Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;8(2):143–158. doi: 10.1111/j.1527-3458.2002.tb00220.x

Ensaculin (KA‐672. HCl): A Multitransmitter Approach to Dementia Treatment

Robert Hoerr 1,, Michael Noeldner 2
PMCID: PMC6741668  PMID: 12177685

ABSTRACT

Ensaculin, a novel benzopyranone substituted with a piperazine moiety, showed memory‐enhancing effects in paradigms of passive and conditioned avoidance in both normal and artificially amnesic rodents. It exhibited neuroprotective activities in an NMDA toxicity model and neurotrophic effects in primary cultured rat brain cells. The compound could be characterized as a weak NMDA receptor–operated channel blocker. In receptor‐binding studies, ensaculin was found to have high affinities to serotonergic 5‐HT1A and 5‐HT7 receptors, adrenergic α1, and dopaminergic D2 and D3 receptors. Due to its unique pharmacodynamic profile, ensaculin may have potential as an antidementia agent acting on various transmitter systems.

Keywords: Ensaculin, Benzopyranone, Dementia, Neurotransmitters, Memory, Neuroprotection, 5‐HT1A, 5HT7, NMDA antagonists

Full Text

The Full Text of this article is available as a PDF (204.2 KB).

References

  • 1. Beal MF, Uhl G, Mazurek MF, Kowall N, Martin GB. Somatostatin: Alterations in the central nervous system in neurological disorders In: Martin GB, Barchas JD, Eds. Neuropeptides in Neurological and Psychiatric Disease. New York : Raven Press, 1986;215–257. [PubMed] [Google Scholar]
  • 2. Benzi G, Moretti A. Is there a rationale for the use of acetylcholinesterase inhibitors in the therapy of Alzheimer's disease Eur J Pharmacol 1998;346:1–13. [DOI] [PubMed] [Google Scholar]
  • 3. . Anonymous. Two more Alzheimer's drugs fail. Scrip 1999;2436:21. [Google Scholar]
  • 4. Chalmers DT, Dewar D, Graham DI, Brooks DN, McCulloch J. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type. Proc Natl Acad Sci USA 1990;87:1352–1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Chatterjee S, Nöldner M. An aggregate brain cell culture model for studying neuronal degeneration and regeneration. J Neural Transm 1994;44 (Suppl 1): 47–60. [DOI] [PubMed] [Google Scholar]
  • 6. De Wied D. Inhibitory effects of ACTH and related peptides on extinction of conditioned avoidance behavior in rats. Proc Soc Exp Biol Med 1966;122:28–32. [DOI] [PubMed] [Google Scholar]
  • 7. De Wied D, Bohus B, van Ree I, Urban I. Behavioral and electrophysiological effects of peptides related to lipotropin (ß‐LPH). J Pharmacol Exp Ther 1978;3:570–580. [PubMed] [Google Scholar]
  • 8. Gsell W, Moll G, Sofic E, Riederer P. Cholinergic and monoaminergic neurotransmitter systems in patients with Alzheimer's disease and senile dementia of Alzheimer type: A critical evaluation In: Maurer K, ed. Dementias: Neurochemistry, Neuropathology, Neuroimaging, Neuropsychology and Genetics. Braunschweig : Vieweg, 1993;25–51. [Google Scholar]
  • 9. Higgins GA, Mufson EJ. NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer's disease. Exp Neurol 1989;106:222–236. [DOI] [PubMed] [Google Scholar]
  • 10. Hilgert M, Noeldner M, Chatterjee S, Klein J. KA‐672 inhibits brain acetylcholinesterase in vitro but not in vivo. Neurosci Lett 1999;263:193–196. [DOI] [PubMed] [Google Scholar]
  • 11. Hoffmann D, Donovan H. Catalepsy as a rodent model for detecting antipsychotic drugs with extrapyramidal side effect liability. Psychopharmacology 1995;120:128–133. [DOI] [PubMed] [Google Scholar]
  • 12. Honegger P, Lenoir D, Favrod P. Growth and differentiation of aggregating foetal brain cells in a serum‐free defined medium. Nature 1979;282:305–308. [DOI] [PubMed] [Google Scholar]
  • 13. Hoyer S. Internal report. Karlsruhe : Dr. Willmar Schwabe, 1993. [Google Scholar]
  • 14. Klimaviciusa L, Chatterjee SS, Nöldner M, Svirskis S, Klusa V. Neurotrophic effects of KA‐672 HCl on cultured embryonic cells. Pharmacol Toxicol 1997;80(Suppl 1): 28. 9249858 [Google Scholar]
  • 15. Klusa V, Germane S, Chatterjee S, Noeldner M. KA‐672. HCl: A new orally active antidemntia agent. Eur J Pharm Sci 1994;2:123. [Google Scholar]
  • 16. Kornhuber J, Weller M. Psychotogenicity and N‐methyl‐D‐aspartate receptor antagonism: Implications for neuroprotective pharmacotherapy. Biol Psychiatry 1997;41:135–144. [DOI] [PubMed] [Google Scholar]
  • 17. Lishko P, Maximyuk O, Chatterjee S, Noeldner M, Krishtal O. The putative cognitive enhancer KA‐672 HCl is an uncompetitive voltage‐dependent NMDA receptor antagonist. Neuro Report 1998;9:4193–4197. [DOI] [PubMed] [Google Scholar]
  • 18. Lucas G, Bonhomme N, De Deurwaerdère P, Le Moal M, Spampinato U. 8‐OH‐DPAT, a 5HT1A agonist, and ritanserin, a 5HT2A/C antagonist, reverse haloperidol‐induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 1997;131:57–63. [DOI] [PubMed] [Google Scholar]
  • 19. Matsumoto T, Tsuda S, Nakamura S. The neurotrophic effects of ebiratide, an analog of ACTH 4–9, on cultured septal cells and aged rats. J Neural Transm Gen Sect 1995;100:1–15. [DOI] [PubMed] [Google Scholar]
  • 20. Nöldner M, Chatterjee SS. Excitatory amino acid induced toxicity in the aggregate cell cultures from fetal rat brain. Naunyn Schmiedeberg's Arch Pharmacol 1993;347(Suppl): 529. [Google Scholar]
  • 21. Nöldner M, Chatterjee SS. Antagonism of N‐methyl‐D‐aspartic acid (NMDA) induced convulsions by adrenergic, serotonergic and dopaminergic agents. Naunyn Schmiedeberg's Arch Pharmacol 1995;351(Suppl 1): 642. [Google Scholar]
  • 22. Nöldner M, Hauer H, Chatterjee SS. Ensaculin hydrochloride. Drugs Future 1996;21:779–781. [Google Scholar]
  • 23. Nöldner M, Chatterjee SS. Modulation of neurotransmitter by ensaculin. Pharmacol Toxicol 1997;80(Suppl 1): 38. 9148281 [Google Scholar]
  • 24. Nöldner M, Chatterjee SS. Identification of KA‐672 HCl as a new functional antagonist of N‐methyl‐D‐aspartic acid (NMDA) induced convulsions and mortality in mice. Naunyn Schmiedebergs Arch Pharmacol 1999;359(Suppl): 368. [Google Scholar]
  • 25. Pizzolato G, Chierichetti F, Fabbri M, et al. Reduced striatal dopamine receptors in Alzheimer's disease. Single photon emission tomography study with the D2 tracer [123I]‐IBZM. Neurology 1996;47:1065–1068. [DOI] [PubMed] [Google Scholar]
  • 26. Reinikainen KJ, Soininen H, Riekkinen PJ. Neurotransmitter changes in Alzheimer's disease: Implications to diagnostics and therapy. J Neurosci Res 1990;27:576–586. [DOI] [PubMed] [Google Scholar]
  • 27. Reisner E, Noeldner M, Rossner S, Chatterjee S, Bigl V, Schliebs R. Acute effects of KA‐672, a putative cognitive enhancer on neurotransmitter receptor binding in mouse brain. Nerosci Lett 1999;274:187–190. [DOI] [PubMed] [Google Scholar]
  • 28. Scheuer K, Maras A, Gattaz WF, Cairns N, Förstl H, Müller WE. Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer's disease. Dementia 1996;7:210–214. [DOI] [PubMed] [Google Scholar]
  • 29. Schilter B, Noeldner M, Chatterjee S, Honegger P. Anticonvulsant drug toxicity in rat brain cell aggregate cultures. Toxic In Vitro 1995;47:381–386. [DOI] [PubMed] [Google Scholar]
  • 30. Skujinš A, Svirskiš Š, Noeldner M, Chatterjee S, Klusa V. Influence of KA‐672 HCl on the NMDA‐induced neurotoxicity in mice: The contents of the brain monoamines. Pharmacol Toxicol 1997;80(Suppl1): 48. [Google Scholar]
  • 31. Sourgens H, Hoerr R, Biber A, Steinbrede H, Derendorf H. KA 672 HCl, a neuronal activator against dementia: Tolerability, safety, and preliminary pharmacokinetics after single and multiple oral doses in healthy male and female volunteers. J Clin Pharmacol 1998;38:373–381. [DOI] [PubMed] [Google Scholar]
  • 32. Teismann P, Ferger B. Comparison of the novel drug ensaculin with MK‐801 on the reduction of hydroxyl radical production in rat striatum after local application of glutamate. Brain Res 2000;857:165–171. [DOI] [PubMed] [Google Scholar]
  • 33. Teismann P, Ferger B. In vivo effects of the putative cognitive enhancer KA‐672 HCl in comparison with 8‐hydroxy‐2‐(Di‐N‐propylamine)tetralin and haloperidol on dopamine, 3.4.‐dihydroxy phenylacetic acid, serotonin and 5‐hydroxyindolacetic acid levels in striatal and cortical brain regions. Prog Neuropsychopharmacol Biol Psychiatry 2000;24:337–348. [DOI] [PubMed] [Google Scholar]
  • 34. Winter JC, Helsley SE, Rabin RA. The discriminative stimulus effects of KA‐672, a putative cognitive enhancer: Evidence for a 5HT1A component. Pharmacol Biochem Behav 1998;60:703–707. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES