Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(3):287–296. doi: 10.1111/j.1582-4934.2003.tb00229.x

Correlation between the predicted and the observed biological activity of the symmetric and nonsymmetric cyclic urea derivatives used as HIV‐1 protease inhibitors. A 3D‐QSAR‐CoMFA method for new antiviral drug design

Speranta Avram 1,, I Svab 2, C Bologa 3, Maria‐Luiza Flonta 1
PMCID: PMC6741422  PMID: 14594553

Abstract

The predicted inhibition constant (Ki) and the predicted inhibitor concentration (IC90) of the HIV‐1 protease (HIV‐1 PR) inhibitors: symmetric and nonsymmetric ‐ benzyl, ketone, oxime, pyrazole, imidazole, and triazole cyclic urea derivatives, were obtained by the 3D‐CoMFA (Comparative Molecular Field Analysis) method. The CoMFA statistical parameters: cross‐validate correlation coefficient (q2), higher than 0.5, and the fitted correlation coefficient (r2), higher than 0.90 validated the predicted biological activities. The best predictions were found for the trifluoromethyl ketoxime derivative (log 1/Ki predict = 8.42), the m‐pyridineCH2 pyrazole derivative (log 1/Ki predict = 9.77) and the 1,2,3 triazole derivative (log 1/Ki predict = 7.03). We attempted to design a new potent HIV‐1 protease inhibitor by addition of o‐benzyl to the (p‐HOPhCH2) pyrazole 12f derivative inhibitor. A favorable steric area surrounded the o‐benzyl, suggesting a possible new potent HIV‐1 protease inhibitor.

Keywords: 3D‐QSAR‐CoMFA, the predicted biological activity, cyclic urea derivatives, HIV‐1 protease inhibitors

References

  • 1. Lappato R., Blundell T., Hemmings A., Overington J., Wilderspin A., X‐ray analysis of HIV‐1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes, Nature, 324: 299, 1989. [DOI] [PubMed] [Google Scholar]
  • 2. Navia M.A., Fitzgerald P.M., McKeever B.M., Leu C.T., Heimbach J.C., Three‐dimensional structure of aspartyl protease from Human Immunodeficiency Virus HIV‐1, Nature, 337: 615, 1989. [DOI] [PubMed] [Google Scholar]
  • 3. Woldawer A., Miller M., Jaskolski M., Sathyanarayana B.K., Baldwin E., Conversed folding in retroviral protease: crystal structure of a synthetic HIV‐1 protease, Science, 245: 611, 1989. [DOI] [PubMed] [Google Scholar]
  • 4. Wlodawer A., Vondrasek J., Inhibitors of HIV1 protease: a major success of structure‐assisted drug design, Annu. Rev. Biophys. Struct., 27: 249, 1998. [DOI] [PubMed] [Google Scholar]
  • 5. Piana S., Carloni P., Conformational flexibility of the catalytic Asp dyad in HIV‐1 protease: an ab initio study on the free enzyme, Proteins: Struct. Funct. and Genet., 39: 26, 2000. [DOI] [PubMed] [Google Scholar]
  • 6. Chatfiel D.C., Eurenius K. P., Brooks R.R., HIV‐1 protease cleavage mechanism: a theoretical investigation based on classical MD simulation and reaction patch calculations using a hybrid QM/MM potential, Theochem. J. Mol. Struct., 423: 79, 1998. [Google Scholar]
  • 7. Sansom C.E., Wu J., Weber I.T., Molecular mechanism analysis of inhibitor binding to HIV1 protease, Protein. Eng., 5: 659, 2000. [DOI] [PubMed] [Google Scholar]
  • 8. Avram S., Movileanu L., Mihailescu D., Flonta M.L., Comparative study of some energetic and steric parameters of the wild type and mutants HIV‐1 protease: a way to explain the viral resistance, J. Cell. Mol. Med., 6: 251, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Svab I., Avram S., Flonta M.L., A flexible ligand docking study of the HIV‐1 protease ‐ DMP323 complex, Romanian J. Biphys., 11: 119, 2001. [Google Scholar]
  • 10. Klebe G., Recent developments in structure‐based drug design, J. Mol. Med., 78: 269, 2000. [DOI] [PubMed] [Google Scholar]
  • 11. Sheha M.M., Mahfouz N.M., Hassan H.Y., Youssef A.F., Mimoto T., Kiso Y., Synthesis of di‐ and tripeptide analogues containing alpha‐ketoamide as a new core structure for inhibition of HIV‐1 protease, Eur. J. Med. Chem., 35: 887, 2000. [DOI] [PubMed] [Google Scholar]
  • 12. Di Santo R., Costi R., Artico M., Massa S., Ragno R., Marshall G.R., La Colla P., Design, synthesis and QSAR studies on N‐aryl heteroarylisopropanolamines, a new class of non‐pepttidic HIV‐1 protease inhibitors, Bioorg. Med. Chem., 10: 2511, 2002. [DOI] [PubMed] [Google Scholar]
  • 13. Oprea T.I., Waller L.C., Theoretical and practical aspects of three‐dimensional qualitative structure‐activity relationschips, J. Comp. Chem., 11: 127, 1997. [Google Scholar]
  • 14. Gupta S.P., Babu M.S., Kaw N., Quantitative structure‐active relationship of some HIV‐protease inhibtors, J. Enz. Inhib., 14: 109, 1999. [DOI] [PubMed] [Google Scholar]
  • 15. Waller L.C., Oprea T.I., Giolitti A., Marshall R.G., Three‐dimsional QSAR of Human Immunodeficiency Virus (I) protease inbitors. 1.a CoMFA study employing experimentally ‐ determined alignment rules, J. Med. Chem., 36: 4152, 1993. [DOI] [PubMed] [Google Scholar]
  • 16. Schaal W., Karlsson A., Ahlsen G., Lindberg J., Andersson H.O., Danielson U.H., Classon B., Unge T., Samuelsson B., Hulten J., Hallberg A., Karlen A., Synthesis and comparative molecular field analysis (CoMFA) of symmetric and nonsymmetric cyclic sulfamide HIV‐1 protease inhibitors, J. Med. Chem., 44: 155, 2001. [DOI] [PubMed] [Google Scholar]
  • 17. Buolamwini J.K., Assefa H., CoMFA and CoMSIA 3D QSAR and docking studies on conformationally‐restrained cinnamoyl HIV‐1 integrase inhibitors: exploratin of a binding mode at the active site. J. Med. Chem., 45: 841, 2002. [DOI] [PubMed] [Google Scholar]
  • 18. Nair A.C., Jayatilleke P., Wang X., Miertus S., Welsh W., Computational studies on tetrahydropyrimidine‐2‐one HIV‐1 protease inhibitors: improving three dimensional quantative structure‐activity relationship comparative molecular field analysis models by inclusions of calculated inhibitor‐ and receptor‐based properties, J. Med. Chem., 45: 973, 2002. [DOI] [PubMed] [Google Scholar]
  • 19. Huang X., Xu L., Luo X., Fan K., Ji R., Pei G., Chen K., Jiang H., Elucidating the inhibiting mode on AHPBA derivatives against HIV‐1 protease and building predictive 3D‐QSAR models, J. Med. Chem., 45: 333, 2002. [DOI] [PubMed] [Google Scholar]
  • 20. Avram S., Bologa C., Banda M., Flonta M.L., A quantitative structure‐activity relationship study used to predict the biological activity of the HIV‐1 protease cyclic urea inhibitors, Rom. J. Biophys., 11: 11, 2001. [Google Scholar]
  • 21. Nakagawa Y., Wheelock C.E., Morisseau C., Goodrow M.H., Hammock B.G., Hammock B.D., 3‐D QSAR analysis of ibhibition of murine soluble epoxide hydrolase (MsEH) by benzoylureas, arylureas, and their analogues, Bioorg. Med. Chem., 8: 2663, 2000. [DOI] [PubMed] [Google Scholar]
  • 22. Debnath K., A comparative molecular field analysis (CoMFA) of series of symmetrical bis‐benzamide cyclic urea derivatives a HIV1 protease inhibitors, J. Chem. Inf. Comp. Science, 38: 761, 1998. [DOI] [PubMed] [Google Scholar]
  • 23. Tong W.Q., Lach J.L., Chin T.F., Guillory J.K., Structural effects on the binding of amine drugs with the diphenylmethyl functionality to cyclodextrins. II. A molecular modeling study, Pharm. Res., 8: 1307, 1991. [DOI] [PubMed] [Google Scholar]
  • 24. Jadkav K., Woerner F., Lam P., Hodge C.N., Eyermnn C., Chong‐Hwan C., Nonpeptide cyclic cyanoquanidine as HIV1 protease inhibitors synthesis structure‐activity relationship and X‐ray crystal structure studies, J. Med. Chem., 4: 1446, 1998. [DOI] [PubMed] [Google Scholar]
  • 25. Qi H., Chong‐Hwan C., Renhua L., Yu Ru P., Jadhav K., Patrick Y.S.L., Cyclic HIV protease inhibitors:design and synthesis of orally biovailable pyraxole P2/P2′ cyclic ureas with improved potency, J. Med. Chem., 41: 2019, 1998. [DOI] [PubMed] [Google Scholar]
  • 26. SYBYL Tutorial Manual (Version 6.4) availabe from Tripos Associates Inc., 1699 South Hanley Road , St. Louis , MO 63144 , 1988. [Google Scholar]
  • 27. Lam P.Y., Ru Y., Jadhav P.K., Aldrich P.E., DeLucca G.V., Eyermann C.J., Chang C.H. Emmett G., Holler E.R., Daneker W.F., Li. L. , Confalone P.N., McHugh R.J., Han Q., Li R., Markwalder J.A., Seitz S.P., Sharpe T.R., Bacheler L.T., Rayner M.M., KLabe R.M., Shum L., Winslow D.L., Kornhauser D.M., Hodge C.N., Cyclic HIV protease inhibitors: synthesis, conformational analysis, P2/P2′ structure‐activity relationship, and molecular recognition of cyclic ureas, J. Med. Chem., 30: 3541, 1996. [DOI] [PubMed] [Google Scholar]
  • 28. Wang L., Duan Y., Stouten P., De Lucca G. V., Klabe R.M., Kollman P.A., Does a diol cyclic urea inhibitor of HIV‐1 protease bind tighter than its corresponding alcohol form? A study by the free energy perturbation and continuum electrostatics calcul;ations, J. Comput. Aided. Mol. Des., 15: 145, 2001. [DOI] [PubMed] [Google Scholar]
  • 29. Ishima R., Ghirlando R., Tözsér J., Gronenborn A.M., Torchia D.A., Louis J.M., Folded monomer of HIV‐1 protease. J. Biol. Chem., 276: 49110, 2001. [DOI] [PubMed] [Google Scholar]
  • 30. Biobouvier J., Bax A., Long‐Range Magnetization Transfer between Uncoupled Nuclei by Dipole‐Dipole Cross‐Correlated Relaxation: A Precise Probe of beta‐Sheet Geometry in Proteins, J. Am. Chem. Soc., 124: 11038, 2002. [DOI] [PubMed] [Google Scholar]
  • 31. SYBYL Molecular Spreadsheet Manual (Version 6.4) available from Tripos Associates Inc., 1699 South Hanley Road , St. Louis , MO 63144 , 1988. [Google Scholar]
  • 32. SYBYL Force Field Manual (Version 6.4) available from Tripos Associates Inc., 1699 South Hanley Road , St. Louis , MO 63144 , 1988. [Google Scholar]
  • 33. SYBYL Theory Manual (Version 6.4) available from Tripos Associates Inc., 1699 South Hanley Road , St. Louis , MO 63144 , 1988. [Google Scholar]
  • 34. SYBYL Basic Ligand‐Based Design Manual (Version 6.4) available from Tripos Associates Inc., 1699 South Hanley Road , St. Louis , MO 63144 , 1988. [Google Scholar]
  • 35. Cho J.S., Tropsha A., Cross‐validated r2‐guided region selection for comparative molecular field analysis: a simple method to achieve consistent results, J. Med. Chem., 38: 1060, 1995. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES