Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(3):531–541. doi: 10.1111/j.1582-4934.2005.tb00485.x

The last neuronal division: a unifying hypothesis for the pathogenesis of Alzheimer's disease

Zsuzsanna Nagy 1,
PMCID: PMC6741636  PMID: 16202202

Abstract

Alzheimer's disease is the third biggest killer in the developed world after cancer and heart disease. Although the first description dates back to almost a century ago, we still do not understand the cellular‐molecular mechanisms that lead to the development of the brain pathology. There is no efficient treatment for the patients. And even the symptomatic relief comes too late, because there is no diagnostic method that could identify patients before severe clinical symptoms develop. Almost every aspect of Alzheimer's research, whether on pathogenesis, diagnosis, risk factors or treatment strategies, seem to spark controversy nowadays. Studies that apparently contradict one another or propose alternate explanations are published monthly. Patients’ hopes are raised with the announcement of each new drug trial. Then hope is lost when the trials fail. Ironically, while progressive research is hampered by apparent contradictions and lack of funding, the old dogmas survive in the textbooks and no real progress is made in terms of therapy. The purpose of this review is to take stock of the most discussed and most strongly opposing views on the pathogenesis of Alzheimer's disease. These views shape the Alzheimer field currently and some will hopefully one day shape the diagnostic and therapeutic approaches to the disease.

Keywords: Alzheimer's disease, cell cycle, cyclins, amyloid, tau

References

  • 1. Joseph J, Shukitt‐Hale B, Denisova NA, Martin A, Perry G, Smith MA. Copernicus revisited: amyloid β in Alzheimer's disease. Neurobiol Aging. 2001; 22: 131–46. [DOI] [PubMed] [Google Scholar]
  • 2. Begley S. Is Alzheimer's field blocking R&D into other causes Wall Street Journal 2004. [Google Scholar]
  • 3. Begley S. Scientists fight a narrow view of Alzheimer's cause. Wall Street Journal 2004.
  • 4. Heston LL, Mastri AR. The genetics of Alzheimer's disease: associations with hematologic malignancy and Down's syndrome. Arch Gen Psychiatry 1977; 34: 976–81. [DOI] [PubMed] [Google Scholar]
  • 5. Goate A, Chartier‐Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349: 704–6. [DOI] [PubMed] [Google Scholar]
  • 6. Hardy J, Mullan M, Chartier‐Harlan M, Brown J, Goate A, Rossor M. Molecular classification of Alzheimer's disease. The Lancet 1991; 337: 1342–3. [PubMed] [Google Scholar]
  • 7. Levy E, Carman MD, Fernandez‐Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage. Dutch type. Science 1990; 248: 1124–6. [DOI] [PubMed] [Google Scholar]
  • 8. Hendriks L, van Duijn CM, Cras P, Cruts M, Van Hul W, van Harskamp F, Warren A, McInnis MG, Antonarakis SE, Martin JJ. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β‐amyloid precursor protein gene. Nat Genet. 1992; 1: 218–21. [DOI] [PubMed] [Google Scholar]
  • 9. Clark RF, Goate AM. Molecular genetics of Alzheimer's disease. Arch Neurol. 1993; 50: 1164–72. [DOI] [PubMed] [Google Scholar]
  • 10. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K. Cloning of a gene bearing missense mutations in early‐onset familial Alzheimer's disease. Nature 1995; 375: p. 754–60. [DOI] [PubMed] [Google Scholar]
  • 11. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, et al. Familial Alzheimer's disease in kindreds with mis‐sense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 1995. 376: 775–8. [DOI] [PubMed] [Google Scholar]
  • 12. Levy‐Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995; 269: p. 973–7. [DOI] [PubMed] [Google Scholar]
  • 13. Brunkan AL, Goate AM. Presenilin function and gamma‐secretase activity. J Neurochem. 2005; 93: 769–92. [DOI] [PubMed] [Google Scholar]
  • 14. Bertram L, Tanzi RE. The genetic epidemiology of neu‐rodegenerative disease. J Clin Invest. 2005; 115: 1449–57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller‐Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell‐surface receptor. Nature 1987; 325: 733–6. [DOI] [PubMed] [Google Scholar]
  • 16. Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler‐Pierrat C, Staufenbiel M, Mautino J, Vigo FS, Sommer B, Yankner BA. Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease. Nat Neurosci. 2000; 3: 460–4. [DOI] [PubMed] [Google Scholar]
  • 17. Kirazov E, Kirazov L, Bigl V, Schliebs R. Ontogenetic changes in protein level of amyloid precursor protein (APP) in growth cones and synaptosomes from rat brain and prenatal expression pattern of APP mRNA isoforms in developing rat embryo. Int J Dev Neurosci. 2001; 19: 287–96. [DOI] [PubMed] [Google Scholar]
  • 18. Panegyres PK. The functions of the amyloid precursor protein gene. Rev Neurosci. 2001; 12: 1–39. [DOI] [PubMed] [Google Scholar]
  • 19. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 1990; 248: 1122–4. [DOI] [PubMed] [Google Scholar]
  • 20. Golde TE, Estus S, Younkin LH, Selkoe DJ, Younkin SG. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 1992; 255: 728–30. [DOI] [PubMed] [Google Scholar]
  • 21. Haass C, Schlossmacher MG, Hung AY, Vigo‐Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB. Amyloid β‐peptide is produced by cultured cells during normal metabolism. Nature 1992; 359: 322–5. [DOI] [PubMed] [Google Scholar]
  • 22. Selkoe DJ. Amyloid β‐protein precursor: new clues to the genesis of Alzheimer's disease. Curr Opin Neurobiol. 1994; 4: 708–16. [DOI] [PubMed] [Google Scholar]
  • 23. Kaneko I, Yamada N, Sakuraba Y, Kamenosono M, Tutumi S. Suppression of mitochondrial succinate dehy‐drogenase, a primary target of β‐amyloid, and its derivative racemized at Ser residue. J Neurochem. 1995; 65: 2585–93. [DOI] [PubMed] [Google Scholar]
  • 24. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998; 55: 1449–55. [DOI] [PubMed] [Google Scholar]
  • 25. Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L. Clinico‐pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer's disease. Neurology 1988; 38: 1682–7. [DOI] [PubMed] [Google Scholar]
  • 26. Nagy Z, Jobst KA, Esiri MM, Morris JH, King EM, MacDonald B, Litchfield S, Barnetson L, Smith AD. Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer's disease: clinico‐pathologic correlations using three sets of pathologic diagnostic criteria. Dementia 1996; 7: 76–81. [DOI] [PubMed] [Google Scholar]
  • 27. Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Smith A, Barnetson L, Smith AD. Relative roles of plaques and tangles in the dementia of Alzheimer's disease: correlations using three sets of neuropathological criteria. Dementia 1995; 6: 21–31. [DOI] [PubMed] [Google Scholar]
  • 28. Neve RL, Robakis NK. Alzheimer's disease: a re‐examination of the amyloid hypothesis. Trends Neurosci. 1998; 21: 15–9. [DOI] [PubMed] [Google Scholar]
  • 29. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid β protein potently inhibit hippocam‐pal long‐term potentiation in vivo. Nature 2002; 416: p. 535–9. [DOI] [PubMed] [Google Scholar]
  • 30. Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ. Amyloid‐β oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans. 2002; 30: 552–7. [DOI] [PubMed] [Google Scholar]
  • 31. Kokubo H, Kayed R, Glabe CG, Yamaguchi H. Soluble Aβ oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer's disease brain. Brain Res. 2005; 1031: 222–8. [DOI] [PubMed] [Google Scholar]
  • 32. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol. 1999; 155: 853–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Smith A, Barnetson L, Smith AD. Relative roles of plaques and tangles in the dementia of Alzheimer's disease: correlations using three sets of neuropathological criteria. Dementia 1995; 6: 21–31. [DOI] [PubMed] [Google Scholar]
  • 34. Wilcock GK, Esiri MM. Plaques, tangles and dementia. A quantitative study. J Neurol Sci. 1982; 56: 343–56. [DOI] [PubMed] [Google Scholar]
  • 35. Goedert M. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 1993; 16: 460–5. [DOI] [PubMed] [Google Scholar]
  • 36. Drewes G, Lichtenberg‐Kraag B, Doring F, Mandelkow EM, Biernat J, Goris J, Doree M, Mandelkow E. Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer‐like state. EMBO J. 1992; 11: 2131–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Mandelkow EM, Drewes G, Biernat J, Gustke N, Van Lint J, Vandenheede JR, Mandelkow E. Glycogen syn‐thase kinase‐3 and the Alzheimer‐like state of micro‐tubule‐associated protein tau. FEBS Lett. 1992; 314: 315–21. [DOI] [PubMed] [Google Scholar]
  • 38. Baumann K, Mandelkow EM, Biernat J, Piwnica‐Worms H, Mandelkow E. Abnormal Alzheimer‐like phosphorylation of tau‐protein by cyclin‐dependent kinases cdk2 and cdk5. FEBS Lett. 1993; 336: 417–24. [DOI] [PubMed] [Google Scholar]
  • 39. Matsuo ES, Shin RW, Billingsley ML, Van DeVoorde A, O'Connor M, Trojanowski JQ, Lee VM. Biopsy‐derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau. Neuron 1994; 13: 989–1002. [DOI] [PubMed] [Google Scholar]
  • 40. Iqbal K, Alonso AC, Gong CX, Khatoon S, Singh TJ, Grundke‐Iqbal I. Mechanism of neurofibrillary degeneration in Alzheimer's disease. Mol Neurobiol. 1994; 9: 119–23. [DOI] [PubMed] [Google Scholar]
  • 41. Trojanowski J, Schmidt M, Shin R‐W, Bramblett G, Rao D, Lee V‐Y. PHFt(A68): from pathological marker to potential mediator of neuronal dysfunction and neuronal degeneration in Alheimer's disease. Clin Neurosci. 1993; 1: 184–91. [Google Scholar]
  • 42. Lee VM, Trojanowski JQ. The disordered neuronal cytoskeleton in Alzheimer's disease. Curr Opin Neurobiol. 1992; 2: 653–6. [DOI] [PubMed] [Google Scholar]
  • 43. Arendt T, Rodel L, Gartner U, Holzer M. Expression of the cyclin‐dependent kinase inhibitor p16 in Alzheimer's disease. Neuroreport 1996; 7: 3047–9. [DOI] [PubMed] [Google Scholar]
  • 44. Nagy Z, Esiri MM, Smith AD. The cell division cycle and the pathophysiology of Alzheimer's disease. Neuroscience 1998; 87: 731–9. [DOI] [PubMed] [Google Scholar]
  • 45. Vincent I, Zheng JH, Dickson DW, Kress Y, Davies P. Mitotic phosphoepitopes precede paired helical filaments in Alzheimer's disease. Neurobiol Aging 1998; 19: 287–96. [DOI] [PubMed] [Google Scholar]
  • 46. Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci. 2001; 21: 2661–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Reisberg B, Franssen EH, Souren LE, Auer SR, Akram I, Kenowsky S. Evidence and mechanisms of retrogenesis in Alzheimer's and other dementias: management and treatment import. Am J Alzheimers Dis Other Demen. 2002. 17: 202–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Arendt T. Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the 'Dr. Jekyll and Mr. Hyde concept' of Alzheimer's disease or the yin and yang of neuroplasticity. Prog Neurobiol. 2003; 71: p. 83–248. [DOI] [PubMed] [Google Scholar]
  • 49. Braak H, Braak E. Neuropathological stageing of Alzheimer‐related changes. Acta Neuropathol. 1991; 82: 239–59. [DOI] [PubMed] [Google Scholar]
  • 50. Arendt T. Alzheimer's disease as a loss of differentiation control in a subset of neurons that retain immature features in the adult brain. Neurobiol Aging. 2000; 21: 783–96. [DOI] [PubMed] [Google Scholar]
  • 51. Nagy Z, Esiri MM, Cato AM, Smith AD. Cell cycle markers in the hippocampus in Alzheimer's disease. Acta Neuropathol. 1997; 94: 6–15. [DOI] [PubMed] [Google Scholar]
  • 52. Nagy Z, Esiri MM, Smith AD. Expression of cell division markers in the hippocampus in Alzheimer's disease and other neurodegenerative conditions. Acta Neuropathol. 1997; 93: 294–300. [DOI] [PubMed] [Google Scholar]
  • 53. Nagy ZS, Esiri MM. Apoptosis‐related protein expression in the hippocampus in Alzheimer's disease. Neurobiol Aging. 1997; 18: 565–71. [DOI] [PubMed] [Google Scholar]
  • 54. Raina AK, Hochman A, Zhu X, Rottkamp CA, Nunomura A, Siedlak SL, Boux H, Castellani RJ, Perry G, Smith MA. Abortive apoptosis in Alzheimer's disease. Acta Neuropathol. 2001; 101: 305–10. [DOI] [PubMed] [Google Scholar]
  • 55. Kosel S, Egensperger R, von Eitzen U, Mehraein P, Graeber MB. On the question of apoptosis in the parkin‐sonian substantia nigra. Acta neuropathologica. 1997; 93: 105–8. [DOI] [PubMed] [Google Scholar]
  • 56. Jellinger KA. Cell death mechanisms in neurodegenera‐tion. J Cel Mol Med 2001; 5: 1–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Massague J. G1 cell‐cycle control and cancer. Nature 2004; 432: 298–306. [DOI] [PubMed] [Google Scholar]
  • 58. Suzuki T, Oishi M, Marshak DR, Czernik AJ, Nairn AC, Greengard P. Cell cycle‐dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein. EMBO J. 1994; 13: 1114–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Pearson RC, Esiri MM, Hiorns RW, Wilcock GK, Powell TP. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci USA. 1985; 82: 4531–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Reynolds CH, Nebreda AR, Gibb GM, Utton MA, Anderton BH. Reactivating kinase/p38 phosphorylates tau protein in vitro. J Neurochem. 1997; 69: 191–8. [DOI] [PubMed] [Google Scholar]
  • 61. Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK‐3β regulates production of Alzheimer's disease amyloid‐beta pep‐tides. Nature 2003; 423: 435–9. [DOI] [PubMed] [Google Scholar]
  • 62. Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. Journal of neuroscience the official Journal of the Society for Neuroscience 1998; 18: 2801–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Katchanov J, Harms C, Gertz K, Hauck L, Waeber C, Hirt L, Priller J, von Harsdorf R, Bruck W, Hortnagl H, Dirnagl U, Bhide PG, Endres M. Mild cerebral ischemia induces loss of cyclin‐dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci. 2001; 21: 5045–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Bossenmeyer‐Pourie C, Chihab R, Schroeder H, Daval JL. Transient hypoxia may lead to neuronal proliferation in the developing mammalian brain: from apoptosis to cell cycle completion. Neuroscience 1999; 91: 221–31. [DOI] [PubMed] [Google Scholar]
  • 65. Smith MZ, Nagy Z, Esiri MM. Cell cycle‐related protein expression in vascular dementia and Alzheimer's disease. Neurosci Lett. 1999; 271: 45–8. [DOI] [PubMed] [Google Scholar]
  • 66. Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Joachim C, Litchfield S, Barnetson L, Smith AD. The effects of additional pathology on the cognitive deficit in Alzheimer disease. J Neuropathol Exp Neurol. 1997; 56: 165–70. [DOI] [PubMed] [Google Scholar]
  • 67. Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer's disease. Lancet 1999; 354: 919–20. [DOI] [PubMed] [Google Scholar]
  • 68. Zhu X, Raina AK, Perry G, Smith MA. Alzheimer's disease: the two‐hit hypothesis. Lancet Neurol. 2004; 3: 219–26. [DOI] [PubMed] [Google Scholar]
  • 69. Nagy Z. Cell cycle regulatory failure in neurones: causes and consequences. Neurobiol Aging 2000; 21: 761–9. [DOI] [PubMed] [Google Scholar]
  • 70. Nagy ZS, Smith MZ, Esiri MM, Barnetson L, Smith AD. Hyperhomocysteinaemia in Alzheimer's disease and expression of cell cycle markers in the brain. J Neurol Neurosurg Psychiatry 2000; 69: 565–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homo‐cysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998; 55: 1449–55. [DOI] [PubMed] [Google Scholar]
  • 72. Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 2003; 26: 137–46. [DOI] [PubMed] [Google Scholar]
  • 73. Arendt T, Holzer M, Gartner U. Neuronal expression of cycline dependent kinase inhibitors of the INK4 family in Alzheimer's disease. Journal of Neural Transmission Vienna, Austria 1996 1998; 105: 949–60. [DOI] [PubMed] [Google Scholar]
  • 74. Zhu X, McShea A, Harris PL, Raina AK, Castellani RJ, Funk JO, Shah S, Atwood C, Bowen R, Bowser R, Morelli L, Perry G, Smith MA. Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP‐1–associated regulator of cyclin B, in Alzheimer's disease. J Neurosci Res. 2004; 75: 698–703. [DOI] [PubMed] [Google Scholar]
  • 75. Ogawa O, Lee HG, Zhu X, Raina A, Harris PL, Castellani RJ, Perry G, Smith MA. Increased p27, an essential component of cell cycle control, in Alzheimer's disease. Aging Cell 2003; 2: 105–10. [DOI] [PubMed] [Google Scholar]
  • 76. Nagy Z, Hindley NJ, Braak H, Braak E, Yilmazer‐Hanke DM, Schultz C, Barnetson L, Jobst KA, Smith AD. Relationship between clinical and radiological diagnostic criteria for Alzheimer's disease and the extent of neuropathology as reflected by ‘stages’: a prospective study. Dement Geriatr Cogn Disord. 1999; 10: 109–14. [DOI] [PubMed] [Google Scholar]
  • 77. Nagy Z, Hindley NJ, Braak H, Braak E, Yilmazer‐Hanke DM, Schultz C, Barnetson L, King EM, Jobst KA, Smith AD. The progression of Alzheimer's disease from limbic regions to the neo‐cortex: clinical, radiological and pathological relationships. Dement Geriatr Cogn Disord. 1999; 10: 115–20. [DOI] [PubMed] [Google Scholar]
  • 78. Burke WJ, McLaughlin JR, Chung HD, Gillespie KN, Grossberg GT, Luque FA, Zimmerman J. Occurrence of cancer in Alzheimer and elderly control patients: an epidemiologic necropsy study. Alzheimer Dis Assoc Disord. 1994; 8: 22–8. [DOI] [PubMed] [Google Scholar]
  • 79. Nagy Z, Combrinck M, Budge M, McShane R. Cell cycle kinesis in lymphocytes in the diagnosis of Alzheimer's disease. Neurosci Lett. 2002; 317: 81–4. [DOI] [PubMed] [Google Scholar]
  • 80. Popescu NC. Comprehensive genetic analysis of cancer cells. J Cell Mol Med. 2000; 4: 151–63. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES