Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(1):37–50. doi: 10.1111/j.1582-4934.2005.tb00335.x

Transplantation of hematopoietic stem cells from the peripheral blood

Jan Jansen 1,, Susan Hanks 1, James M Thompson 1, Michael J Dugan 1, Luke P Akard 1
PMCID: PMC6741412  PMID: 15784163

Abstract

Hematopoietic stem cells can be collected from the peripheral blood. These hematopoietic stem cells (HSC), or better progenitor cells, are mostly expressed as the percentage of cells than react with CD34 antibodies or that form colonies in semi‐solid medium (CFU‐GM). Under steady‐state conditions the number of HSC is much lower in peripheral blood than in bone marrow. Mobilization with chemotherapy and/or growth factors may lead to a concentration of HSC in the peripheral blood that equals or exceeds the concentration in bone marrow. Transplantation of HSC from the peripheral blood results in faster hematologic recovery than HSC from bone marrow. This decreases the risk of infection and the need for blood‐product support. For autologous stem‐cell transplantation (SCT), the use of peripheral blood cells has completely replaced the use of bone marrow. For allogeneic SCT, on the other hand, the situation is more complex. Since peripheral blood contains more T‐lymphocytes than bone marow, the use of HSC from the peripheral blood increases the risk of graft‐versus‐host disease after allogeneic SCT. For patients with goodrisk leukemia, bone marrow is still preferred, but for patients with high‐risk disease, peripheral blood SCT has become the therapy of choice.

Keywords: peripheral blood stem cells, hematopoietic stem cells, bone marrow, stem‐cell transplantation, CD34, colony‐forming unit granulocyte macrophage, CFU‐GM, mobilization

References

  • 1. Doss M.X., Koehler C.I., Gissel C., Hescheler J., Sachinidis A., Embryonic stem cells: a promising tool for cell replacement therapy, J. Cell. Mol. Med., 8:465–473, 2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Wakayama T., Tabar V., Rodigues I., Perry A.C.F., Studer L., Mombaerts P., Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer, Science, 292: 740–744, 2001. [DOI] [PubMed] [Google Scholar]
  • 3. Kocher A.A., Schuster M.D., Szabolcs M.J., Takuma S., Burkhoff D., Wang J., Homma S., Edwards N.M., Itescu S., Neovascularization of ischemic myocardium by human bone‐marrow derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function, Nature Medicine, 7: 430–436, 2001. [DOI] [PubMed] [Google Scholar]
  • 4. Petersen B.E., Bowen W.C., Patrene K.D., Mars W.M., Sullivan A.K., Murase N., Boggs S.S., Greenberger J.S., Goff J.P., Bone marrow as a potential source of hepatic oval cells, Science, 284: 1168–1170, 1999. [DOI] [PubMed] [Google Scholar]
  • 5. Maximow A., Der Lymphozyt als gemeinsame Stammzelle der verschiedene Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Saugetiere, Folia Haematol. (Leipzig), 8; 125–141, 1909. [Google Scholar]
  • 6. Santos G.W., History of bone marrow transplantation, Clin. Haematol., 12: 611–639, 1983. [DOI] [PubMed] [Google Scholar]
  • 7. Jacobsen L.O., Marks E.K., Gaston E.O., Effect of spleen protection on mortality following x‐irradiation, J. Lab. Clin. Med., 12: 1538–1543, 1949. [Google Scholar]
  • 8. Ford C.E., Hamerton J.L., Barnes D.W.H., Loutit J.F., Cytological identification of radiation chimera, Nature, 177: 452–454, 1956. [DOI] [PubMed] [Google Scholar]
  • 9. Thomas E.D., Lochte H.L., Lu W.C., Ferrebee J.W., Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy, N. Engl. J. Med., 257: 491–496, 1957. [DOI] [PubMed] [Google Scholar]
  • 10. Mathé G., Amiel J.L., Schwarzenberg L., Cattan A, Schneider M. Hemopoietic chimera in man after allogeneic (homologous) bone marrow transplantation. Control of secondary syndrome. Specific tolerance due to the chimerism, Brit. Med. J., 2: 1633–1635, 1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Thomas E.D., Blume K.G., Historical markers in the development of allogeneic hematopoietic cell transplantation, Biol. Blood. Marrow. Transplant., 5: 341–346, 1999. [DOI] [PubMed] [Google Scholar]
  • 12. Micklem H.S., Anderson N., Ross E., Limited potential of circulating hematopoietic stem cells, Nature, 256: 41–43, 1975. [DOI] [PubMed] [Google Scholar]
  • 13. Chervenick P.A., Boggs D.R., In vitro growth of granulocytic mononuclear cell colonies from blood of normal individuals, Blood, 37: 131–138, 1971. [PubMed] [Google Scholar]
  • 14. Zwaan F.E., Haematopoietic progenitor cells in the peripheral blood, Blut, 45: 87–95, 1982. [DOI] [PubMed] [Google Scholar]
  • 15. Van Bekkum D.W., Van Noord M.J., Maat B., Dicke K.A., Attempts at identification of hemopoietic stem cell in mouse, Blood, 38: 547–558, 1971. [PubMed] [Google Scholar]
  • 16. Krauss D.S., Fackler M.J., Civin C.I., May W.S., CD34: structure, biology, and clnical utility, Blood, 87: 1–13, 1996. [PubMed] [Google Scholar]
  • 17. Calvo W., Fliedner T.M., Herbst E., Regeneration of blood forming organs after autologous leukocyte transfusion in lethally irradiated dogs. II. Distribution and cellularity of the marrow in irradiated and transfused animals. Blood, 47: 593–601, 1976. [PubMed] [Google Scholar]
  • 18. Kessinger A., Smith D.M., Strandjord S.F., Landmark J.D., Dooley DC, Law P, Coccia PF, Weisenberger DD, Armitage JO. Allogeneic transplantation of blood‐derived, T‐cell depleted hematopoietic stem cells after myeloablative treatment in a patient with acute lymphoblastic leukemia, Bone Marrow Transplant, 4: 643–646, 1989. [PubMed] [Google Scholar]
  • 19. Sheridan W.P., Begley C.G., Juttner C.A., Szer J., To L.B., Maher D., McGrath K.M., Morstyn G., Fox R.M., Effect of peripheral‐blood progenitor cells mobilized ny filgrastim (G‐CSF) on platelet recovery after high‐dose chemotherapy, Lancet, 339: 640–644, 1992. [DOI] [PubMed] [Google Scholar]
  • 20. Richman C.M., Weiner R.S., Yankee R.A., Increase in circulating stem cells following chemotherapy in man, Blood, 47: 1031–1034, 1976. [PubMed] [Google Scholar]
  • 21. To L.B., Haylock D.N., Simmons P.J., Juttner C.A., The biology and clinical uses of blood stem cells, Blood, 89: 2233–2258, 1997. [PubMed] [Google Scholar]
  • 22. Körbling M., Fliedner T.M., The evolution of clinical peripheral blood stem cell transplantation, Bone Marrow Transplant, 7: 675–678, 1996. [PubMed] [Google Scholar]
  • 23. Gillespie T.W., Hillyer C.D., Peripheral blood progenitor cells for marrow reconstitution: mobilization and collection strategies, Transfusion, 36: 611–624, 1996. [DOI] [PubMed] [Google Scholar]
  • 24. Jansen J., Thompson J.M., Dugan M.J., Nolan P., Wiemann M., Birhiray R., Henslee‐Downey P.J., Akard L.P., Peripheral blood progenitor cell transplantation, Therapeutic Apheresis, 6: 5–14, 2002. [DOI] [PubMed] [Google Scholar]
  • 25. Körbling M., Anderlini P., Peripheral blood stem cells versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter?, Blood, 98: 2900–2908, 2001. [DOI] [PubMed] [Google Scholar]
  • 26. Siena S., Schiavo R., Pedrazzali P., Carlo‐Stella C., Therapeutic relevance of CD34+ cell dose in blood cell transplantation for cancer therapy, J. Clin. Oncol., 18: 1360–1377, 2000. [DOI] [PubMed] [Google Scholar]
  • 27. Tricot G., Jagannath S., Vesole D., Nelson J., Tindle S., Miller L., Cheon B., Crowley J., Barlogie B., Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients, Blood, 85: 588–596, 1995. [PubMed] [Google Scholar]
  • 28. Weaver C.H., Potz J., Redmond J., Tauer K., Schwartzberg I.S., Kaywin P., Drapkin R., Grant B., Unger P., Allen C., Zhen B., Hazelton B., Buckner C.D., Engraftment and outcome of patients receiving myeloablative therapy followed by autologous peripheral blood stem cells with a low CD34+ cell count, Bone Marrow Transplant, 19: 1103–1110, 1997. [DOI] [PubMed] [Google Scholar]
  • 29. Shpall E.J., Champlin R., Glaspy J.A., Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery, Biol Blood Marrow Transplant, 4: 84–92, 1998. [DOI] [PubMed] [Google Scholar]
  • 30. Grigg A.P., Roberts A.W., Raunow H., Houghton S., Layton J.E., Boyd A.W., McGrath K.M., Maher D., Optimizing dose and scheduling of filgrastim (G‐CSF) for mobilization and collection of peripheral blood progenitor cells in normal volunteers, Blood, 86: 4437–4446, 1995. [PubMed] [Google Scholar]
  • 31. Bensinger W.I., Martin P.J., Storer B., Clift R., Forman S.J., Negrin R., Kashyar A., Flowes M.E.D., Lillbey K., Chauncey T.R., Storb R., Appelbaum F.R., Transplantation of bone marrow as compared with peripheral blood cells from HLA‐identical relatives in patients with hematologic cancers, N. Engl. J. Med., 344: 175–181, 2001. [DOI] [PubMed] [Google Scholar]
  • 32. Lane T.A., Law P., Maruyama M., Young D., Burgess J., Mullen M., Mealiffe M., Terstappen L.W.M.M., Hardwick A., Moubayed M., Oldham F., Corringham R.E.T., Ho A.D., Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte‐macrophage colony stimulating factor (GM‐CSF) or G‐CSF: potential role in allogeneic marrow transplantation, Blood, 85: 275–282, 1996. [PubMed] [Google Scholar]
  • 33. Ho A.D., Young D., Maruyama M., Corringham R.E.T., Mason J.R., Thompson P., Grenier K., Law P., Terstappen L.W.M.M., Lane T., Pluripotent and lineagecommitted CD34+ substrates in leukapheresis products mobilized by G‐CSF, GM‐CSF vs. a combination of both, Exp. Hematol., 24: 1460–1468, 1996. [PubMed] [Google Scholar]
  • 34. Gianni A.M., Siena S., Bregni M., Tarella C., Stern A.C., Pileri A., Bonnadonna G., Granulocytemacrophage colony‐stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation, Lancet ii, 580–585, 1989. [DOI] [PubMed] [Google Scholar]
  • 35. To L.B., Haylock D.N., Dyson P.G., A comparison between 4 gm/m2 and 7 gm/m2 cyclophosphamide for peripheral blood stem cell mobilization, Int. J. Cell Cloning 10 (suppl): 33–34, 1992. 1552224 [Google Scholar]
  • 36. Akard L.P., Thompson J.M., Dugan M.J., Wiemann M., Greenspan A., Hanks S., Swinney M., Nyhuis A., Jansen J., Matched pair analysis of hematopoietic progenitor cell mobilization using G‐CSF vs. cyclophosphamide, etoposide, and G‐CSF: enhanced CD34+ collections are not necessarily cost‐effective, Biol. Blood Marrow Transplant, 5: 379–385, 1999. [DOI] [PubMed] [Google Scholar]
  • 37. Akard L.P., Wiemann M., Thompson J.M., Swinney M., Lynn K., Hanks S., Jansen J., Impaired stem‐cell collection by consecutive courses of high‐dose mobilizing chemotherapy using cyclophosphamide, etoposide, and G‐CSF, J. Hematother, 5: 271–277, 1996. [DOI] [PubMed] [Google Scholar]
  • 38. Jansen J., Thompson J.M., Dugan M.J., Wiemann M.C., Hanks S., Greenspan A.R., Akard L.P., Impaired PBPC collection in patients with myeloma after high‐doe melphalan, Cytotherapy, 6: 498–504, 2004. [DOI] [PubMed] [Google Scholar]
  • 39. Dugan M.J., Akard L.P., Thompson J.M., Nademanee A., Maziarz R.T., Bensinger W.I., Liesveld J., Badel K., Dehner C., Gibney C., Calandra G., Jansen J., Treatment with AMD3100 in multiple myeloma or non‐Hodgkin's lymphoma patients to increase the number of peripheral blood stem cells when given with a mobilizing regimen of chemotherapy and G‐CSF, Blood, 104: 782a, 2004. [Google Scholar]
  • 40. Flomenberg N., DiPersio J., Liesveld J., McCarty J., Rowley S., Vesole D., Badel K., Calandra G., AMD3100 + G‐CSF hematopoietic progenitor cells (HPC) mobilization is safe, effective, and superior to mobilization with G‐CSF alone, Blood, 102: 39a, 2003. [DOI] [PubMed] [Google Scholar]
  • 41. Pecora A.L., Lazarus H.M., Jennis A.A., Prett R.A., Goldberg S.L., Rowley S.D., Cantwell S., Cooper B.W., Copelan E.A., Herzig R.H., Meagher R., Kennedy M.J., Akard L.P., Jansen J., Ross A., Prilutskaya M., Glassco J., Kahn D., Moss T.J., Breast cancer cell contamination of blood stem cell products in patients with metastatic breast cancer: predictors and clinical relevance, Biol. Blood Marrow Transplant, 8: 536–543, 2002. [DOI] [PubMed] [Google Scholar]
  • 42. Storb R., Prentice R.L., Thomas E.D., Appelbaum F.R., Deeg H.J., Doney K., Fefer A., Goodell B.W., Mickelson E., Stewart P., Sullivan K.M., Witherspoom R.P., Factors associated with graft rejection after HLA‐identical marrow transplantation for aplastic anaemia, Brit. J. Haematol., 55: 573–585, 1983. [DOI] [PubMed] [Google Scholar]
  • 43. Collins R.H., Shpilberg O., Drobyski W.R., Porter D.I., Giralt S., Champlin R., Goodman S.A., Wolff S.N., Hu W., Verfaille C., List A., Dalton W., Ognoskie N., Chtrit A., Antin J.H., Nemunaitis J., Done leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation, J. Clin. Oncol., 15: 433–444, 1997. [DOI] [PubMed] [Google Scholar]
  • 44. Jansen J., Goselink H.M., Veenhof W.F.J., Zwaan F.E., Blotkamp C., The impact of the composition of the bone marrow graft on engraftment and graft‐versus‐host disease. Exp. Hematol., 11: 967–973, 1983. [PubMed] [Google Scholar]
  • 45. Ho V.T., Soiffer R.J., The history and future of T‐cell depletion as graft‐versus‐host disease prophylaxis for allogeneic hematopoietic stem cell transplantation, Blood, 98: 3192–3204, 2001. [DOI] [PubMed] [Google Scholar]
  • 46. Gyger M., Stuart R.K., Perreault C., Immunobiology of allogeneic peripheral blood mononuclear cells mobilized with granulocyte‐colonystimulating factor, Bone Marrow Transplant, 26: 1–16, 2000. [DOI] [PubMed] [Google Scholar]
  • 47. Brown R.A., Adkins D., Khoury H., Vij R., Goodnough L.T., Shenay S., DiPersio J.F., Long‐term follow‐up of high‐risk allogeneic peripheral‐blood stem‐cell transplant recipients: graft‐versus‐host disease and transplant‐related mortality, J. Clin. Oncol., 17: 806–812, 1999. [DOI] [PubMed] [Google Scholar]
  • 48. Khoury I.F., Keating M., Körbling M., Przepiorka D., Anderlini P., O'Brien S., Giralt S., Ippoliti C., Van Wolff B., Gajewski J., Donato M., Claxton D., Ueno N., Andersson B., Gee A., Champlin R., Transplant lite: induction of graft‐versus‐malignancy using fludarabine based nonablative chemotherapy and allogeneic blood progenitor‐cell transplantation as treatment for lymphoid malignancies, J. Clin. Oncol., 16: 2817–2824, 1998. [DOI] [PubMed] [Google Scholar]
  • 49. McSweeney P.A., Niederweiser D., Shizuru J.A., Sandmaier B.M., Molina A.J., Maloney D.G., Chauncey T.R., Gooley T.A., Hegenbart U., Nash R.A., Radich J., Wagner J.L., Minor S., Appelbaum F.R., Bensinger W.I., Bryant E., Lowers M.E.D., Georges G.E., Grumet F.C., Kiem H.P., Torek‐Storb B., Yu C., Blume K.G., Storb R.F., Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high‐dose cytotoxic therapy with graft‐versus‐tumor effects, Blood, 97: 3390–3400, 2001. [DOI] [PubMed] [Google Scholar]
  • 50. Champlin R.E., Schmitz N., Horowitz M.M., Chapuis B., Chopra R., Cornelissen J.J., Gale R.P., Goldman J.M., Loberiza F.R., Hertenstain B., Klein J.P., Montserrat E., Zhang M.J., Ringden O., Tomany S.C., Rowlings P.A., Van Hoef M.E.H.M., Gratwohl A., Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation, Blood, 95: 3702–3709, 2000. [PubMed] [Google Scholar]
  • 51. Horan J.T., Liesveld J.L., Fernandez I.D., Lyman G.H., Phillps G.L., Lerner N.B., Fisher S.G., Survival after HLA‐identical allogeneic peripheral blood stem cell and bone marrow transplantation for hematologic malignancies: meta‐analysis of randomized controlled trials, Bone Marrow Transplant, 32: 293–298, 2003. [DOI] [PubMed] [Google Scholar]
  • 52. Eapen M., Horowitz M.M., Klein J.P., Champlin R.E., Loberiza F.R. Jr., Ringden O., Wagner J.E., Higher mortality after allogeneic peripheral‐blood transplantation compared with bone marrow in children and adolescents: The histocompatibility and alternate stem cell source working committee of the International Bone Marrow Transplant Registry, J. Clin. Oncol., 22: 4872–4880, 2004. [DOI] [PubMed] [Google Scholar]
  • 53. Remberger M., Ringden O., Blau I.W., Ottinger H., Kremens B., Kiehl M.G., Aschan J., Beelen D.W., Basara N., Kumlien G., Fauser A.A., Runde V., No difference in graft‐versus‐host disease, relapse, and survival comparing peripheral stem cell to bone marrow using unrelated donors, Blood, 98: 1739–1745, 2001. [DOI] [PubMed] [Google Scholar]
  • 54. Aversa F., Tabilio A., Velardi A., Cunningham I., Terenzi A., Falzetti F., Ruggeri L., Barbabietola G., Aristei C., Latini P., Reisner Y., Martelli M.F., Treatment of high‐risk acute leukemia with T‐cell depleted stem cells from related donors with one fully mismatched HLA haplotype, N. Engl. J. Med., 339: 1186–1193, 1998. [DOI] [PubMed] [Google Scholar]
  • 55. Hale G., Cobbold S., Novitzky N., Bunjee D., Willemze R., Prentice H.G., Milligan D., Mackinnon S., Waldmann H., Campath‐1H antibodies in stem‐cell transplantation, Cytotherapy, 3: 145–164, 2001. [DOI] [PubMed] [Google Scholar]
  • 56. Peggs K.S., Thomson K., Hart D.P., Geary J., Morris E.C., Yong K., Goldstone A.H., Linch D.C., Mackinnon S., Dose‐escalated donor lymphocyte infusions following reduced intensity transplantation: toxicity, chimerism, and disease responses, Blood, 103: 1546–1556, 2004. [DOI] [PubMed] [Google Scholar]
  • 57. Rodenhuis S., Bontenbal M., Beex L.V.A.M., Wagstaff J., Richel D.J., Mooij M.A., Voest E.E., Hupperets P., van Tinteren H., Peterse H.L., TenVergert E.M., De Vries G.E., High‐dose chemotherapy with hematopoietic stem‐cell rescue for high‐risk breast cancer, N. Engl. J. Med., 349: 7–16, 2003. [DOI] [PubMed] [Google Scholar]
  • 58. Blaise D., Bay J.O., Faucher C., Michallet M., Boiron J.M., Choufi B., Cahn J.Y., Gratecos N., Sotto J.J., François S., Fleury J., Mohty M., Chabannon C., Bilger K., Gravis G., Viret F., Braud A.C., Bardou V.J., Maraninchi D., Viens P., Reduced‐intensity preparative regimen and allogeneic stem cell transplantation for advanced solid tumors, Blood, 103: 435–441, 2004. [DOI] [PubMed] [Google Scholar]
  • 59. Burt R.K., Burns W.H., Marmont A.M., Induction of tolerance in autoimmune diseases by hematopoietic stem cell transplantation: getting closer to a cure?, Blood, 99: 768–784, 2002. [DOI] [PubMed] [Google Scholar]
  • 60. Tyndall A., Gratwohl A., Haemopoietic stem and progenitor cells in the treatment of severe autoimmune diseases, Ann. Rheum. Dis., 55: 149–151, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Lee M.S., Makkar R.R., Stem‐cell transplantation in myocardial infarction: a status report, Ann. Intern. Med., 140: 729–737, 2004. [DOI] [PubMed] [Google Scholar]
  • 62. Körbling M., Estrov Z., Adult stem cells for tissue repair ‐ a new therapeutic concept?, N. Engl. J. Med., 349: 570–582, 2003. [DOI] [PubMed] [Google Scholar]
  • 63. Filip S., English D., Mokrý J., Issues in stem cell plasticity, J. Cell. Mol. Med., 8: 572–577, 2004. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES