ABSTRACT
Since CRH has been shown to mediate stress‐induced physiological and behavioral changes, it has been hypothesized that CRH receptor antagonists may have therapeutic potential in disorders that involve excessive CRH activity. CP‐154,526 and its close analog antalarmin are potent, brain‐penetrable, selective nonpeptide CRH1 receptor antagonists that were discovered in an effort to develop compounds with efficacy in CNS disorders precipitated by stress. Since its discovery many investigators have used CP‐154,526 as a tool to study the pharmacology of CRH and its receptors and to evaluate its therapeutic potential in a variety of CNS and peripheral disorders. Systemically‐administered CP‐154,526 has been demonstrated to antagonize CRH‐ and stress‐induced neuroendocrine, neurochemical, electrophysiological, and behavioral effects.
These findings support the hypothesis that CRH1 receptor antagonists may have therapeutic utility in a number of neuropsychiatric disorders. CP‐154,526, as well as other CRH1 receptor antagonists that have since been discovered, have also shown activity in several preclinical models of anxiety, depression, and substance abuse, while having little effect on locomotor activity and motor function. Although these effects are on occasion inconsistent among different laboratories, clinical evaluation of CRH 1 antagonists appears justified on the basis of these and clinical data implicating the involvement of CRH in several CNS disorders. The effects of CRH 1 antagonists on cognition, neurodegeneration, inflammation, and the gastrointestinal system have not been as extensively characterized and additional studies will be necessary to evaluate their therapeutic potential in these areas.
Keywords: Antalarmin; Antidepressants; Anxiety; Anxiolytics; Corticotropin‐releasing factor (CRF); Corticotropin‐releasing hormone (CRH); CP‐154,526; CRH1 receptor antagonist; Depression; Substance abuse
Full Text
The Full Text of this article is available as a PDF (267.4 KB).
References
- 1. Aggelidou E, Hillhouse E W, Grammatopoulos D K. Up‐regulation of nitric oxide synthase and modulation of the guanylate cyclase activity by corticotropin‐releasing hormone but not urocortin II or urocortin III in cultured human pregnant myometrial cells. Proc Natl Acad Sci USA 2002;99 (5): 3300–3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Arato M, Banki CM, Nemeroff CB, Bissette G. Hypothalamic‐pituitary‐adrenal axis and suicide. Ann NY Acad Sci 1986;487:263–270. [DOI] [PubMed] [Google Scholar]
- 3. Arborelius L, Skelton KH, Thrivikraman KV, Plotsky PM, Schulz DW, Owens MJ. Chronic administration of the selective corticotropin‐releasing factor 1 receptor antagonist CP‐154,526: Behavioral, endocrine and neurochemical effects in the rat. J Pharmacol Exp Ther 2000;294 (2): 588–597. [PubMed] [Google Scholar]
- 4. Ardati A, Gottowik J, Henriot S, Clerc RG, Kilpatrick GJ. Pharmacological characterisation of the recombinant human CRF binding protein using a simple assay. J Neurosci Meth 1998;80 (1): 99–105. [DOI] [PubMed] [Google Scholar]
- 5. Baldwin HA, Rassnick S, Rivier J, Koob GF, Britton KT. CRF antagonist reverses the “anxiogenic” response to ethanol withdrawal in the rat. Psychopharmacology (Berl) 1991;103 (2): 227–232. [DOI] [PubMed] [Google Scholar]
- 6. Behan DP, Heinrichs SC, Troncoso JC, et al. Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer's disease. Nature 1995;378 (6554): 284–287. [DOI] [PubMed] [Google Scholar]
- 7. Behan DP, Grigoriadis DE, Lovenberg T, et al. Neurobiology of corticotropin releasing factor (CRF) receptors and CRF‐binding protein: Implications for the treatment of CNS disorders. Mol Psychiatry 1996;1 (4): 265–277. [PubMed] [Google Scholar]
- 8. Berridge CW, Dunn AJ. CRF and restraint‐stress decrease exploratory behavior in hypophysectomized mice. Pharmacol Biochem Behav 1989;34 (3): 517–519. [DOI] [PubMed] [Google Scholar]
- 9. Beuzen A, Belzung C. Link between emotional memory and anxiety states: A study by principal component analysis. Physiol Behav 1995;58 (1): 111–118. [DOI] [PubMed] [Google Scholar]
- 10. Boissier JR, Simon P, Aron C. A new method for rapid screening of minor tranquillizers in mice. Eur J Pharmacol 1968;4 (2): 145–151. [DOI] [PubMed] [Google Scholar]
- 11. Bornstein SR, Webster EL, Torpy DJ, et al. Chronic effects of a nonpeptide corticotropin‐releasing hormone type I receptor antagonist on pituitary‐adrenal function, body weight, and metabolic regulation. Endocrinology 1998;139 (4): 1546–1555. [DOI] [PubMed] [Google Scholar]
- 12. Brady LS. Stress, antidepressant drugs, and the locus coeruleus. Brain Res Bull 1994;35 (5–6): 545–556. [DOI] [PubMed] [Google Scholar]
- 13. Briscoe RJ, Cabrera CL, Baird TJ, Rice KC, Woods JH. Antalarmin blockade of corticotropin releasing hormone‐induced hypertension in rats. Brain Res 2000;881 (2): 204–207. [DOI] [PubMed] [Google Scholar]
- 14. Britton KT, Morgan J, Rivier J, Vale W, Koob GF. Chlordiazepoxide attenuates response suppression induced by corticotropin‐releasing factor in the conflict test. Psychopharmacology (Berl) 1985;86 (1–2): 170–174. [DOI] [PubMed] [Google Scholar]
- 15. Britton KT, Lee G, Dana R, Risch SC, Koob GF. Activating and “anxiogenic” effects of corticotropin releasing factor are not inhibited by blockade of the pituitary‐adrenal system with dexamethasone. Life Sci 1986;39 (14): 1281–1286. [DOI] [PubMed] [Google Scholar]
- 16. Britton KT, Lee G, Vale W, Rivier J, Koob GF. Corticotropin releasing factor (CRF) receptor antagonist blocks activating and “anxiogenic” actions of CRF in the rat. Brain Res 1986;369 (1–2): 303–306. [DOI] [PubMed] [Google Scholar]
- 17. Brugger S, Sanchez R, Brugger AJ, Martinez JA. ICV administration of CRF blocker (CRF9–41 delta helical) reduces morphine withdrawal in rats. Prog Neuropsychopharmacol Biol Psych 1998;22 (5): 775–785. [DOI] [PubMed] [Google Scholar]
- 18. Brunson KL, Eghbal‐Ahmadi M, Bender R, Chen Y, Baram TZ. Long‐term, progressive hippocampal cell loss and dysfunction induced by early‐life administration of corticotropin‐releasing hormone reproduce the effects of early‐life stress. Proc Natl Acad Sci USA 2001;98 (15): 8856–8861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Butler PD, Weiss JM, Stout JC, Nemeroff CB. Corticotropin‐releasing factor produces fear‐enhancing and behavioral activating effects following infusion into the locus coeruleus. J Neurosci 1990;10 (1): 176–183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Cantarella G, Lempereur L, Lombardo G, et al. Divergent effects of corticotropin releasing hormone on endothelial cell nitric oxide synthase are associated with different expression of CRH type 1 and 2 receptors. Br J Pharmacol 2001;134 (4): 837–844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Chaki S, Okuyama S, Nakazato A, et al. In vitro pharmacological profile of nonpeptide CRF1 receptor antagonists, CRA1000 and CRA1001. Eur J Pharmacol 1999;371 (2–3): 205–211. [DOI] [PubMed] [Google Scholar]
- 22. Chalmers D, Lovenberg T, De Souza E. Localization of novel corticotropin‐releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: Comparison with CRF1 receptor mRNA expression. J Neurosci 1995;15 (10): 6340–6350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Chan EC, Falconer J, Madsen G, et al. A corticotropin‐releasing hormone type I receptor antagonist delays parturition in sheep. Endocrinology 1998;139 (7): 3357–3360. [DOI] [PubMed] [Google Scholar]
- 24. Chang CP, Pearse RV, 2nd , O'Connell S, Rosenfeld MG. Identification of a seven transmembrane helix receptor for corticotropin‐releasing factor and sauvagine in mammalian brain. Neuron 1993;11 (6): 1187–1195. [DOI] [PubMed] [Google Scholar]
- 25. Chen C, Dagnino R, Jr. , De Souza EB, et al. Design and synthesis of a series of non‐peptide high‐affinity human corticotropin‐releasing factor1 receptor antagonists. J Med Chem 1996;39 (22): 4358–4360. [DOI] [PubMed] [Google Scholar]
- 26. Chen MF, Chiu TH, Lee EH. Noradrenergic mediation of the memory‐enhancing effect of corticotropin‐releasing factor in the locus coeruleus of rats. Psychoneuroendocrinology 1992;17 (2–3): 113–124. [DOI] [PubMed] [Google Scholar]
- 27. Chen R, Lewis KA, Perrin MH, Vale WW. Expression cloning of a human corticotropin‐releasing‐factor receptor. Proc Natl Acad Sci USA 1993;90 (19): 8967–8971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Chen YL, Mansbach RS, Winter SM, et al. Synthesis and oral efficacy of a 4‐(butylethylamino)pyrrolo[2,3‐d]pyrimidine: A centrally active corticotropin‐releasing factor 1 receptor antagonist. J Med Chem 1997;40 (11): 1749–1754. [DOI] [PubMed] [Google Scholar]
- 29. Contarino A, Dellu F, Koob GF, et al. Reduced anxiety‐like and cognitive performance in mice lacking the corticotropin‐releasing factor receptor 1. Brain Res 1999;835(1): 1–9. [DOI] [PubMed] [Google Scholar]
- 30. Corder R, Turnill D, Ling N, Gaillard RC. Attenuation of corticotropin releasing factor‐induced hypotension in anesthetized rats with the CRF antagonist, alpha‐helical CRF9–41: Comparison with effect on ACTH release. Peptides 1992;13(1): 1–6. [DOI] [PubMed] [Google Scholar]
- 31. Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 1980;13 (2): 167–170. [DOI] [PubMed] [Google Scholar]
- 32. Dautzenberg FM, Hauger RL. The CRF peptide family and their receptors: Yet more partners discovered. Trends Pharmacol Sci 2002;23 (2): 71–77. [DOI] [PubMed] [Google Scholar]
- 33. Davis M. The role of the amygdala in fear‐potentiated startle: Implications for animal models of anxiety. Trends Pharmacol Sci 1992;13 (1): 35–41. [DOI] [PubMed] [Google Scholar]
- 34. de Wit H. Priming effects with drugs and other reinforcers. Exp Clin Psychopharmacol 1996;4:5–10. [Google Scholar]
- 35. Deak T, Nguyen KT, Ehrlich AL, et al. The impact of the nonpeptide corticotropin‐releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress. Endocrinology 1999;140 (1): 79–86. [DOI] [PubMed] [Google Scholar]
- 36. Dermitzaki E, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin‐releasing hormone induces Fas ligand production and apoptosis in PC12 cells via activation of p38 mitogen‐activated protein kinase. J Biol Chem 2002;277 (14): 12280–12287. [DOI] [PubMed] [Google Scholar]
- 37. Dufau ML, Tinajero JC, Fabbri A. Corticotropin‐releasing factor: An antireproductive hormone of the testis. FASEB J 1993;7 (2): 299–307. [DOI] [PubMed] [Google Scholar]
- 38. Dunn AJ, File SE. Corticotropin‐releasing factor has an anxiogenic action in the social interaction test. Horm Behav 1987;21 (2): 193–202. [DOI] [PubMed] [Google Scholar]
- 39. Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin‐releasing factor administration: Is CRF a mediator of anxiety or stress responses Brain Res Brain Res Rev 1990;15 (2): 71–100. [DOI] [PubMed] [Google Scholar]
- 40. Ehrman RN, Robbins SJ, Childress AR, O'Brien CP. Conditioned responses to cocaine‐related stimuli in cocaine abuse patients. Psychopharmacology (Berl) 1992;107 (4): 523–529. [DOI] [PubMed] [Google Scholar]
- 41. Elenkov IJ, Webster EL, Torpy DJ, Chrousos GP. Stress, corticotropin‐releasing hormone, glucocorticoids, and the immune/inflammatory response: Acute and chronic effects. Ann NY Acad Sci 1999;876:1–11 ; discussion 11–13. [DOI] [PubMed] [Google Scholar]
- 42. Erb S, Shaham Y, Stewart J. Stress reinstates cocaine‐seeking behavior after prolonged extinction and a drug‐free period. Psychopharmacology (Berl) 1996;128 (4): 408–412. [DOI] [PubMed] [Google Scholar]
- 43. Erb S, Shaham Y, Stewart J. The role of corticotropin‐releasing factor and corticosterone in stress‐ and cocaine‐induced relapse to cocaine seeking in rats. J Neurosci 1998;18 (14): 5529–5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Fanselow MS. Conditioned and unconditional components of post‐shock freezing. Pavlov J Biol Sci 1980;15 (4): 177–182. [DOI] [PubMed] [Google Scholar]
- 45. Fisher LA, Rivier J, Rivier C, Spiess J, Vale W, Brown MR. Corticotropin‐releasing factor (CRF): Central effects on mean arterial pressure and heart rate in rats. Endocrinology 1982;110 (6): 2222–2224. [DOI] [PubMed] [Google Scholar]
- 46. Fleisher‐Berkovich S, Danon A. Effect of corticotropin‐releasing factor on prostaglandin synthesis in endothelial cells and fibroblasts. Endocrinology 1995;136 (9): 4068–4072. [DOI] [PubMed] [Google Scholar]
- 47. Fox MW, Anderson RE, Meyer FB. Neuroprotection by corticotropin releasing factor during hypoxia in rat brain. Stroke 1993;24 (7): 1072–10 75; discussion 1075–1076. [DOI] [PubMed] [Google Scholar]
- 48. Fukudo S, Nomura T, Hongo M. Impact of corticotropin‐releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome. Gut 1998;42 (6): 845–849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Funai EF, O'Neill LM, Davidson A, Roque H, Finlay TH. A corticotropin releasing hormone receptor antagonist does not delay parturition in rats. J Perinat Med 2000;28 (4): 294–297. [DOI] [PubMed] [Google Scholar]
- 50. Gilligan PJ, Baldauf C, Cocuzza A, et al. The discovery of 4‐(3‐pentylamino)‐2,7‐dimethyl‐8‐(2‐methyl‐4‐methoxyphenyl)‐pyrazolo‐[1,5‐a]‐pyrimidine: A corticotropin‐releasing factor (hCRF1) antagonist. Bioorg Med Chem 2000;8 (1): 181–189. [DOI] [PubMed] [Google Scholar]
- 51. Goeders NE, Guerin GF. Effects of the CRH receptor antagonist CP‐154,526 on intravenous cocaine self‐administration in rats. Neuropsychopharmacology 2000;23 (5): 577–586. [DOI] [PubMed] [Google Scholar]
- 52. Gottowik J, Goetschy V, Henriot S, et al. Labelling of CRF1 and CRF2 receptors using the novel radioligand, [3H]‐urocortin. Neuropharmacology 1997;36 (10): 1439–1446. [DOI] [PubMed] [Google Scholar]
- 53. Griebel G, Blanchard DC, Jung A, Masuda CK, Blanchard RJ. 5‐HT1A agonists modulate mouse antipredator defensive behavior differently from the 5‐HT2A antagonist pirenperone. Pharmacol Biochem Behav 1995;51 (2–3): 235–244. [DOI] [PubMed] [Google Scholar]
- 54. Griebel G, Perrault G, Sanger DJ. Characterization of the behavioral profile of the non‐peptide CRF receptor antagonist CP‐154,526 in anxiety models in rodents. Comparison with diazepam and buspirone. Psychopharmacology (Berl) 1998;138 (1): 55–66. [DOI] [PubMed] [Google Scholar]
- 55. Griebel G. Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders Pharmacol Ther 1999;82 (1): 1–61. [DOI] [PubMed] [Google Scholar]
- 56. Griebel G, Perrault G, Soubrie P. Effects of SR48968, a selective non‐peptide NK2 receptor antagonist on emotional processes in rodents. Psychopharmacology (Berl) 2001;158 (3): 241–251. [DOI] [PubMed] [Google Scholar]
- 57. Griebel G, Simiand J, Steinberg R, et al. 4‐(2‐Chloro‐4‐methoxy‐5‐methylphenyl)‐N‐[(1S)‐2‐cyclopropyl‐1‐(3‐fluoro‐4‐methylphenyl)ethyl]5‐methyl‐N‐(2‐propynyl)‐1,3‐thiazol‐2‐amine hydrochloride (SSR125543A), a potent and selective corticotrophin‐releasing factor1 receptor antagonist. II. Characterization in rodent models of stress‐related disorders. J Pharmacol Exp Ther 2002;301 (1): 333–345. [DOI] [PubMed] [Google Scholar]
- 58. Guanowsky V, Seymour PA. Effects of CRH and restraint stress in the light/dark anxiety test in mice. Soc Neurosci Abstr 1993;19(1): 2. [Google Scholar]
- 59. Guanowsky V, Chen YL, Seymour PA. Anxiolytic effect of the CRF antagonist CP‐154,526, in a light/dark anxiety test in mice. Soc Neurosci Abstr 1997;23(1): 522. [Google Scholar]
- 60. Gully D, Geslin M, Serva L, et al. 4‐(2‐Chloro‐4‐methoxy‐5‐methylphenyl)‐N‐[(1S)‐2‐cyclopropyl‐1‐(3‐fluoro‐4‐methylphenyl)ethyl]5‐methyl‐N‐(2‐propynyl)‐1,3‐thiazol‐2‐amine hydrochloride (SSR125543A): A potent and selective corticotrophin‐releasing factor(1) receptor antagonist. I. Biochemical and pharmacological characterization. J Pharmacol Exp Ther 2002;301 (1): 322–332. [DOI] [PubMed] [Google Scholar]
- 61. Gulyas J, Rivier C, Perrin M, et al. Potent, structurally constrained agonists and competitive antagonists of corticotropin‐releasing factor. Proc Natl Acad Sci USA 1995;92 (23): 10575–10579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Gurkovskaya O, Goeders NE. Effects of CP‐154,526 on responding during extinction from cocaine self‐administration in rats. Eur J Pharmacol 2001;432 (1): 53–56. [DOI] [PubMed] [Google Scholar]
- 63. Habib KE, Weld KP, Rice KC, et al. Oral administration of a corticotropin‐releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Acad Sci USA 2000;97 (11): 6079–6084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64. Hanani M, Wood JD. Corticotropin‐releasing hormone excites myenteric neurons in the guinea‐pig small intestine. Eur J Pharmacol 1992;211 (1): 23–27. [DOI] [PubMed] [Google Scholar]
- 65. Harro J, Tonissaar M, Eller M. The effects of CRA 1000, a non‐peptide antagonist of corticotropin‐releasing factor receptor type 1, on adaptive behaviour in the rat. Neuropeptides 2001;35 (2): 100–109. [DOI] [PubMed] [Google Scholar]
- 66. Harvey AT, Hennessy MB. Corticotropin‐releasing factor modulation of the ultrasonic vocalization rate of isolated rat pups. Brain Res Dev Brain Res 1995;87 (2): 125–134. [DOI] [PubMed] [Google Scholar]
- 67. He L, Gilligan PJ, Zaczek R, et al. 4‐(1,3‐Dimethoxyprop‐2‐ylamino)‐2,7‐dimethyl‐8‐(2,4‐dichlorophenyl)pyrazolo[1,5‐a]‐1,3,5‐triazine: A potent, orally bioavailable CRF(1) receptor antagonist. J Med Chem 2000;43 (3): 449–456. [DOI] [PubMed] [Google Scholar]
- 68. Heinrichs S, Menzaghi F, Schulteis G, Koob GF, Stinus L. Suppression of cortictropin‐releasing factor in the amygdala attenuates aversive consequences of morphine withdrawal. Behav Pharmacol 1995;6:74–80. [PubMed] [Google Scholar]
- 69. Heinrichs SC, Pich EM, Miczek KA, Britton KT, Koob GF. Corticotropin‐releasing factor antagonist reduces emotionality in socially defeated rats via direct neurotropic action. Brain Res 1992;581 (2): 190–197. [DOI] [PubMed] [Google Scholar]
- 70. Heinrichs SC, De Souza EB, Schulteis G, Lapsansky JL, Grigoriadis DE. Brain penetrance, receptor occupancy and antistress in vivo efficacy of a small molecule corticotropin releasing factor type I receptor selective antagonist. Neuropsychopharmacology 2002;27 (2): 194–202. [DOI] [PubMed] [Google Scholar]
- 71. Hennessy MB, Becker LA, O'Neil DR. Peripherally administered CRH suppresses the vocalizations of isolated guinea pig pups. Physiol Behav 1991;50 (1): 17–22. [DOI] [PubMed] [Google Scholar]
- 72. Hennessy MB, O'Neil DR, Becker LA, Jenkins R, Williams MT, Davis HN. Effects of centrally administered corticotropin‐releasing factor (CRF) and alpha‐helical CRF on the vocalizations of isolated guinea pig pups. Pharmacol Biochem Behav 1992;43 (1): 37–43. [DOI] [PubMed] [Google Scholar]
- 73. Hernandez JF, Kornreich W, Rivier C, et al. Synthesis and relative potencies of new constrained CRF antagonists. J Med Chem 1993;36 (20): 2860–2867. [DOI] [PubMed] [Google Scholar]
- 74. Hikichi T, Akiyoshi J, Yamamoto Y, Tsutsumi T, Isogawa K, Nagayama H. Suppression of conditioned fear by administration of CRF receptor antagonist CP‐154,526. Pharmacopsychiatry 2000;33 (5): 189–193. [DOI] [PubMed] [Google Scholar]
- 75. Ho SP, Takahashi LK, Livanov V, et al. Attenuation of fear conditioning by antisense inhibition of brain corticotropin releasing factor‐2 receptor. Mol Brain Res 2001;89 (1–2): 29–40. [DOI] [PubMed] [Google Scholar]
- 76. Holsboer F, Muller OA, Doerr HG, et al. ACTH and multisteroid responses to corticotropin‐releasing factor in depressive illness: Relationship to multisteroid responses after ACTH stimulation and dexamethasone suppression. Psychoneuroendocrinology 1984;9 (2): 147–160. [DOI] [PubMed] [Google Scholar]
- 77. Holsboer F. The rationale for corticotropin‐releasing hormone receptor (CRH‐R) antagonists to treat depression and anxiety. J Psychiatr Res 1999;33 (3): 181–214. [DOI] [PubMed] [Google Scholar]
- 78. Hope PJ, Turnbull H, Farr S, et al. Peripheral administration of CRF and urocortin: Effects on food intake and the HPA axis in the marsupial Sminthopsis crassicaudata. Peptides 2000;21 (5): 669–677. [DOI] [PubMed] [Google Scholar]
- 79. Hsu SY, Hsueh AJ. Human stresscopin and stresscopin‐related peptide are selective ligands for the type 2 corticotropin‐releasing hormone receptor. Nat Med 2001;7 (5): 605–611. [DOI] [PubMed] [Google Scholar]
- 80. Huhman KL, Bunnell BN, Mougey EH, Meyerhoff JL. Effects of social conflict on POMC‐derived peptides and glucocorticoids in male golden hamsters. Physiol Behav 1990;47 (5): 949–956. [DOI] [PubMed] [Google Scholar]
- 81. Huhman KL, Moore TO, Ferris CF, Mougey EH, Meyerhoff JL. Acute and repeated exposure to social conflict in male golden hamsters: Increases in plasma POMC‐peptides and cortisol and decreases in plasma testosterone. Horm Behav 1991;25 (2): 206–216. [DOI] [PubMed] [Google Scholar]
- 82. Huhman KL, Moore TO, Mougey EH, Meyerhoff JL. Hormonal responses to fighting in hamsters: Separation of physical and psychological causes. Physiol Behav 1992;51 (5): 1083–1086. [DOI] [PubMed] [Google Scholar]
- 83. Imaki T, Katsumata H, Miyata M, Naruse M, Imaki J, Minami S. Expression of corticotropin‐releasing hormone type 1 receptor in paraventricular nucleus after acute stress. Neuroendocrinology 2001;73 (5): 293–301. [DOI] [PubMed] [Google Scholar]
- 84. Inoue T, Tsuchiya K, Koyama T. Serotonergic activation reduces defensive freezing in the conditioned fear paradigm. Pharmacol Biochem Behav 1996;53 (4): 825–831. [DOI] [PubMed] [Google Scholar]
- 85. Insel TR, Harbaugh CR. Central administration of corticotropin releasing factor alters rat pup isolation calls. Pharmacol Biochem Behav 1989;32 (1): 197–201. [DOI] [PubMed] [Google Scholar]
- 86. Iredale PA, Terwilliger R, Widnell KL, Nestler EJ, Duman RS. Differential regulation of corticotropin‐releasing factor1 receptor expression by stress and agonist treatments in brain and cultured cells. Mol Pharmacol 1996;50 (5): 1103–1110. [PubMed] [Google Scholar]
- 87. Iredale PA, Alvaro JD, Lee Y, Terwilliger R, Chen YL, Duman RS. Role of corticotropin‐releasing factor receptor‐1 in opiate withdrawal. J Neurochem 2000;74 (1): 199–208. [DOI] [PubMed] [Google Scholar]
- 88. Isogawa K, Akiyoshi J, Hikichi T, Yamamoto Y, Tsutsumi T, Nagayama H. Effect of corticotropin releasing factor receptor 1 antagonist on extracellular norepinephrine, dopamine and serotonin in hippocampus and prefrontal cortex of rats in vivo. Neuropeptides 2000;34 (3–4): 234–239. [DOI] [PubMed] [Google Scholar]
- 89. Iwakiri Y, Chijiiwa Y, Motomura Y, Osame M, Nawata H. Presence of functional receptors for corticotropin releasing hormone in caecal circular smooth muscle cells of guinea pig. Life Sci 1997;60 (11): 857–864. [DOI] [PubMed] [Google Scholar]
- 90. Jasnow AM, Banks MC, Owens EC, Huhman KL. Differential effects of two corticotropin‐releasing factor antagonists on conditioned defeat in male Syrian hamsters (Mesocricetus auratus). Brain Res 1999;846 (1): 122–128. [DOI] [PubMed] [Google Scholar]
- 91. Karalis K, Sano H, Redwine J, Listwalk S, Wilder RL, Chrousos GP. Autocrine or paracrine inflammatory actions of corticotropin‐releasing hormone in vivo. Science 1991;254:421–423. [DOI] [PubMed] [Google Scholar]
- 92. Karalis K, Muglia LJ, Bae D, Hilderbrand H, Majzoub JA. CRH and the immune system. J Neuroimmunol 1997;72 (2): 131–136. [DOI] [PubMed] [Google Scholar]
- 93. Kasckow JW, Baker D, Geracioti TD, Jr. Corticotropin‐releasing hormone in depression and post‐traumatic stress disorder. Peptides 2001;22 (5): 845–851. [DOI] [PubMed] [Google Scholar]
- 94. Kawahara H, Kawahara Y, Westerink BHC. The role of afferents to the locus coeruleus in the handling stress‐induced increase in the release of noradrenaline in the medial prefrontal cortex: A dual‐probe micro‐dialysis study in the rat brain. Eur J Pharmacol 2000;387 (3): 279–286. [DOI] [PubMed] [Google Scholar]
- 95. Kehne JH, Coverdale S, McCloskey TC, Hoffman DC, Cassella JV. Effects of the CRF1 receptor antagonist, CP 154,526, in the separation‐induced vocalization anxiolytic test in rat pups. Neuropharmacology 2000;39 (8): 1357–1367. [DOI] [PubMed] [Google Scholar]
- 96. Keller C, Bruelisauer A, Lemaire M, Enz A. Brain pharmacokinetics of a nonpeptidic corticotropin‐releasing factor receptor antagonist. Drug Metab Disp 2002;30 (2): 173–176. [DOI] [PubMed] [Google Scholar]
- 97. Kikusui T, Takeuchi Y, Mori Y. Involvement of corticotropin‐releasing factor in the retrieval process of fear‐conditioned ultrasonic vocalization in rats. Physiol Behav 2000;71 (3–4): 323–328. [DOI] [PubMed] [Google Scholar]
- 98. Kirby LG, Rice KC, Valentino RJ. Effects of corticotropin‐releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology 2000;22 (2): 148–162. [DOI] [PubMed] [Google Scholar]
- 99. Kishimoto T, Pearse RVI, Lin C, Rosenfeld M. A sauvagine/corticotropin‐releasing factor receptor expressed in heart and skeletal muscle. Proc Natl Acad Sci USA 1995;92 (4): 1108–1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100. Kosten TR, Rounsaville BJ, Kleber HD. A 2.5‐year follow‐up of depression, life crises, and treatment effects on abstinence among opioid addicts. Arch Gen Psychiatry 1986;43 (8): 733–738. [DOI] [PubMed] [Google Scholar]
- 101. Kostich WA, Chen A, Sperle K, Largent BL. Molecular identification and analysis of a novel human corticotropin‐releasing factor (CRF) receptor: The CRF2gamma receptor. Mol Endocrinol 1998;12 (8): 1077–1085. [DOI] [PubMed] [Google Scholar]
- 102. Kumar KB, Karanth KS. Alpha‐helical CRF blocks differential influence of corticotropin releasing factor (CRF) on appetitive and aversive memory retrieval in rats. J Neural Transm 1996;103 (8–9): 1117–1126. [DOI] [PubMed] [Google Scholar]
- 103. Le AD, Harding S, Juzytsch W, Watchus J, Shalev U, Shaham Y. The role of corticotrophin‐releasing factor in stress‐induced relapse to alcohol‐seeking behavior in rats. Psychopharmacology (Berl) 2000;150 (3): 317–324. [DOI] [PubMed] [Google Scholar]
- 104. Levenson JL, Fallon HJ. Fluoxetine treatment of depression caused by interferon‐alpha. Am J Gastroenterol 1993;88 (5): 760–761. [PubMed] [Google Scholar]
- 105. Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an additional member of the corticotropin‐releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci USA 2001;98 (13): 7570–7575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106. Lezoualc'h F, Engert S, Berning B, Behl C. Corticotropin‐releasing hormone‐mediated neuroprotection against oxidative stress is associated with the increased release of non‐amyloidogenic amyloid beta precursor protein and with the suppression of nuclear factor‐kappaB. Mol Endocrinol 2000;14 (1): 147–159. [DOI] [PubMed] [Google Scholar]
- 107. Liaw CW, Lovenberg TW, Barry G, Oltersdorf T, Grigoriadis DE, de Souza EB. Cloning and characterization of the human corticotropin‐releasing factor‐2 receptor complementary deoxyribonucleic acid. Endocrinology 1996;137 (1): 72–77. [DOI] [PubMed] [Google Scholar]
- 108. Lorang MT, Chen C, McCarthy JR, DeSouza EB, Grigoriadis DE. In vitro and ex vivo receptor occupancy studies of a selective non‐peptide CRF1 receptor antagonist NBI 27914. Soc Neurosci Abstr 1997;23(2): 1764. [Google Scholar]
- 109. Lovenberg TW, Liaw CW, Grigoriadis DE, et al. Cloning and characterization of a functionally distinct corticotropin‐releasing factor receptor subtype from rat brain. Proc Natl Acad Sci USA 1995;92 (3): 836–840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110. Lovenberg TW, Chalmers DT, Liu C, De Souza EB. CRF2 alpha and CRF2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrinology 1995;136 (9): 4139–4142. [DOI] [PubMed] [Google Scholar]
- 111. Lu L, Ceng X, Huang M. Corticotropin‐releasing factor receptor type I mediates stress‐induced relapse to opiate dependence in rats. Neuroreport 2000;11 (11): 2373–2378. [DOI] [PubMed] [Google Scholar]
- 112. Lu L, Liu D, Ceng X, Ma L. Differential roles of corticotropin‐releasing factor receptor subtypes 1 and 2 in opiate withdrawal and in relapse to opiate dependence. Eur J Neurosci 2000;12 (12): 4398–4404. [PubMed] [Google Scholar]
- 113. Lu L, Liu D, Ceng X. Corticotropin‐releasing factor receptor type 1 mediates stress‐induced relapse to cocaine‐conditioned place preference in rats. Eur J Pharmacol 2001;415 (2–3): 203–208. [DOI] [PubMed] [Google Scholar]
- 114. Lundkvist J, Zhen C, Teheranian R, et al. A non peptidic corticotropin releasing factor receptor antagonist attenuates fever and exhibits anxiolytic‐like activity. Eur J Pharmacol 1996;309 (2): 195–200. [DOI] [PubMed] [Google Scholar]
- 115. Lyons MK, Anderson RE, Meyer FB. Corticotropin releasing factor antagonist reduces ischemic hippocampal neuronal injury. Brain Res 1991;545 (1–2): 339–342. [DOI] [PubMed] [Google Scholar]
- 116. Maciag CM, Dent G, Gilligan P, et al. Effects of a non‐peptide CRF antagonist (DMP696) on the behavioral and endocrine sequelae of maternal separation. Neuropsychopharmacology 2002;26 (5): 574–582. [DOI] [PubMed] [Google Scholar]
- 117. Mackay KB, Bozigian H, Grigoriadis DE, Loddick SA, Verge G, Foster A C. Neuroprotective effects of the CRF1 antagonist R121920 after permanent focal ischemia in the rat. J Cereb Blood Flow Metab 2001;21 (10): 1208–1214. [DOI] [PubMed] [Google Scholar]
- 118. Maecker H, Desai A, Dash R, Rivier J, Vale W, Sapolsky R. Astressin, a novel and potent CRF antagonist, is neuroprotective in the hippocampus when administered after a seizure. Brain Res 1997;744 (1): 166–170. [DOI] [PubMed] [Google Scholar]
- 119. Maillot C, Million M, Wei JY, Gauthier A, Tache Y. Peripheral corticotropin‐releasing factor and stress‐stimulated colonic motor activity involve type 1 receptor in rats. Gastroenterology 2000;119 (6): 1569–1579. [DOI] [PubMed] [Google Scholar]
- 120. Makrigiannakis A, Zoumakis E, Kalantaridou S, et al. Corticotropin‐releasing hormone promotes blastocyst implantation and early maternal tolerance. Nat Immunol 2001;2 (11): 1018–1024. [DOI] [PubMed] [Google Scholar]
- 121. Mancinelli R, Azzena GB, Diana M, Forgione A, Fratta W. In vitro excitatory actions of corticotropin‐releasing factor on rat colonic motility. J Auton Pharmacol 1998;18 (6): 319–324. [DOI] [PubMed] [Google Scholar]
- 122. Mansbach RS, Brooks EN, Chen YL. Antidepressant‐like effects of CP‐154,526, a selective CRF1 receptor antagonist. Eur J Pharmacol 1997;323 (1): 21–26. [DOI] [PubMed] [Google Scholar]
- 123. Martinez V, Barquist E, Rivier J, Tache Y. Central CRF inhibits gastric emptying of a nutrient solid meal in rats: The role of CRF2 receptors. Am J Physiol 1998;274 (5 Pt 1): G965–970. [DOI] [PubMed] [Google Scholar]
- 124. Martinez V, Tache Y. Role of CRF receptor 1 in central CRF‐induced stimulation of colonic propulsion in rats. Brain Res 2001;893 (1–2): 29–35. [DOI] [PubMed] [Google Scholar]
- 125. Martinez V, Wang L, Rivier JE, Vale W, Tache Y. Differential actions of peripheral corticotropin‐releasing factor (CRF), urocortin II, and urocortin III on gastric emptying and colonic transit in mice: Role of CRF receptor subtypes 1 and 2. J Pharmacol Exp Ther 2002;301 (2): 611–617. [DOI] [PubMed] [Google Scholar]
- 126. Martins JM, Kastin AJ, Banks WA. Unidirectional specific and modulated brain to blood transport of corticotropin‐releasing hormone. Neuroendocrinology 1996;63 (4): 338–348. [DOI] [PubMed] [Google Scholar]
- 127. McCarthy JR, Heinrichs SC, Grigoriadis DE. Recent advances with the CRF1 receptor: Design of small molecule inhibitors, receptor subtypes and clinical indications. Curr Pharm Des 1999;5 (5): 289–315. [PubMed] [Google Scholar]
- 128. Menzaghi F, Howard RL, Heinrichs SC, Vale W, Rivier J, Koob GF. Characterization of a novel and potent corticotropin‐releasing factor antagonist in rats. J Pharmacol Exp Ther 1994;269 (2): 564–572. [PubMed] [Google Scholar]
- 129. Menzaghi F, Rassnick S, Heinrichs S, et al. The role of corticotropin‐releasing factor in the anxiogenic effects of ethanol withdrawal. Ann NY Acad Sci 1994;739:176–184. [DOI] [PubMed] [Google Scholar]
- 130. Merlo Pich E, Lorang M, Yeganeh M, et al. Increase of extracellular corticotropin‐releasing factor‐like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci 1995;15 (8): 5439–5447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131. Millan MJ, Brocco M, Gobert A, Dorey G, Casara P, Dekeyne A. Anxiolytic properties of the selective, non‐peptidergic CRF(1) antagonists, CP 154,526 andDMP695: A comparison to other classes of anxiolytic agent. Neuropsychopharmacology 2001;25 (4): 585–600. [DOI] [PubMed] [Google Scholar]
- 132. Million M, Maillot C, Saunders P, Rivier J, Vale W, Tache Y. Human urocortin II, a new CRF‐related peptide, displays selective CRF(2)‐mediated action on gastric transit in rats. Am J Physiol 2002;282 (1): 34–40. [DOI] [PubMed] [Google Scholar]
- 133. Molewijk HE, Hartog K, van der Poel AM, Mos J, Olivier B. Reduction of guinea pig pup isolation calls by anxiolytic and antidepressant drugs. Psychopharmacology (Berl) 1996;128 (1): 31–38. [DOI] [PubMed] [Google Scholar]
- 134. Morimoto A, Nakamori T, Morimoto K, Tan N, Murakami N. The central role of corticotrophin‐releasing factor (CRF‐41) in psychological stress in rats. J Physiol (Lond) 1993;460 (1): 221–229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135. Morley JE, Levine AS. Corticotrophin releasing factor, grooming and ingestive behavior. Life Sci 1982;31 (14): 1459–1464. [DOI] [PubMed] [Google Scholar]
- 136. Muramatsu Y, Fukushima K, Iino K, et al. Urocortin and corticotropin‐releasing factor receptor expression in the human colonic mucosa. Peptides 2000;21 (12): 1799–1809. [DOI] [PubMed] [Google Scholar]
- 137. Nemeroff CB, Widerlov E, Bissette G, et al. Elevated concentrations of CSF corticotropin‐releasing factor‐like immunoreactivity in depressed patients. Science 1984;226 (4680): 1342–1344. [DOI] [PubMed] [Google Scholar]
- 138. Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M. Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 1988;45 (6): 577–579. [DOI] [PubMed] [Google Scholar]
- 139. Nemeroff CB, Bissette G, Ami H, Fink M. Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy. Corticotrophin‐releasing factor, beta‐endorphin and somatostatin. Br J Psychiatry 1991;158:59–63. [DOI] [PubMed] [Google Scholar]
- 140. Nijsen MJ, Croiset G, Stam R, et al. The role of the CRH type 1 receptor in autonomic responses to corticotropin‐releasing hormone in the rat. Neuropsychopharmacology 2000;22 (4): 388–399. [DOI] [PubMed] [Google Scholar]
- 141. Nozu T, Martinez V, Rivier J, Tache Y. Peripheral urocortin delays gastric emptying: Role of CRF receptor 2. Am J Physiol 1999;276 (4, Pt 1): G867–874. [DOI] [PubMed] [Google Scholar]
- 142. Okuyama S, Chaki S, Kawashima N, et al. Receptor binding, behavioral, and electrophysiological profiles of nonpeptide corticotropin‐releasing factor subtype 1 receptor antagonists CRA1000 and CRA1001. J Pharmacol Exp Ther 1999;289 (2): 926–935. [PubMed] [Google Scholar]
- 143. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin‐releasing factor. Pharmacol Rev 1991;43 (4): 425–473. [PubMed] [Google Scholar]
- 144. Parsons SJ, Rhodes SA, Connor HE, Rees S, Brown J, Giles H. Use of a dual firefly and Renilla luciferase reporter gene assay to simultaneously determine drug selectivity at human corticotrophin releasing hormone 1 and 2 receptors. Anal Biochem 2000;281 (2): 187–192. [DOI] [PubMed] [Google Scholar]
- 145. Pedersen WA, Wan R, Zhang P, Mattson MP. Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin‐releasing hormone receptor type I. J Neurosci 2002;22 (2): 404–412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146. Pelleymounter MA, Joppa M, Carmouche M, et al. Role of corticotropin‐releasing factor (CRF) receptors in the anorexic syndrome induced by CRF. J Pharmacol Exp Ther 2000;293 (3): 799–806. [PubMed] [Google Scholar]
- 147. Pellow S, File SE. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus‐maze: A novel test of anxiety in the rat. Pharmacol Biochem Behav 1986;24 (3): 525–529. [DOI] [PubMed] [Google Scholar]
- 148. Perrin M, Donaldson C, Chen R, et al. Identification of a second corticotropin‐releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci USA 1995;92 (7): 2969–2973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149. Perrin MH, Donaldson C J, Chen R, Lewis KA, Vale WW. Cloning and functional expression of a rat brain corticotropin releasing factor (CRF) receptor. Endocrinology 1993;133 (6): 3058–3061. [DOI] [PubMed] [Google Scholar]
- 150. Petty F, Sherman AD. Reversal of learned helplessness by imipramine. Commun Psychopharmacol 1979;3 (5): 371–373. [PubMed] [Google Scholar]
- 151. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: A primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977;229 (2): 327–336. [PubMed] [Google Scholar]
- 152. Rassnick S, Heinrichs SC, Britton KT, Koob GF. Microinjection of a corticotropin‐releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic‐like effects of ethanol withdrawal. Brain Res 1993;605 (1): 25–32. [DOI] [PubMed] [Google Scholar]
- 153. Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: A member of the corticotropin‐releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA 2001;98 (5): 2843–2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154. Rivier CL, Plotsky PM. Mediation by corticotropin releasing factor (CRF) of adenohypophysial hormone secretion. Annu Rev Physiol 1986;48:475–494. [DOI] [PubMed] [Google Scholar]
- 155. Rivier J, Rivier C, Vale W. Synthetic competitive antagonists of corticotropin‐releasing factor: Effect on ACTH secretion in the rat. Science 1984;224 (4651): 889–891. [DOI] [PubMed] [Google Scholar]
- 156. Rodriguez de Fonseca F, Carrera MR, Navarro M, Koob GF, Weiss F. Activation of corticotropin‐releasing factor in the limbic system during cannabinoid withdrawal. Science 1997;276 (5321): 2050–2054. [DOI] [PubMed] [Google Scholar]
- 157. Roe SY, McGowan EM, Rothwell NJ. Evidence for the involvement of corticotrophin‐releasing hormone in the pathogenesis of traumatic brain injury. Eur J Neurosci 1998;10 (2): 553–559. [DOI] [PubMed] [Google Scholar]
- 158. Roy‐Byrne PP, Uhde TW, Post RM, Gallucci W, Chrousos GP, Gold PW. The corticotropin‐releasing hormone stimulation test in patients with panic disorder. Am J Psychiatry 1986;143 (7): 896–899. [DOI] [PubMed] [Google Scholar]
- 159. Ruhmann A, Bonk I, Lin CR, Rosenfeld MG, Spiess J. Structural requirements for peptidic antagonists of the corticotropin‐releasing factor receptor (CRFR): Development of CRFR2beta‐selective antisauvagine‐30. Proc Natl Acad Sci USA 1998;95 (26): 15264–15269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160. Sananes CB, Davis M. N‐methyl‐D‐aspartate lesions of the lateral and basolateral nuclei of the amygdala block fear‐potentiated startle and shock sensitization of startle. Behav Neurosci 1992;106 (1): 72–80. [DOI] [PubMed] [Google Scholar]
- 161. Sanchez MM, Young LJ, Plotsky PM, Insel TR. Autoradiographic and in situ hybridization localization of corticotropin‐releasing factor 1 and 2 receptors in nonhuman primate brain. J Comp Neurol 1999;408 (3): 365–377. [PubMed] [Google Scholar]
- 162. Sarnyai Z, Biro E, Gardi J, Vecsernyes M, Julesz J, Telegdy G. Brain corticotropin‐releasing factor mediates “anxiety‐like” behavior induced by cocaine withdrawal in rats. Brain Res 1995;675 (1–2): 89–97. [DOI] [PubMed] [Google Scholar]
- 163. Saunders PR, Maillot C, Million M, Tache Y. Peripheral corticotropin‐releasing factor induces diarrhea in rats: Role of CRF 1 receptor in fecal watery excretion. Eur J Pharmacol 2002;435 (2–3): 231–235. [DOI] [PubMed] [Google Scholar]
- 164. Schoeffter P, Feuerbach D, Bobirnac I, Gazi L, Longato R. Functional, endogenously expressed corticotropin‐releasing factor receptor type 1 (CRF1) and CRF 1 receptor mRNA expression in human neuroblastoma SH‐SY5Y cells. Fund Clin Pharmacol 1999;13 (4): 484–489. [DOI] [PubMed] [Google Scholar]
- 165. Schulz DW, Mansbach RS, Sprouse J, et al. CP‐154,526: A potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc Natl Acad Sci USA 1996;93 (19): 10477–10482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166. Seligman ME, Beagley G. Learned helplessness in the rat. J Comp Physiol Psychol 1975;88 (2): 534–541. [DOI] [PubMed] [Google Scholar]
- 167. Shaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J. Corticotropin‐releasing factor, but not corticosterone, is involved in stress‐induced relapse to heroin‐seeking in rats. J Neurosci 1997;17 (7): 2605–2614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168. Shaham Y, Erb S, Leung S, Buczek Y, Stewart J. CP‐154,526, a selective, non‐peptide antagonist of the corticotropin‐releasing factor1 receptor attenuates stress‐induced relapse to drug seeking in cocaine‐ and heroin‐trained rats. Psychopharmacology (Berl) 1998;137 (2): 184–190. [DOI] [PubMed] [Google Scholar]
- 169. Sherman AD, Sacquitne JL, Petty F. Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 1982;16 (3): 449–454. [DOI] [PubMed] [Google Scholar]
- 170. Sherman JE, Kalin NH. ICV‐CRH alters stress‐induced freezing behavior without affecting pain sensitivity. Pharmacol Biochem Behav 1988;30 (4): 801–807. [DOI] [PubMed] [Google Scholar]
- 171. Singh LK, Boucher W, Pang X, et al. Potent mast cell degranulation and vascular permeability triggered by urocortin through activation of corticotropin‐releasing hormone receptors. J Pharmacol Exp Ther 1999;288 (3): 1349–1356. [PubMed] [Google Scholar]
- 172. Smagin GN, Harris RB, Ryan DH. Corticotropin‐releasing factor receptor antagonist infused into the locus coeruleus attenuates immobilization stress‐induced defensive withdrawal in rats. Neurosci Lett 1996;220 (3): 167–170. [DOI] [PubMed] [Google Scholar]
- 173. Smart D, Coppell A, Rossant C, Hall M, McKnight AT. Characterisation using microphysiometry of CRF receptor pharmacology. Eur J Pharmacol 1999;379 (2–3): 229–235. [DOI] [PubMed] [Google Scholar]
- 174. Song C, Earley B, Leonard BE. Behavioral, neurochemical, and immunological responses to CRF administration. Is CRF a mediator of stress Ann NY Acad Sci 1995;771:55–72. [DOI] [PubMed] [Google Scholar]
- 175. Stenzel P, Kesterson R, Yeung W, Cone RD, Rittenberg MB, Stenzel‐Poore MP. Identification of a novel murine receptor for corticotropin‐releasing hormone expressed in the heart. Mol Endocrinol 1995;9 (5): 637–645. [DOI] [PubMed] [Google Scholar]
- 176. Stenzel‐Poore MP, Duncan JE, Rittenberg MB, Bakke AC, Heinrichs SC. CRH overproduction in transgenic mice: Behavioral and immune system modulation. Ann NY Acad Sci 1996;780:36–48. [DOI] [PubMed] [Google Scholar]
- 177. Stephanou A, Jessop DS, Knight RA, Lightman SL. Corticotrophin‐releasing factor‐like immunoreactivity and mRNA in human leukocytes. Brain Behav Immun 1990;4 (1): 67–73. [DOI] [PubMed] [Google Scholar]
- 178. Strijbos PJ, Relton JK, Rothwell NJ. Corticotrophin‐releasing factor antagonist inhibits neuronal damage induced by focal cerebral ischaemia or activation of NMDA receptors in the rat brain. Brain Res 1994;656 (2): 405–408. [DOI] [PubMed] [Google Scholar]
- 179. Sutton RE, Koob GF, Le Moal M, Rivier J, Vale W. Corticotropin releasing factor produces behavioural activation in rats. Nature 1982;297 (5864): 331–333. [DOI] [PubMed] [Google Scholar]
- 180. Swerdlow NR, Geyer MA, Vale WW, Koob GF. Corticotropin‐releasing factor potentiates acoustic startle in rats: Blockade by chlordiazepoxide. Psychopharmacology (Berl) 1986;88 (2): 147–152. [DOI] [PubMed] [Google Scholar]
- 181. Swerdlow NR, Britton KT, Koob GF. Potentiation of acoustic startle by corticotropin‐releasing factor (CRF) and by fear are both reversed by alpha‐helical CRF(9–41). Neuropsychopharmacology 1989;2 (4): 285–292. [DOI] [PubMed] [Google Scholar]
- 182. Tache Y, Monnikes H, Bonaz B, Rivier J. Role of CRF in stress‐related alterations of gastric and colonic motor function. Ann NY Acad Sci 1993;697 (1): 233–243. [DOI] [PubMed] [Google Scholar]
- 183. Takahashi LK, Kalin NH, Vanden Burgt JA, Sherman JE. Corticotropin‐releasing factor modulates defensive‐withdrawal and exploratory behavior in rats. Behav Neurosci 1989;103 (3): 648–654. [DOI] [PubMed] [Google Scholar]
- 184. Takamori K, Kawashima N, Chaki S, Nakazato A, Kameo K. Involvement of corticotropin‐releasing factor subtype 1 receptor in the acquisition phase of learned helplessness in rats. Life Sci 2001;69 (11): 1241–1248. [DOI] [PubMed] [Google Scholar]
- 185. Takamori K, Kawashima N, Chaki S, Nakazato A, Kameo K. Involvement of the hypothalamus‐pituitary‐adrenal axis in antidepressant activity of corticotropin‐releasing factor subtype 1 receptor antagonists in the rat learned helplessness test. Pharmacol Biochem Behav 2001;69 (3–4): 445–449. [DOI] [PubMed] [Google Scholar]
- 186. Theoharides TC, Singh LK, Boucher W, et al. Corticotropin‐releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology 1998;139 (1): 403–413. [DOI] [PubMed] [Google Scholar]
- 187. Thiebot MH, Soubrie P, Simon P, Boissier JR. Dissociation of two components of rat behaviour by psychotropic drugs. Utilization for studying anxiolytic drugs. Psychopharmacology (Berl) 1973;31 (1): 77–90. [DOI] [PubMed] [Google Scholar]
- 188. Timpl P, Spanagel R, Sillaber I, et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin‐releasing hormone receptor. Nat Genet 1998;19 (2): 162–166. [DOI] [PubMed] [Google Scholar]
- 189. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41 ‐residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta‐endorphin. Science 1981;213 (4514): 1394–1397. [DOI] [PubMed] [Google Scholar]
- 190. Valentino RJ, Foote SL, Aston‐Jones G. Corticotropin‐releasing factor activates noradrenergic neurons of the locus coeruleus. Brain Res 1983;270 (2): 363–367. [DOI] [PubMed] [Google Scholar]
- 191. van Riezen H, Schnieden H, Wren AF. Olfactory bulb ablation in the rat: Behavioural changes and their reversal by antidepressant drugs. Br J Pharmacol 1977;60 (4): 521–528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 192. Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin‐releasing factor. Nature 1995;378 (6554): 287–292. [DOI] [PubMed] [Google Scholar]
- 193. Vita N, Laurent P, Lefort S, et al. Primary structure and functional expression of mouse pituitary and human brain corticotrophin releasing factor receptors. FEBS Lett 1993;335(1): 1–5. [DOI] [PubMed] [Google Scholar]
- 194. Vogel JR, Beer B, Clody DE. A simple and reliable conflict procedure for testing anti‐anxiety agents. Psychopharmacology (Berl) 1971;21(1): 1–7. [DOI] [PubMed] [Google Scholar]
- 195. Wang L, Martinez V, Rivier JE, Tache Y. Peripheral urocortin inhibits gastric emptying and food intake in mice: Differential role of CRF receptor 2. Am J Physiol 2001;281 (5): R1401–1410. [DOI] [PubMed] [Google Scholar]
- 196. Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP. In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin‐releasing hormone (CRH) receptor antagonist: Suppression of pituitary ACTH release and peripheral inflammation. Endocrinology 1996;137 (12): 5747–5750. [DOI] [PubMed] [Google Scholar]
- 197. Weninger SC, Dunn AJ, Muglia LJ, et al. Stress‐induced behaviors require the corticotropin‐releasing hormone (CRH) receptor, but not CRH. Proc Natl Acad Sci USA 1999;96 (14): 8283–8288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198. Willenberg HS, Bornstein SR, Hiroi N, et al. Effects of a novel corticotropin‐releasing‐hormone receptor type I antagonist on human adrenal function. Mol Psychiatry 2000;5 (2): 137–141. [DOI] [PubMed] [Google Scholar]
- 199. Willner P. The validity of animal models of depression. Psychopharmacology (Berl) 1984;83 (1): 1–16. [DOI] [PubMed] [Google Scholar]
- 200. Wong ML, Webster EL, Spokes H, et al. Chronic administration of the non‐peptide CRH type 1 receptor antagonist antalarmin does not blunt hypothalamic‐pituitary‐adrenal axis responses to acute immobilization stress. Life Sci 1999;65 (4): PL53–58. [DOI] [PubMed] [Google Scholar]
- 201. Yamano M, Yuki H, Yasuda S, Miyata K. Corticotropin‐releasing hormone receptors mediate consensus interferon‐alpha YM643‐induced depression‐like behavior in mice. J Pharmacol Exp Ther 2000;292 (1): 181–187. [PubMed] [Google Scholar]
- 202. Yokotani K, Murakami Y, Okada S, Hirata M. Role of brain arachidonic acid cascade on central CRF 1 receptor‐mediated activation of sympatho‐adrenomedullary outflow in rats. Eur J Pharmacol 2001;419 (2–3): 183–189. [DOI] [PubMed] [Google Scholar]
- 203. Zhang L, Barrett JE. Interactions of corticotropin‐releasing factor with antidepressant and anxiolytic drugs: Behavioral studies with pigeons. Biol Psychiatry 1990;27 (9): 953–967. [DOI] [PubMed] [Google Scholar]
- 204. Zobel AW, Nickel T, Kunzel HE, et al. Effects of the high‐affinity corticotropin‐releasing hormone receptor 1 antagonist R121919 in major depression: The first 20 patients treated. J Psychiatr Res 2000;34 (3): 171–181. [DOI] [PubMed] [Google Scholar]
- 205. Zorrilla EP, Schulteis G, Ling N, Koob GF, De Souza EB. Performance‐enhancing effects of CRF‐BP ligand inhibitors. Neuroreport 2001;12 (6): 1231–1234. [DOI] [PubMed] [Google Scholar]