Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(3):609–622. doi: 10.1111/j.1582-4934.2005.tb00492.x

Don't lose heart ‐ therapeutic value of apoptosis prevention in the treatment of cardiovascular disease

Janice L V Reeve 1, Angela M Duffy 2, Timothy O'Brien 2,3, Afshin Samali 1,2,4,
PMCID: PMC6741425  PMID: 16202209

Abstract

Cardiovascular disease is a leading cause of death worldwide. Loss of function or death of cardiomyocytes is a major contributing factor to these diseases. Cell death in conditions such as heart failure and myocardial infarction is associated with apoptosis. Apoptotic pathways have been well studied in non‐myocytes and it is thought that similar pathways exist in cardiomyocytes. These pathways include death initiated by ligation of membrane‐bound death receptors, release of pro‐apoptotic factors from mitochondria or stress at the endoplasmic reticulum. The key regulators of apoptosis include inhibitors of caspases (IAPs), the Bc1‐2 family of proteins, growth factors, stress proteins, calcium and oxidants. The highly organized and predictive nature of apoptotic signaling means it is amenable to manipulation. A thorough understanding of the apoptotic process would facilitate intervention at the most suitable points, alleviating myocardium decline and dysfunction. This review summarizes the mechanisms underlying apoptosis and the mediators/regulators involved in these signaling pathways. We also discuss how the potential therapeutic value of these molecules could be harnessed.

Keywords: cardiovascular disease, apoptosis, ischemia/reperfusion (I/R), mitochondria, anti‐apoptosis, therapy

References

  • 1. Lockshin RA, Zakeri Z. Caspase‐independent cell deaths. Curr Opin Cell Biol. 2002; 14: 727–33. [DOI] [PubMed] [Google Scholar]
  • 2. Samali A, Zhivotovsky B, Jones D, Nagata S, Orrenius S. Apoptosis: cell death defined by caspase activation. Cell Death Differ. 1999; 6: 495–6. [DOI] [PubMed] [Google Scholar]
  • 3. Fisher SA, Langille BL, Srivastava D. Apoptosis during cardiovascular development. Circ Res. 2000; 87: 856–64. [DOI] [PubMed] [Google Scholar]
  • 4. James TN. Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation 1994; 90: 556–73. [PubMed] [Google Scholar]
  • 5. Gill C, Mestril R, Samali A. Losing heart: the role of apoptosis in heart disease ‐ a novel therapeutic target Faseb J. 2002; 16: 135–46. [DOI] [PubMed] [Google Scholar]
  • 6. Gustafsson AB, Gottlieb RA. Mechanisms of apoptosis in the heart. J Clin Immunol. 2003; 23: 447–59. [DOI] [PubMed] [Google Scholar]
  • 7. Logue SE, Gustafsson AB, Samali A, Gottlieb RA. Ischemia/reperfusion injury at the intersection with cell death. J Mol Cell Cardiol. 2005; 38: 21–33. [DOI] [PubMed] [Google Scholar]
  • 8. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996; 79: 949–56. [DOI] [PubMed] [Google Scholar]
  • 9. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994; 94: 1621–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. Expression of Bc1‐2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction, Circulation 1996; 94: 1506–12. [DOI] [PubMed] [Google Scholar]
  • 11. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end‐stage heart failure. N Engl J Med. 1996; 335: 1182–9. [DOI] [PubMed] [Google Scholar]
  • 12. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med. 1997; 336: 1131–41. [DOI] [PubMed] [Google Scholar]
  • 13. Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol. 1996; 28: 2005–16. [DOI] [PubMed] [Google Scholar]
  • 14. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio‐Pulkki LM. Apoptosis in human acute myocardial infarction. Circulation 1997; 95: 320–3. [DOI] [PubMed] [Google Scholar]
  • 15. Alnemri ES. Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J Cell Biochem. 1997; 64: 33–42. [DOI] [PubMed] [Google Scholar]
  • 16. Irwin MW, Mak S, Mann DL, Qu R, Penninger JM, Yan A, Dawood F, Wen WH, Shou Z, Liu P. Tissue expression and immunolocalization of tumor necrosis factor‐α in postinfarction dysfunctional myocardium. Circulation 1999; 99: 1492–8. [DOI] [PubMed] [Google Scholar]
  • 17. Jeremias I, Kupatt C, Martin‐Villalba A, Habazettl H, Schenkel J, Boekstegers P, Debatin KM. Involvement of CD95/Apol/Fas in cell death after myocardial ischemia. Circulation 2000; 102: 915–20. [DOI] [PubMed] [Google Scholar]
  • 18. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia‐reperfusion in vivo . Am J Physiol Heart Circ Physiol. 2003; 284: H456–63. [DOI] [PubMed] [Google Scholar]
  • 19. Maury CP, Teppo AM. Circulating tumour necrosis factor‐α (cachectin) in myocardial infarction. J Intern Med. 1989; 225: 333–6. [DOI] [PubMed] [Google Scholar]
  • 20. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol. 1998; 274: R577–95. [DOI] [PubMed] [Google Scholar]
  • 21. Parissis JT, Adamopoulos S, Rigas A, Kostakis G, Karatzas D, Venetsanou K, Kremastinos DT. Comparison of circulating proinflammatory cytokines and soluble apoptosis mediators in patients with chronic heart failure with versus without symptoms of depression. Am J Cardiol. 2004; 94: 1326–8. [DOI] [PubMed] [Google Scholar]
  • 22. Toyozaki T, Hiroe M, Tanaka M, Nagata S, Ohwada H, Marumo F. Levels of soluble Fas ligand in myocarditis. Am J Cardiol. 1998; 82: 246–8. [DOI] [PubMed] [Google Scholar]
  • 23. Yamamura T, Nakamura H, Yamamoto T, Umemoto S, Fujii T, Kobayashi N, Matsuzaki M. Fas expression and apoptosis correlate with cardiac dysfunction in patients with dilated cardiomyopathy. Jpn Circ J. 1999; 63: 149–54. [DOI] [PubMed] [Google Scholar]
  • 24. Binah O. Pharmacologic modulation of the immune interaction between cytotoxic lymphocytes and ventricular myocytes. J Cardiovasc Pharmacol. 2001; 38: 298–316. [DOI] [PubMed] [Google Scholar]
  • 25. Date T, Mochizuki S, Belanger AJ, Yamakawa M, Luo Z, Vincent KA, Cheng SH, Gregory RJ, Jiang C. Differential effects of membrane and soluble Fas ligand on cardiomyocytes: role in ischemia/reperfusion injury. J Mol Cell Cardiol. 2003; 35: 811–21. [DOI] [PubMed] [Google Scholar]
  • 26. Hill MM, Adrain C, Martin SJ. Portrait of a killer: the mitochondrial apoptosome emerges from the shadows. Mol Interv. 2003; 3: 19–26. [DOI] [PubMed] [Google Scholar]
  • 27. Czerski L, Nunez G. Apoptosome formation and caspase activation: is it different in the heart J Mol Cell Cardiol. 2004; 37: 643–52. [DOI] [PubMed] [Google Scholar]
  • 28. Bialik S, Cryns VL, Drincic A, Miyata S, Wollowick AL, Srinivasan A, Kitsis RN. The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res. 1999; 85: 403–14. [DOI] [PubMed] [Google Scholar]
  • 29. de Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum LA. Caspase activation and mitochondrial cytochrome c release during hypoxia‐mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol. 2000; 32: 53–63. [DOI] [PubMed] [Google Scholar]
  • 30. Lundberg KC, Szweda LI. Initiation of mitochondrial‐mediated apoptosis during cardiac reperfusion. Arch Biochem Biophys. 2004; 432: 50–7. [DOI] [PubMed] [Google Scholar]
  • 31. Sanchis D, Mayorga M, Ballester M, Comella JX. Lack of Apaf‐1 expression confers resistance to cytochrome c‐driven apoptosis in cardiomyocytes. Cell Death Differ. 2003; 10: 977–86. [DOI] [PubMed] [Google Scholar]
  • 32. Momoi T. Caspases involved in ER stress‐mediated cell death. J Chem Neuroanat. 2004; 28: 101–5. [DOI] [PubMed] [Google Scholar]
  • 33. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M. Involvement of caspase‐4 in endoplasmic reticulum stress‐induced apoptosis and Abeta‐induced cell death. J Cell Biol. 2004; 165: 347–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, Yutani C, Ozawa K, Ogawa S, Tomoike H, Hori M, Kitakaze M. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 2004; 110: 705–12. [DOI] [PubMed] [Google Scholar]
  • 35. Jang YM, Kendaiah S, Drew B, Phillips T, Selman C, Julian D, Leeuwenburgh C. Doxorubicin treatment in vivo activates caspase‐12 mediated cardiac apoptosis in both male and female rats. FEBS Lett. 2004; 577: 483–90. [DOI] [PubMed] [Google Scholar]
  • 36. Nakagawa T, Yuan J. Cross‐talk between two cysteine protease families. Activation of caspase‐12 by calpain in apoptosis. J Cell Biol. 2000; 150: 887–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Duchen MR. Mitochondria and Ca2+ in cell physiology and pathophysiology. Cell Calcium 2000; 28: 339–48. [DOI] [PubMed] [Google Scholar]
  • 38. McFalls EO, Liem D, Schoonderwoerd K, Lamers J, Sluiter W, Duncker D. Mitochondrial function: the heart of myocardial preservation. J Lab Clin Med. 2003; 142: 141–8. [DOI] [PubMed] [Google Scholar]
  • 39. Ferri KF, Kroemer G. Organelle‐specific initiation of cell death pathways. Nat Cell Biol. 2001; 3: E255–63. [DOI] [PubMed] [Google Scholar]
  • 40. Halestrap AP, Brennerb C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem. 2003; 10: 1507–25. [DOI] [PubMed] [Google Scholar]
  • 41. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion ‐ a target for cardioprotection. Cardiovasc Res. 2004; 61: 372–85. [DOI] [PubMed] [Google Scholar]
  • 42. Halestrap AP. The mitochondrial permeability transition pore in reperfusion injury and cardioprotection. Cardiovasc J S Afr. 2004; 15: S5. [DOI] [PubMed] [Google Scholar]
  • 43. Minners J, van den Bos EJ, Yellon DM, Schwalb H, Opie LH, Sack MN. Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: support for a mitochondrial role in cardioprotection. Cardiovasc Res. 2000; 47: 68–73. [DOI] [PubMed] [Google Scholar]
  • 44. Yue TL, Wang C, Romanic AM, Kikly K, Keller P, DeWolf WE Jr, Hart TK, Thomas HC, Storer B, Gu JL, Wang X, Feuerstein GZ. Staurosporine‐induced apoptosis in cardiomyocytes: A potential role of caspase‐3. J Mol Cell Cardiol. 1998; 30: 495–507. [DOI] [PubMed] [Google Scholar]
  • 45. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res. 1994; 75: 426–33. [DOI] [PubMed] [Google Scholar]
  • 46. Stephanou A, Brar B, Liao Z, Scarabelli T, Knight RA, Latchman DS. Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury. Cell Death Differ. 2001; 8: 434–5. [DOI] [PubMed] [Google Scholar]
  • 47. Scarabelli TM, Stephanou A, Pasini E, Comini L, Raddino R, Knight RA, Latchman DS. Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res. 2002; 90: 745–8. [DOI] [PubMed] [Google Scholar]
  • 48. Moretti A, Weig HJ, Ott T, Seyfarth M, Holthoff HP, Grewe D, Gillitzer A, Bott‐Flugel L, Schomig A, Ungerer M, Laugwitz KL. Essential myosin light chain as a target for caspase‐3 in failing myocardium. Proc Natl Acad Sci USA. 2002; 99: 11860–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA. 2002; 99: 6252–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Kubota T, Miyagishima M, Frye CS, Alber SM, Bounoutas GS, Kadokami T, Watkins SC, McTiernan CF, Feldman AM. Overexpression of tumor necrosis factor‐α activates both anti‐ and pro‐apoptotic pathways in the myocardium, J Mol Cell Cardiol. 2001; 33: 1331–44. [DOI] [PubMed] [Google Scholar]
  • 51. Imanishi T, Murry CE, Reinecke H, Hano T, Nishio I, Liles WC, Hofsta L, Kim K, O'Brien KD, Schwartz SM, Han DK. Cellular FLIP is expressed in cardiomyocytes and down‐regulated in TUNEL‐positive grafted cardiac tissues. Cardiovasc Res. 2000; 48: 101–10. [DOI] [PubMed] [Google Scholar]
  • 52. Yaniv G, Shilkrut M, Lotan R, Berke G, Larisch S, Binah O. Hypoxia predisposes neonatal rat ventricular myocytes to apoptosis induced by activation of the Fas (CD95/Apo‐1) receptor: Fas activation and apoptosis in hypoxic myocytes. Cardiovasc Res. 2002; 54: 611–23. [DOI] [PubMed] [Google Scholar]
  • 53. Nitobe J, Yamaguchi S, Okuyama M, Nozaki N, Sata M, Miyamoto T, Takeishi Y, Kubota I, Tomoike H. Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas‐mediated apoptosis in cardiac myocytes. Cardiovasc Res. 2003; 57: 119–28. [DOI] [PubMed] [Google Scholar]
  • 54. Yamaoka M, Yamaguchi S, Suzuki T, Okuyama M, Nitobe J, Nakamura N, Mitsui Y, Tomoike H. Apoptosis in rat cardiac myocytes induced by Fas ligand: priming for Fas‐mediated apoptosis with doxorubicin. J Mol Cell Cardiol. 2000; 32: 881–9. [DOI] [PubMed] [Google Scholar]
  • 55. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X‐linked IAP is a direct inhibitor of cell‐death proteases. Nature 1997; 388: 300–4. [DOI] [PubMed] [Google Scholar]
  • 56. LeBlanc AC. Natural cellular inhibitors of caspases. Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27: 215–29. [DOI] [PubMed] [Google Scholar]
  • 57. Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, Salvesen GS. XIAP inhibits caspase‐3 and ‐7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. 2005; 24: 645–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Sun C, Nettesheim D, Liu Z, Olejniczak ET. Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry 2005; 44: 11–7. [DOI] [PubMed] [Google Scholar]
  • 59. Adams JM, Cory S. The Bc1‐2 protein family: arbiters of cell survival. Science 1998; 281: 1322–6. [DOI] [PubMed] [Google Scholar]
  • 60. Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post‐translational control of the pro‐apoptotic activity of BH3‐only proteins. Cell Death Differ. 2002; 9: 505–12. [DOI] [PubMed] [Google Scholar]
  • 61. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ. BCL‐2, BCL‐X(L) sequester BH3 domain‐only molecules preventing BAX‐ and BAK‐ mediated mitochondrial apoptosis. Mol Cell 2001; 8: 705–11. [DOI] [PubMed] [Google Scholar]
  • 62. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001; 292: 727–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC, Kroemer G. Bc1‐2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 2000; 19: 329–36. [DOI] [PubMed] [Google Scholar]
  • 64. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998; 281: 2027–31. [DOI] [PubMed] [Google Scholar]
  • 65. Shimizu S, Narita M, Tsujimoto Y. Bc1‐2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483–7. [DOI] [PubMed] [Google Scholar]
  • 66. Neuss M, Monticone R, Lundberg MS, Chesley AT, Fleck E, Crow MT. The apoptotic regulatory protein ARC (apoptosis repressor with caspase recruitment domain) prevents oxidant stress‐mediated cell death by preserving mitochondrial function. J Biol Chem. 2001; 276: 33915–22. [DOI] [PubMed] [Google Scholar]
  • 67. Koseki T, Inohara N, Chen S, Nunez G. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA. 1998; 95: 5156–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC 3rd, Nunez G. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia‐induced apoptosis in heart‐derived H9c2 cells. Circ Res. 1999; 85: e70–7. [DOI] [PubMed] [Google Scholar]
  • 69. Gustafsson AB, Sayen MR, Williams SD, Crow MT, Gottlieb RA. TAT protein transduction into isolated perfused hearts: TAT‐apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation 2002; 106: 735–9. [DOI] [PubMed] [Google Scholar]
  • 70. Sabbah HN. Biologic rationale for the use of β‐blockers in the treatment of heart failure. Heart Fail Rev. 2004; 9: 91–7. [DOI] [PubMed] [Google Scholar]
  • 71. Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion, J Biol Chem. 2001; 276: 30724–8. [DOI] [PubMed] [Google Scholar]
  • 72. Molkentin JD. Calcineurin, mitochondrial membrane potential, and cardiomyocyte apoptosis. Circ Res. 2001; 88: 1220–2. [DOI] [PubMed] [Google Scholar]
  • 73. Nitahara JA, Cheng W, Liu Y, Li B, Leri A, Li P, Mogul D, Gambert SR, Kajstura J, Anversa P. Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J Mol Cell Cardiol. 1998; 30: 519–35. [DOI] [PubMed] [Google Scholar]
  • 74. Communal C, Singh K, Sawyer DB, Colucci WS. Opposing effects of β(1)‐ and β(2)‐adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin‐sensitive G protein. Circulation 1999; 100: 2210–2. [DOI] [PubMed] [Google Scholar]
  • 75. Gao F, Gong B, Christopher TA, Lopez BL, Karasawa A, Ma XL. Anti‐apoptotic effect of benidipine, a longlasting vasodilating calcium antagonist, in ischaemic/reperfused myocardial cells. Br J Pharmacol. 2001; 132: 869–78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Liu HR, Gao F, Tao L, Yan WL, Gao E, Christopher TA, Lopez BL, Hu A, Ma XL. Antiapoptotic mechanisms of benidipine in the ischemic/reperfused heart. Br J Pharmacol. 2004; 142: 627–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Zhu L, Ling S, Yu XD, Venkatesh LK, Subramanian T, Chinnadurai G, Kuo TH. Modulation of mitochondrial Ca2+ homeostasis by Bc1‐2. J Biol Chem. 1999; 274: 33267–73. [DOI] [PubMed] [Google Scholar]
  • 78. Shimizu S, Konishi A, Kodama T, Tsujimoto Y. BH4 domain of antiapoptotic Bc1‐2 family members closes voltage‐dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci USA. 2000; 97: 3100–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Brocheriou V, Hagege AA, Oubenaissa A, Lambert M, Mallet VO, Duriez M, Wassef M, Kahn A, Menasche P, Gilgenkrantz H. Cardiac functional improvement by a human Bc1‐2 transgene in a mouse model of ischemia/reperfusion injury. J Gene Med. 2000; 2: 326–33. [DOI] [PubMed] [Google Scholar]
  • 80. Chatterjee S, Stewart AS, Bish LT, Jayasankar V, Kim EM, Pirolli T, Burdick J, Woo YJ, Gardner TJ, Sweeney HL. Viral gene transfer of the antiapoptotic factor Bc1‐2 protects against chronic postischemic heart failure. Circulation 2002; 106: 1212–7. [PubMed] [Google Scholar]
  • 81. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH. Overexpression of Bc1‐2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol. 2001; 280: H2313–20. [DOI] [PubMed] [Google Scholar]
  • 82. de Moissac D, Mustapha S, Greenberg AH, Kirshenbaum LA. Bc1‐2 activates the transcription factor NFkBα through the degradation of the cytoplasmic inhibitor IkBα. J Biol Chem. 1998; 273: 23946–51. [DOI] [PubMed] [Google Scholar]
  • 83. Boucher F, Tanguy S, Besse S, Tresallet N, Favier A, de Leiris J. Age‐dependent changes in myocardial susceptibility to zero flow ischemia and reperfusion in isolated perfused rat hearts: relation to antioxidant status. Mech Ageing Dev. 1998; 103: 301–16. [DOI] [PubMed] [Google Scholar]
  • 84. Maulik N, Yoshida T, Das DK. Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radic Biol Med. 1998; 24: 869–75. [DOI] [PubMed] [Google Scholar]
  • 85. Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology 2000; 7: 153–63. [DOI] [PubMed] [Google Scholar]
  • 86. Han H, Long H, Wang H, Wang J, Zhang Y, Wang Z. Progressive apoptotic cell death triggered by transient oxidative insult in H9c2 rat ventricular cells: a novel pattern of apoptosis and the mechanisms. Am J Physiol Heart Circ Physiol. 2004; 286: H2169–82. [DOI] [PubMed] [Google Scholar]
  • 87. Machida Y, Kubota T, Kawamura N, Funakoshi H, Ide T, Utsumi H, Li YY, Feldman AM, Tsutsui H, Shimokawa H, Takeshita A. Overexpression of tumor necrosis factor‐α increases production of hydroxyl radical in murine myocardium. Am J Physiol Heart Circ Physiol. 2003; 284: H449–55. [DOI] [PubMed] [Google Scholar]
  • 88. Vanden Hoek TL, Qin Y, Wojcik K, Li CQ, Shao ZH, Anderson T, Becker LB, Hamann KJ. Reperfusion, not simulated ischemia, initiates intrinsic apoptosis injury in chick cardiomyocytes. Am J Physiol Heart Circ Physiol. 2003; 284: H141–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Oskarsson HJ, Coppey L, Weiss RM, Li WG. Antioxidants attenuate myocyte apoptosis in the remote non‐infarcted myocardium following large myocardial infarction. Cardiovasc Res. 2000; 45: 679–87. [DOI] [PubMed] [Google Scholar]
  • 90. Maulik N, Yoshida T, Das DK. Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem. 1999; 196: 13–21. [DOI] [PubMed] [Google Scholar]
  • 91. Chen Z, Siu B, Ho YS, Vincent R, Chua CC, Hamdy RC, Chua BH. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol. 1998; 30: 2281–9. [DOI] [PubMed] [Google Scholar]
  • 92. Jones SP, Hoffmeyer MR, Sharp BR, Ho YS, Lefer DJ. Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2003; 284: H277–82. [DOI] [PubMed] [Google Scholar]
  • 93. Sethi R, Takeda N, Nagano M, Dhalla NS. Beneficial effects of vitamin E treatment in acute myocardial infarction. J Cardiovasc Pharmacol Ther. 2000; 5: 51–8. [DOI] [PubMed] [Google Scholar]
  • 94. Manson JE, Bassuk SS, Stampfer MJ. Does vitamin E supplementation prevent cardiovascular events J Womens Health (Larchmt) 2003; 12: 123–36. [DOI] [PubMed] [Google Scholar]
  • 95. Gao F, Yao CL, Gao E, Mo QZ, Yan WL, McLaughlin R, Lopez BL, Christopher TA, Ma XL. Enhancement of glutathione cardioprotection by ascorbic acid in myocardial reperfusion injury. J Pharmacol Exp Ther. 2002; 301: 543–50. [DOI] [PubMed] [Google Scholar]
  • 96. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I. Long‐term caspase inhibition ameliorates apoptosis, reduces myocardial troponin‐I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol. 2004; 43: 295–301. [DOI] [PubMed] [Google Scholar]
  • 97. Yarbrough WM, Mukherjee R, Escobar GP, Sample JA, McLean JE, Dowdy KB, Hendrick JW, Gibson WC, Hardin AE, Mingoia JT, White PC, Stiko A, Armstrong RC, Crawford FA, Spinale FG. Pharmacologic inhibition of intracellular caspases after myocardial infarction attenuates left ventricular remodeling: a potentially novel pathway. J Thorac Cardiovasc Surg. 2003; 126: 1892–9. [DOI] [PubMed] [Google Scholar]
  • 98. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998; 97: 276–81. [DOI] [PubMed] [Google Scholar]
  • 99. Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ, Cryns VL. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo . J Mol Cell Cardiol. 1999; 31: 1709–15. [DOI] [PubMed] [Google Scholar]
  • 100. Okamura T, Miura T, Takemura G, Fujiwara H, Iwamoto H, Kawamura S, Kimura M, Ikeda Y, Iwatate M, Matsuzaki M. Effect of caspase inhibitors on myocardial infarct size and myocyte DNA fragmentation in the ischemia‐reperfused rat heart. Cardiovasc Res. 2000; 45: 642–50. [DOI] [PubMed] [Google Scholar]
  • 101. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone‐mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004; 5: 781–91. [DOI] [PubMed] [Google Scholar]
  • 102. Heads RJ, Latchman DS, Yellon DM. Stable high level expression of a transfected human HSP70 gene protects a heart‐derived muscle cell line against thermal stress. J Mol Cell Cardiol. 1994; 26: 695–9. [DOI] [PubMed] [Google Scholar]
  • 103. Jayakumar J, Suzuki K, Sammut IA, Smolenski RT, Khan M, Latif N, Abunasra H, Murtuza B, Amrani M, Yacoub MH. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia‐reperfusion injury. Ciruculation 2001; 104: I303–7. [DOI] [PubMed] [Google Scholar]
  • 104. Kamradt MC, Chen F, Cryns VL. The small heat shock protein α B‐crystallin negatively regulates cytochrome c‐and caspase‐8‐dependent activation of caspase‐3 by inhibiting its autoproteolytic maturation. J Biol Chem. 2001; 276: 16059–63. [DOI] [PubMed] [Google Scholar]
  • 105. Mestril R, Chi SH, Sayen MR, O'Reilly K, Dillmann WH. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia‐induced injury. J Clin Invest. 1994; 93: 759–67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Suzuki K, Sawa Y, Kagisaki K, Taketani S, Ichikawa H, Kaneda Y, Matsuda H. Reduction in myocardial apoptosis associated with overexpression of heat shock protein 70. Basic Res Cardiol. 2000; 95: 397–403. [DOI] [PubMed] [Google Scholar]
  • 107. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz‐Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C. Hsp27 negatively regulates cell death by interacting with cytochrome c . Nat Cell Biol. 2000; 2: 645–52. [DOI] [PubMed] [Google Scholar]
  • 108. Steel R, Doherty JP, Buzzard K, Clemons N, Hawkins CJ, Anderson RL. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf‐1. J Biol Chem. 2004; 279: 51490–9. [DOI] [PubMed] [Google Scholar]
  • 109. Kirchhoff SR, Gupta S, Knowlton AA. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 2002; 105: 2899–904. [DOI] [PubMed] [Google Scholar]
  • 110. Knowlton AA, Gupta S. HSP60, Bax, and cardiac apoptosis. Cardiovasc Toxicol. 2003; 3: 263–8. [DOI] [PubMed] [Google Scholar]
  • 111. Gupta S, Knowlton AA. HSP60, Bax, apoptosis and the heart. J Cell Mol Med. 2005; 9: 51–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf‐1 apoptosome by Hsp 70. Nat Cell Biol. 2000; 2: 476–83. [DOI] [PubMed] [Google Scholar]
  • 113. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR. Heat‐shock protein 70 inhibits apoptosis by preventing recruitment of procaspase‐9 to the Apaf‐1 apoptosome. Nat Cell Biol. 2000; 2: 469–75. [DOI] [PubMed] [Google Scholar]
  • 114. Clemens MJ. Translational control in virus‐infected cells: models for cellular stress responses. Semin Cell Dev Biol. 2005; 16: 13–20. [DOI] [PubMed] [Google Scholar]
  • 115. Komarova EY, Afanasyeva EA, Bulatova MM, Cheetham ME, Margulis BA, Guzhova IV. Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaperones. 2004; 9: 265–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E. HSP27 inhibits cytochrome c‐ dependent activation of procaspase‐9. FASEB J. 1999; 13: 2061–70. [DOI] [PubMed] [Google Scholar]
  • 117. Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Catley L, Tai YT, Hayashi T, Shringarpure R, Burger R, Munshi N, Ohtake Y, Saxena S, Anderson KC. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 2003; 102: 3379–86. [DOI] [PubMed] [Google Scholar]
  • 118. Cornelussen RN, Vanagt WY, Prinzen FW, Snoeckx LH. Proteins involved in salvage of the myocardium. Adv Exp Med Biol. 2003; 543: 277–91. [DOI] [PubMed] [Google Scholar]
  • 119. Morris SD, Cumming DV, Latchman DS, Yellon DM. Specific induction of the 70‐kD heat stress proteins by the tyrosine kinase inhibitor herbimycin‐A protects rat neonatal cardiomyocytes. A new pharmacological route to stress protein expression J Clin Invest. 1996; 97: 706–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124–36. [DOI] [PubMed] [Google Scholar]
  • 121. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB. Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol. 1986; 251: H1306–15. [DOI] [PubMed] [Google Scholar]
  • 122. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten‐Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003; 285: H579–88. [DOI] [PubMed] [Google Scholar]
  • 123. Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten‐Johansen J. Postconditioning attenuates myocardial ischemia‐reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004. 62: 74–85. [DOI] [PubMed] [Google Scholar]
  • 124. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3‐kinase‐Akt pathway. Circ Res. 2004; 95: 230–2. [DOI] [PubMed] [Google Scholar]
  • 125. Garlid KD, Paucek P, Yarov‐Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP‐sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res. 1997; 81: 1072–82. [DOI] [PubMed] [Google Scholar]
  • 126. Liu Y, Sato T, O'Rourke B, Marban E. Mitochondrial ATP‐dependent potassium channels: novel effectors of cardioprotection Circulation 1998; 97: 2463–9. [DOI] [PubMed] [Google Scholar]
  • 127. O'Rourke B. Myocardial K(ATP) channels in preconditioning. Circ Res. 2000. 87: 845–55. [DOI] [PubMed] [Google Scholar]
  • 128. Serviddio G, Di Venosa N, Federici A, D'Agostino D, Rollo T, Prigigallo F, Altomare E, Fiore T, Vendemiale G. Brief hypoxia before normoxic reperfusion (postconditioning) protects the heart against ischemia‐reperfusion injury by preventing mitochondria peroxyde production and glutathione depletion. FASEB J. 2005; 19: 354–61. [DOI] [PubMed] [Google Scholar]
  • 129. Sun K, Liu ZS, Sun Q. Role of mitochondria in cell apoptosis during hepatic ischemia‐reperfusion injury and protective effect of ischemic postconditioning. World J Gastroenterol. 2004; 10: 1934–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130. Zhang PL, Lun M, Teng J, Huang J, Blasick TM, Yin L, Herrera GA, Cheung JY. Preinduced molecular chaperones in the endoplasmic reticulum protect cardiomyocytes from lethal injury. Ann Clin Lab Sci. 2004; 34: 449–57. [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES