, 26: 957–962, 1995. [DOI] [PubMed] [Google Scholar]
  • 35. Takemoto M., Egashira K., Usui M., Numaguchi K., Tomita H., Tsutsui H., Shimokawa H., Sueishi K., Takeshita A., Important role of tissue angiotensin‐converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long‐term blockade of nitric oxide synthesis in rats, J. Clin. Invest., 99: 278–287, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Weber K.T., Metabolic responses o extracellular matrix in tissue repair, Ann. Med., 29: 333–338, 1997. [DOI] [PubMed] [Google Scholar]
  • 37. Bernátová I., Pecháòová O., Šimko F., Effect of captopril in L‐NAME‐induced hypertension on the rat myocardium, aorta, brain and kidney, Exp. Physiol., 84: 1095–1105, 1999. [PubMed] [Google Scholar]
  • 38. Šimko F., Šimko J., The potential role of nitric oxide in the hypertrophic growth of the left ventricle, Physiol. Res., 49: 37–46, 2000. [PubMed] [Google Scholar]
  • 39. Moreno H., Metze, Jr. K. , Bento A.C., Antunes E., Zatz R., Nucci G., Chronic nitric oxide inhibition as a model of hypertensive heart muscle disease, Bas. Res. Cardiol., 91: 248–255, 1996. [DOI] [PubMed] [Google Scholar]
  • 40. Ono Y., Ono H., Matsuoka H., Fujimori T., Frohlich E.D., Apoptosis, coronary arterial remodeling, and myocardial infarction after nitric oxide inhibition in SHR, Hypertension, 34: 609–616, 1999. [DOI] [PubMed] [Google Scholar]
  • 41. Matsuoka H., Nakata M., Kohno Keisuke, Koga Y., Nomura G., Toshima H., Imaizumi T., Chronic L‐arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats, Hypertension, 27: 14–18, 1996. [DOI] [PubMed] [Google Scholar]
  • 42. Chen P.Y., Sanders P.W., L‐arginine abrogates saltsensitive hypertension in Dahl Rapp rats, J. Clin. Invest., 88: 1559–1567, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Pessanha M.G., Mandarim‐de‐Lacerda C.A., Hahn M.D., Stereology and immunohistochemistry of the myocardium in experimental hypertension: long‐term and low dosage administration of inhibitor of the nitric oxide synthesis, Pathobiology, 67: 26–33, 1999. [DOI] [PubMed] [Google Scholar]
  • 44. Pessanha M.G., Mandarim‐de‐Lacerda C.A., Influence of the chronic nitric oxide synthesis inhibition on cardiomyocytes number, Virchows Arch., 437: 667–674, 2000. [DOI] [PubMed] [Google Scholar]
  • 45. Arnal J.F., Armani E.I., Chatellier G., Menard J., Michel J.B., Cardiac weight in hypertension induced by nitric oxide synthase blockade, Hypertension, 22: 380–387, 1993. [DOI] [PubMed] [Google Scholar]
  • 46. Matsubara B.B., Matsubara L.S., Zornoff L.A.M., Franco M., Janicki J.S., Left ventricular adaptation to chronic pressure overload induced by inhibition of nitric oxide synthase in rats, Basic Res. Cardiol., 93: 173–181, 1998. [DOI] [PubMed] [Google Scholar]
  • 47. Babál P., Pecháòová O., Bernátová I., Štvrtina S., Chronic inhibition of NO synthesis produces myocardial fibrosis and arterial media hyperplasia, Histol. Histopathol., 12: 623–629, 1997. [PubMed] [Google Scholar]
  • 48. Ono H., Ono Y., Frohlich E.D., Nitric oxide synthase inhibition in spontaneously hypertensive rats: systemic, renal, and glomerular hemodynamics, Hypertension, 26: 249–255, 1995. [DOI] [PubMed] [Google Scholar]
  • 49. Saleh F.H., Jurjus A.R., A comparative study of morphological changes in spontaneously hypertensive rats and normotensive Wistar Kyoto rats treated with an angiotensin‐converting enzyme inhibitor or a calcium‐channel blocker, J. Pathol., 193: 415–420, 2001. [DOI] [PubMed] [Google Scholar]
  • 50. Takemoto M., Egashira K., Usui M., Numaguchi K., Tomita H., Tsutsui H., Shimokawa H., Sueishi K., Takeshita A., Important role of tissue angiotensin‐converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long‐term blockade of nitric oxide synthesis in rats, J. Clin. Invest., 99: 278–287, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Mandarim‐de‐Lacerda C.A., Pereira L.M.M., Numerical density of cardiomyocytes in chronic nitric oxide synthesis inhibition, Pathobiology, 68:36–43, 2000. [DOI] [PubMed] [Google Scholar]
  • 52. Moreno, Jr. H. , Nathan L.P., Costa S.K.P., Metze K., Antunes E., Zatz R., De Nucci G., Enalapril does not prevent the myocardial ischemia caused by the chronic inhibition of nitric oxide synthesis, Eur. J. Pharmacol., 287: 93–96, 1995. [DOI] [PubMed] [Google Scholar]
  • 53. Sládek T., Gerová M., Znojil V., Devát L., Morphometric characteristics of cardiac hypertrophy induced by long‐term inhibition of NO synthase, Physiol. Res., 45: 335–338, 1996. [PubMed] [Google Scholar]
  • 54. Bishop J.E., Lindahl G., Regulation of cardiovascular collagen synthesis by mechanical load, Cardiovasc. Res., 42: 27–44, 1999. [DOI] [PubMed] [Google Scholar]
  • 55. Rakusan K., Cicutti N., Kazda S., Turek Z., Effect of nifedipine on coronary capillary geometry in normotensive and hypertensive rats, Hypertension, 24: 205–211, 1994. [DOI] [PubMed] [Google Scholar]
  • 56. Moncada S., Nitric oxide in the vascular physiology and pathophysiology, Ann. N. Y. Acad. Sci., 811: 60–67, 1997. [DOI] [PubMed] [Google Scholar]
  • 57. Black M.J., Bertram J.F., Johnston C.I., Effect of angiotensin‐converting enzyme inhibition on myocardial vascularization in the adolescent and adult spontaneously hypertensive rat, J. Hypertens., 19: 785–794, 2001. [DOI] [PubMed] [Google Scholar]
  • 58. Okruhlicová L., Tribulová N., Bernátová I., Pecháòová O., Induction of angiogenesis in NO‐deficient rat heart, Physiol. Res., 49: 71–76, 2000. [PubMed] [Google Scholar]
  • 59. Forte P., Copland M., Smith L.M., Milne E., Sutherland J., Benjamin N., Basal nitric oxide synthesis in essential hypertension, Lancet, 349: 837–842, 1997. [DOI] [PubMed] [Google Scholar]
  • 60. Clozel J.P., Kuhn H., Hefti F., Effects of chronic ACE inhibition on cardiac hypertrophy and coronary vascular reserve in spontaneously hypertensive rats with developed hypertension, J. Hypertens., 7: 267–275, 1989. [PubMed] [Google Scholar]
  • 61. Unger T., Mattfeldt T., Lamberty V., Bock P., Mall G., Linz W., Schülkens B.A., Gohlke P., Effect of early onset angiotensin converting enzyme inhibition on myocardial capillaries, Hypertension, 20: 478–482, 1992. [DOI] [PubMed] [Google Scholar]
  • 62. Olivetti G., Cigola E., Lagrasta C., Ricci R., Quaini F., Monopoli A., Ongini E., Spirapril prevents left ventricular hypertrophy, decreases myocardial damage and promotes angiogenesis in spontaneously hypertensive rats, J. Cardiovasc. Pharmacol., 21: 362–370, 1993. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES