Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;8(1):101–116. doi: 10.1111/j.1527-3458.2002.tb00218.x

(S)‐3,5‐DHPG: A Review

Konstanty Wiśniewski 1,, Halina Car 1
PMCID: PMC6741645  PMID: 12070529

ABSTRACT

3,5‐dihydroxyphenylglycine (3,5‐DHPG) was the first agonist shown to be group I metabotropic glutamate receptor selective with its agonist effects residing exclusively in the S‐isomer. Some results suggest that (S)‐3,5‐DHPG may be a partial agonist of mGluR1a and mGluR5a in neurons and astrocytes. It has been reported that (S)‐3,5‐DHPG can, under certain conditions, interact with NMDA receptors. (S)‐3,5‐DHPG exerts different effects on second messengers in adult and neonatal tissues. It stimulates phosphoinositide hydrolysis in a dose‐dependent manner in both the adult and neonate hippocampus, inhibits stimulated cAMP levels in the adult and enhances the cAMP in the neonate. It is an effective antagonist of mGluRs linked to phospholipase D (PLD) in the adult and an agonist in the neonate brain or astrocyte cultures. (S)‐3,5‐DHPG induces elevation of [Ca2+]i and regulates multiple subtypes of Ca2+ channels. This agonist of group I mGluRs may modulate neurotransmitters release, reflecting the diversity of mechanisms involved. Depending on the dose, (S)‐3,5‐DHPG enhances or decreases excitatory postsynaptic potentials (EPSPs) and under appropriate conditions it can induce long‐term depression (LTD) and long‐term potentiation (LTP). Some studies suggested a therapeutic role for (S)‐3,5‐DHPG in neuronal injury, regulation of intestinal motility and secretion, learning and memory processes and in cardiovascular system.

(S)‐3,5‐DHPG may be useful as a cognitive enhancing agent in memory impairment associated with ischemia or hypoxia. Recent investigations suggested possible beneficial effects of (S)‐3,5‐DHPG in Alzheimer's disease.

Keywords: Receptors; Second messengers; Electrophysiology; Pharmacology; Behavior; Hypoxia; Alzheimer's disease; (S)3,5‐DHPG

Full Text

The Full Text of this article is available as a PDF (110.9 KB).

References

  • 1. Allen JW, Eldadah BA, Faden AI. Beta‐amyloid‐induced apoptosis of cerebellar granule cells and cortical neurons: exacerbation by selective inhibition of group I metabotropic glutamate receptors. Neuropharmacology 1999;38:1243–1252. [DOI] [PubMed] [Google Scholar]
  • 2. Attucci S, Carla V, Mannaioni G, Moroni F. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br J Pharmacol 2001;132:799–806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Baker SR, Goldsworthy J, Harden RC, Salhoff CR, Schoepp DD. Enzymatic resolution and pharmacological activity of the enantiomers of 3,5‐dihydroxyphenglycine, a metabotropic glutamate receptor agonist. Bioorg Med Chem Lett 1995;5:223–228. [Google Scholar]
  • 4. Balazs R, Miller S, Romano C, de Vries A, Chun Y, Cotman CW. Metabotropic glutamate receptor mGluR5 in astrocytes: pharmacological properties and agonist regulation. J Neurochem 1997;69:151–163. [DOI] [PubMed] [Google Scholar]
  • 5. Bashir ZI, Jane DE, Sunter DC, Watkins JC, Collingridge GL. Metabotropic glutamate receptors contribute to the induction of long‐term depression in the CA1 region of the hippocampus. Eur J Pharmacol 1993;293:265–266. [DOI] [PubMed] [Google Scholar]
  • 6. Bear MF, Abraham WC. Long‐term depression in hippocampus. Ann Rev Neurosci 1996;19:437–443. [DOI] [PubMed] [Google Scholar]
  • 7. Bennett HJ, White TD, Semba K. Activation of metabotropic glutamate receptors increases extracellular adenosine in vivo. Neuro Report 2000;11:3489–3492. [DOI] [PubMed] [Google Scholar]
  • 8. Bliss TVP, Collingridge GL. A synaptic model of memory: long‐term potentation in the hippocampus. Nature 1993;361:31–39. [DOI] [PubMed] [Google Scholar]
  • 9. Bortolotto ZA, Collingridge GL. Evidence that a novel metabotropic glutamate receptor mediates the induction of long‐term potentiation at CA1 synapses in the hippocampus. Biochem Soc Transactions 1999;27:170–174. [DOI] [PubMed] [Google Scholar]
  • 10. Brabet I, Mary S, Bockaert J, Pin PJ. Phenylglycine derivatives discriminate between mGluR1‐ and mGluR5‐mediated responses. Neuropharmacology 1995;34:895–903. [DOI] [PubMed] [Google Scholar]
  • 11. Brown RE, Reymann KG. Class I metabotropic glutamate receptor agonists do not facilitate the induction of long‐term potentiation in the dentate gyrus of the rat in vitro. Neurosci Lett 1995;202:73–76. [DOI] [PubMed] [Google Scholar]
  • 12. Camodeca N, Breakwell NA, Rowan MJ, Anwyl R. Induction of LTD by activation of group ImGluRinthe dentate gyrus in vitro. Neuropharmacology 1999;38:1597–1606. [DOI] [PubMed] [Google Scholar]
  • 13. Camon L, Vives P, de Vera N, Martinez E. Seizures and neuronal damage in the rat by activation of group I metabotropic glutamate receptors with their selective agonist 3,5‐dihydroxyphenylglycine. J Neurosci Res 1998;51:339–348. [DOI] [PubMed] [Google Scholar]
  • 14. Car H, Nadlewska A, Wis̀niewski K. (S)‐3,5‐DHPG influences behavioral effects of phaclofen in rats. Eur Neuropsychopharmacol 2000;10:39–106. [PubMed] [Google Scholar]
  • 15. Car H, Nadlewska A, Wis̀niewski K. 3,5‐DHPG influences behavioral effects of baclofen in rats. Pol J Pharmacol 2000a;52:247–254. [PubMed] [Google Scholar]
  • 16. Car H, Oksztel R, Wis̀niewski K. NMDA receptor antagonists are involved in behavioural activities of (S)‐3,5‐DHPG. Eur Neuropsychopharmacol 2000b;10:39–106. [Google Scholar]
  • 17. Car H, Wis̀niewski K, Nadlewska A. 3,5‐DHPG is involved in behavioral activity of GABA‐B receptors. Acta Neurobiol Exp 1999;59:230. [Google Scholar]
  • 18. Caramelo OL, Santos PF, Carvalho AP, Duarte CB. Metabotropic glutamate receptors modulate [3H]acetylcholine release from cultured amacrine‐like neurons. J Neurosci Res 1999;58:505–514. [DOI] [PubMed] [Google Scholar]
  • 19. Chen G, van den Pol AN. Coexpression of multiple metabotropic glutamate receptors in axon terminals of single suprachiasmatic nucleus neurons. J Neurophysiol 1998;80:1932–1938. [DOI] [PubMed] [Google Scholar]
  • 20. Christensen HN, Handlogten ME, Vadgama JV, et al. Synthesis and transport applications of 3‐aminobicyclo[3.2.1]octane‐3‐carboxylic acids. J Med Chem 1983;26:1374–1378. [DOI] [PubMed] [Google Scholar]
  • 21. Cochilla AJ, Alford S. Metabotropic glutamate receptor‐mediated control of neurotransmitter release. Neuron 1998;20:1007–1016. [DOI] [PubMed] [Google Scholar]
  • 22. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997;37:205–237. [DOI] [PubMed] [Google Scholar]
  • 23. Contractor A, Gereau RW IV, Green T, Heinemann SF. Direct effects of metabotropic glutamate receptor compounds on native and recombinant N‐methyl‐D‐aspartate receptors. Proc Natl Acad Sci USA 1998;95:8969–8974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Desai MA, Burnett JP, Mayne NG, Schoepp DD. Cloning and expression of a human metabotropic glutamate receptor 1α: enhanced coupling on co‐transfection with a glutamate transporter. Mol Pharmacol 1995;48:648–657. [PubMed] [Google Scholar]
  • 25. Dolan S, Nolan AM. Behavioural evidence supporting a differential role for group I and II metabotropic glutamate receptors in spinal nociceptiove transmission. Neuropharmacology 2000;39:1132–1138. [DOI] [PubMed] [Google Scholar]
  • 26. Fagni L, Chavis P, Ango F, Bockaert J. Complex interactions between m GluRs, intracellular Ca2+ stores and ion channels in neurons. TINS 2000;23:80–88. [DOI] [PubMed] [Google Scholar]
  • 27. Ferré S, Popoli P, Rimondini R, Reggio R, Kehr J, Fuxe K. Adenosine A2A and group I metabotropic glutamate receptors synergistically modulate the binding characteristics of dopamine D2 receptors in the rat striatum. Neuropharmacology 1999;38:129–140. [DOI] [PubMed] [Google Scholar]
  • 28. Fisher K, Coderre TJ. Comparison of nociceptive effects produced by intrathecal administration of mGluR agonists. Neuroreport 1996;7:2743–2747. [DOI] [PubMed] [Google Scholar]
  • 29. Fitzjohn S, Bortolotto ZA, Palmer MJ, et al. The potent mGlu receptor antagonists LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. Neuropharmacology 1998;37:1445–1458. [DOI] [PubMed] [Google Scholar]
  • 30. Fitzjohn SM, Lodge D, Collingridge GL. Long‐term depression of synaptic transmission induced by group I metabotropic glutamate receptor activation in the CA1 region of the rat hippocampus in vitro. J Physiol 1996;493:49P. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Fundytus ME. Glutamate receptors and nociception implications for the drug treatment of pain. CNS Drugs 2001;15:29–58. [DOI] [PubMed] [Google Scholar]
  • 32. Gereau RW, Conn JP. Roles of specific metabotropic glutamate receptor subtypes in regulation of hippocampal CA1 pyramidal cell excitability. J Neurophysiol 1995;74:122–129. [DOI] [PubMed] [Google Scholar]
  • 33. Greber S, Schwarzer C, Sperk G. Neuropeptide Y inhibits potassium‐stimulated glutamate release through Y2 receptors in rat hippocampal slices in vitro. Br J Pharmacol 1994;113:737–740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Hölscher C, Gigg J, O'Mara SM. Metabotropic glutamate receptor activation and blockade: their role in long‐term potentation, learning and neurotoxicity. Neurosci Biobehav Rev 1999;23:399–410. [DOI] [PubMed] [Google Scholar]
  • 35. Hos̀y Z, Wis̀niewski K. Examination of the influence of 3,5‐DHPG on behavioral activity of angiotensin II. Pol J Pharmacol 2001;53:253–243. [PubMed] [Google Scholar]
  • 36. Houamed KM, Kuijper JL, Gilbert TL, et al. Cloning, expression, and gene structure of a G protein‐coupled glutamate receptor from rat brain. Science 1991;252:1318–1321. [DOI] [PubMed] [Google Scholar]
  • 37. Hu HZ, Ren J, Liu S, Gao Ch, Xia Y, Wood JD. Functional group I metabotropic glutamate receptors in sub‐mucous plexus of guinea‐pig ileum. Brit J Pharm 1999a;128:1631–1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Huber KM, Kayser MS, Bear MF. Role of rapid dendritic protein synthesis in hippocampal mGluR‐dependent long‐term depression. Science 2000;288:1254–1256. [DOI] [PubMed] [Google Scholar]
  • 39. Ito I, Kohda A, Tanabe S, et al. 3,5‐Dihydroxyphenylglycine: a potent agonist of metabotropic glutamate receptors. Neuro Report 1992;3:1013–1016. [PubMed] [Google Scholar]
  • 40. Johnson BG, Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD. [3H]‐LY341495 as a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: characterization of binding to membranes of mGlu receptor subtype expressing cells. Neuropharmacology 1999;38:1519–1529. [DOI] [PubMed] [Google Scholar]
  • 41. Kalda A, Kaasik A, Vassiljev V, Pokk P, Zharkovsky A. Neuroprotective action of group I metabotropic glutamate receptor agonists oxygen‐glucose deprivation‐induced neuronal death. Brain Res 2000;853:370–373. [DOI] [PubMed] [Google Scholar]
  • 42. Keele NB, Zinebi F, Neugebauer V, Shinnick‐Gallagher P. Epileptogenesis up‐regulates metabotropic glutamate receptor activation of sodium‐calcium exchange current in the amygdala. J Neurophysiol 2000;83:2458–2462. [DOI] [PubMed] [Google Scholar]
  • 43. Krieger P, Hellgren‐Kotaleski J, Kettunen P, El Manira AJ. Interaction between metabotropic and ionotropic glutamate receptors regulates neuronal network activity. J Neurosci 2000;20:5382–5391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Lee RKK, Wurtman RJ, Cox AJ, Nitsch RM. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci USA 1995;92:8083–8087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Lefebvre C, Fisher K, Cahill CM, Coderre TJ. Evidence that DHPG‐induced nociception depends on glutamate release from primary afferent C‐fibres. Neuro Report 2000;11:1631–1635. [DOI] [PubMed] [Google Scholar]
  • 46. Lesch KP, Aulakh CS, Wolozin BL, Murphy DL. Serotonin (5‐HT) receptor, 5‐HT transporter and G protein‐effector expression:implications for depression. Pharmacol Toxicol 1992;71:49–60. [DOI] [PubMed] [Google Scholar]
  • 47. Li XC, Beart PM, Monn JA, Jones NM, Widdop RE. Type I and II metabotropic glutamate receptor agonists and antagonists evoke cardiovascular effects after intrathecal administration in conscious rats. Brit J Pharm 1999;128:823–829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Lin FF, Varney M, Sacaan AI, et al. Cloning and stable expression of the mGluR1b subtype of human metabotropic receptors and pharmacological comparison with the mGluR5a subtype. Neuropharmacology 1997;36:917–931. [DOI] [PubMed] [Google Scholar]
  • 49. Liu MT, Kirchgessner AL. Agonist‐ and reflex‐evoked internalization of metabotropic glutamate receptor 5 in enteric neurons. J Neurosci 2000;20:3200–3205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Maiese K, Ahmad I, TenBroeke M, Gallant J. Metabotropic glutamate receptor subtypes independently modulate neuronal intracellular calcium. J Neurosci Res 1999;55:472–485. [DOI] [PubMed] [Google Scholar]
  • 51. Manahan‐Vaughan D, Reymann KG. Metabotropic glutamate receptor subtype agonists facilitate long‐term potentiation within a distinct time window in the dentate gyrus in vivo. Neuroscience 1996;74:723–731. [DOI] [PubMed] [Google Scholar]
  • 52. Manahan‐Vaughan D, Reymann KG. Group 1 metabotropic glutamate receptors contribute to slow‐onset potentiation in the rat CA1 region m vivo. Neuropharmacology 1997;36:1533–1538. [DOI] [PubMed] [Google Scholar]
  • 53. Manzoni O, Bockaert J. Metabotropic glutamate receptors inhibiting excitatory synapses in the CA1 area of rat hippocampus. Eur J Neurosci 1995;7:2518–2523. [DOI] [PubMed] [Google Scholar]
  • 54. Manzoni O, Michel JM, Bockaert J. Metabotropic glutamate receptors in the rat nucleus accumbens. Eur J Neurosci 1997;9:1514–1523. [DOI] [PubMed] [Google Scholar]
  • 55. Mao L, Wang JQ. Motor stimulation following bilateral injection of the group‐I metabotropic glutamate receptor agonist into the dorsal striatum of rats: evidence against dependence on ionotropic glutamate receptors. Psychopharmacology 2000;148:367–373. [DOI] [PubMed] [Google Scholar]
  • 56. McBain CJ, DiChiara TJ, Kauer JA. Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J Neurosci 1994;14:4433–4445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Meltzer LT, Christoffersen CL, Serpa KA. Modulation of dopamine neuronal activity by glutamate receptor subtypes. Neurosci Biobehav Rev 1997;21:511–518. [DOI] [PubMed] [Google Scholar]
  • 58. Mironov SL, Richter DW. Hypoxic modulation of L‐type Ca2+ channels in inspiratory brainstem neurones: intracellular signalling pathways and metabotropic glutamate receptors. Brain Res 2000;869:166–177. [DOI] [PubMed] [Google Scholar]
  • 59. Moroni F, Cozzi A, Lombardi G, et al. Presynaptic mGlu1 type receptors potentiate transmitter output in the rat cortex. Eur J Pharmacol 1998;347:189–195. [DOI] [PubMed] [Google Scholar]
  • 60. Nadlewska A, Car H, Oksztel R, Wis̀niewski K. Effect of (S)‐3,5‐DHPG on learning, exploratory activity and anxiety in rats with experimental hypoxia. Pol J Pharmacol 2002;54:11–18. [PubMed] [Google Scholar]
  • 61. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992;258:597–603. [DOI] [PubMed] [Google Scholar]
  • 62. Naruse N, Oka M, Konishi M, Oki T. New antiviral antibiotics, kistamicins A and B. J Antibiotics 1993;46:1812–1818. [DOI] [PubMed] [Google Scholar]
  • 63. Nielsen KS, Macphail EM, Riedel G. Class I mGlu receptor antagonist 1‐aminoindan‐1,5‐dicarboxylic acid blocks contextual but not cue conditioning in rats. Eur J Pharmacol 1997;326:105–108. [DOI] [PubMed] [Google Scholar]
  • 64. Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL. The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 1997;36:1517–1532. [DOI] [PubMed] [Google Scholar]
  • 65. Pellegrini‐Giampietro D, Albani‐Torregrossa S, Moroni F. Pharmacological characterization of metabotropic glutamate receptors coupled to phospholipase D in the rat hippocampus. Br J Pharmacol 1996;118:1035–1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Pellegrini‐Giampietro DE, Cozzi A, Peruginelli F, et al. 1‐Aminoindan‐1,5‐dicarboxylic acid and (S)‐(+)‐2‐(3′‐carboxybicyclo[1.1.1] pentyl)‐glycine, two mGlu1 receptor‐preferring antagonists, reduce neuronal death in in vitro and in vivo models of cerebral ischaemia. Eur J Neurosci 1999;11:3637–3547. [DOI] [PubMed] [Google Scholar]
  • 67. Pilc A, Bras̀ski P, Palucha A, Tokarski K, Bijak M. Antidepressant treatment influences group I of glutamate metabotropic receptors in slices from hippocampal CA1 region. Eur J Pharmacol 1998;349:83–87. [DOI] [PubMed] [Google Scholar]
  • 68. Pin JP, Duvoisin R. Review: Neurotransmitter receptors. I. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 1995;34:1–26. [DOI] [PubMed] [Google Scholar]
  • 69. Riedel G. Function of metabotropic glutamate receptors in learning and memory. TINS 1996;19:219–224. [DOI] [PubMed] [Google Scholar]
  • 70. Sacaan AI, Schoepp DD. Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage. Neurosci Lett 1991;259:1366–1370. [DOI] [PubMed] [Google Scholar]
  • 71. Saugstad J, Segurson TP, Westbrook GL. Metabotropic glutamate receptors activate G‐protein coupled inwardly rectifying K+ current in Xenopus oocytes. J Neurosci 1996;16:5979–5985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Sayer RJ. Group I metabotropic glutamate receptors mediate slow inhibition of calcium current in neocortical neurons. J Neurophysiol 1998;80:1981–1988. [DOI] [PubMed] [Google Scholar]
  • 73. Scanziani M, Gahwiler BH, Thomson SM. Presynaptic inhibition of excitatory synaptic transmission by muscarinic and metabotropic glutamate receptors activation in the hippocampus: are Ca2+ channels involved Neuropharmacology 1995;34:1549–1557. [DOI] [PubMed] [Google Scholar]
  • 74. Schnabel R, Kilpatrick IC, Collingridge GL. Protein phosphatase inhibitors facilitate DHPG‐induced LTD in the CA1 region of the hippocampus. Br J Pharmacol 2001;132:1095–1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Schoepp DD, Goldsworthy J, Johnson BG, Salhoff CR, Baker SR. 3,5‐Dihydroxyphenylglycine is a highly selective agonists for phosphoinositide‐linked metabotropic glutamate receptors in the rat hippocampus. J Neurochem 1994;63:769–772. [DOI] [PubMed] [Google Scholar]
  • 76. Schroder UH, Opitz T, Jager T, Sabelhaus CF, Breder J, Reymann KG. Protective effect of group I metabotropic glutamate receptor activation against hypoxic/hypoglycemic injury in rat hippocampal slices; timing and involvement of protein kinase C. Neuropharmacology 1999;38:209–216. [DOI] [PubMed] [Google Scholar]
  • 77. Schwarzer C, Kirchmar E, Sperk G. Metabotropic glutamate receptors mediate activation of NPY‐Y2 receptor expression in the rat dentate gyrus. Neuro Report 1998a;9:2347–2351. [DOI] [PubMed] [Google Scholar]
  • 78. Servitja JM, Masgrau R, Sarri E, Picatoste F. Group I metabotropic glutamate receptors mediate phospholipase D stimulation in rat cultured astrocytes. J Neurochem 1999;72:1441–1447. [DOI] [PubMed] [Google Scholar]
  • 79. Shelton MK, McCarthy KD. Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. GLIA 1999;26:1–11. [DOI] [PubMed] [Google Scholar]
  • 80. Simontov R. γ‐Aminobutyric acid (GABA) enhances glutamate cytotoxicity in a cerebellar cell line. Brain Res Bull 1990;24:711–715. [DOI] [PubMed] [Google Scholar]
  • 81. Stanfa LC, Dickenson AH. Inflammation alters the effects of mGlu receptor agonists in spinal nociceptive neurones. Eur J Pharmacol 1998;347:165–172. [DOI] [PubMed] [Google Scholar]
  • 82. Strasser U, Lobner D, Behrens MM, Canzoniero LM, Choi DW. Antagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures. Eur J Neurosci 1998;10:2848–2855. [DOI] [PubMed] [Google Scholar]
  • 83. Taber MT, Fibiger AC. Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: Modulation by metabotropic glutamate receptors. J Neurosci 1995;15:3896–3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Takahashi T, Forsythe ID, Tsujimoto T, Barnes‐Davies M, Onodera K. Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 1996;274:594–597. [DOI] [PubMed] [Google Scholar]
  • 85. Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizumo N, Nakanishi S. Signal tranduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGlu3 and mGluR4. J Neurosci 1993;13:1372–1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Thomsen C, Dalby NO. Roles of metabotropic glutamate receptor subtypes in modulation of pentylenetetrazole‐induced seizure activity in mice. Neuropharmacology 1998;37:1465–1473. [DOI] [PubMed] [Google Scholar]
  • 87. Tizzano JP, Griffey KI, Schoepp DD. Induction or protection of limbic seizures in mice by mGluR subtype selective agonists. Neuropharmacology 1995;34:1063–1067. [DOI] [PubMed] [Google Scholar]
  • 88. Tsuchihashi T, Liu Y, Matsumura K, Abe I, Fujishima M. Metabotropic glutamate receptor subtypes involved in cardiovascular regulation in the rostral ventrolateral medulla of rats. Brain Res Bull 2000;52:279–283. [DOI] [PubMed] [Google Scholar]
  • 89. Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by group I mGluR in spinal cord motoneurons. Neuropharmacology 1997;36:1047–1055. [DOI] [PubMed] [Google Scholar]
  • 90. Wang JQ, Mao L. Sustained behavioral stimulation following selective activation of group I metabotropic glutamate receptors in rat striatum. Pharmacol Biochem Behav 2000;65:439–447. [DOI] [PubMed] [Google Scholar]
  • 91. Wis̀niewska RJ, Sitniewska E, Wis̀niewski K. Cardiovascular effects of (S)‐3,5‐DHPG, a selective agonist of group I metabotropic glutamate receptors. Pol J Pharmacol 2001;53:194. [Google Scholar]
  • 92. Wis̀niewski K, Holy ZZ. The influence of class I metabotropic glutamate receptors stimulation on the behavioural effects of angiotensin II in rats. Eur Neuropsyhopharmacol 2000;10:39–106. [Google Scholar]
  • 93. Ye ZC, Sontheimer H. Metabotropic glutamate receptor agonists reduce glutamate release from cultured astrocytes. GLIA 1999;25:270–281. [PubMed] [Google Scholar]
  • 94. Young MR, Fleetwood‐Walker SM, Dickinson T, et al. Behavioural and electrophysiological evidence supporting a role of group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. Brain Res 1997;777:161–169. [PubMed] [Google Scholar]
  • 95. Yu SP, Sensi SL, Canzoniero LM, Buisson A, Choi DW. Membrane‐delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J Physiol (Lond) 1997;499:721–732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Zahorodna A, Palucha A, Bijak M. Comparison of the effects of low and high concentrations of group I metabotropic receptor agonists on field potentials in the hippocampal CA1 region in vitro. Pol J Pharmacol 1998;50:291–298. [PubMed] [Google Scholar]
  • 97. Zalewska‐Wis̀ska A, Wis̀niewski K. Behavioural activity of (S)‐3,5‐DHPG, a selective agonist of group I metabotropic glutamate receptors. Pharmacol Res 2000;42:239–245. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES