ABSTRACT
Memantine has been demonstrated to be safe and effective in the symptomatic treatment of Alzheimer's disease (AD). While the neurobiological basis for the therapeutic activity of memantine is not fully understood, the drug is not a cholinesterase inhibitor and, therefore, acts differently from current AD therapies. Memantine can interact with a variety of ligand‐gated ion channels. However, NMDA receptors appear to be a key target of memantine at therapeutic concentrations. Memantine is an uncompetitive (channel blocking) NMDA receptor antagonist. Like other NMDA receptor antagonists, memantine at high concentrations can inhibit mechanisms of synaptic plasticity that are believed to underlie learning and memory. However, at lower, clinically relevant concentrations memantine can under some circumstances promote synaptic plasticity and preserve or enhance memory in animal models of AD. In addition, memantine can protect against the excitotoxic destruction of cholinergic neurons. Blockade of NMDA receptors by memantine could theoretically confer disease‐modifying activity in AD by inhibiting the “weak” NMDA receptor‐dependent excitotoxicity that has been hypothesized to play a role in the progressive neuronal loss that underlies the evolving dementia. Moreover, recent in vitro studies suggest that memantine abrogates β‐amyloid (Aβ) toxicity and possibly inhibits Aβ production. Considerable attention has focused on the investigation of theories to explain the better tolerability of memantine over other NMDA receptor antagonists, particularly those that act by a similar channel blocking mechanism such as dissociative anesthetic‐like agents (phencyclidine, ketamine, MK‐801). A variety of channel‐level factors could be relevant, including fast channel‐blocking kinetics and strong voltage‐dependence (allowing rapid relief of block during synaptic activity), as well as reduced trapping (permitting egress from closed channels). These factors may allow memantine to block channel activity induced by low, tonic levels of glutamate — an action that might contribute to symptomatic improvement and could theoretically protect against weak excitotoxicity — while sparing synaptic responses required for normal behavioral functioning, cognition and memory.
Keywords: Alzheimer's disease, Amantadine, Channel block, Dementia, 5‐HT3 receptor, Memantine, Nicotinic receptor, NMDA receptor, Uncompetitive antagonist
Full Text
The Full Text of this article is available as a PDF (518.9 KB).
References
- 1. Abi‐Saab WM, D'Souza DC, Moghaddam B, Krystal JH. The NMDA antagonist model for schizophrenia: Promise and pitfalls. Pharmacopsychiatry 1998;31 (Suppl 2): 104–109. [DOI] [PubMed] [Google Scholar]
- 2. Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology 1992;42:733–738. [DOI] [PubMed] [Google Scholar]
- 3. Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N‐methyl‐aspartate. Br J Pharmacol 1983;79:565–575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Areosa SA, Sherriff F. Memantine for dementia. Cochrane Database Syst Rev 2003;CD003154. [DOI] [PubMed] [Google Scholar]
- 5. Auer RN, Coulter KC. The nature and time course of neuronal vacuolation induced by the N‐methyl‐D‐aspartate antagonist MK‐801. Acta Neuropathol (Berl) 1994;87:1–7. [DOI] [PubMed] [Google Scholar]
- 6. Auer RN, Coupland SG, Jason GW, et al. Postischemic therapy with MK‐801 (dizocilpine) in a primate model of transient focal brain ischemia. Mol Chem Neuropathol 1996;29:193–210. [DOI] [PubMed] [Google Scholar]
- 7. Barber TA, McGettian BF, Meyers RA. The effects of memantine on memory formation for passive avoidance learning in day‐old chicks. Program No. 684.6 (abstract). Washington , DC : Society for Neuroscience, 2002. Online. [Google Scholar]
- 8. Barnes CA, Danysz W, Parsons CG. Effects of the uncompetitive NMDA receptor antagonist memantine on hippocampal long‐term potentiation, short‐term exploratory modulation and spatial memory in awake, freely moving rats. Eur J Neurosci 1996;8:565–571. [DOI] [PubMed] [Google Scholar]
- 9. Beck C, Wollmuth LP, Seeburg PH, Sakmann B, Kuner T. NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 1999;22:559–570. [DOI] [PubMed] [Google Scholar]
- 10. Benvenga MJ, Spaulding TC. Amnesic effect of the novel anticonvulsant MK‐801. Pharmacol Biochem Behav 1988;30:205–207. [DOI] [PubMed] [Google Scholar]
- 11. Benveniste M, Mayer ML. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9–aminoacridine. J Physiol 1995;483 (Pt 2): 367–384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Bierer LM, Haroutunian V, Gabriel S, et al. Neurochemical correlates of dementia severity in Alzheimer's disease: Relative importance of the cholinergic deficits. J Neurochem 1995;64:749–760. [DOI] [PubMed] [Google Scholar]
- 13. Blanchard BJ, Thomas VL, Ingram VM. Mechanism of membrane depolarization caused by the Alzheimer Aβ1–42 peptide. Biochem Biophys Res Commun 2002;293:1197–1203. [DOI] [PubMed] [Google Scholar]
- 14. Blanpied TA, Boeckman FA, Aizenman E, Johnson JW. Trapping channel block of NMDA‐activated responses by amantadine and memantine. J Neurophysiol 1997;77:309–323. [DOI] [PubMed] [Google Scholar]
- 15. Bliss TV, Collingridge GL. A synaptic model of memory: Long‐term potentiation in the hippocampus. Nature 1993;361:31–39. [DOI] [PubMed] [Google Scholar]
- 16. Borchelt DR, Ratovitski T, van Lare J, et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 1997;19:939–945. [DOI] [PubMed] [Google Scholar]
- 17. Bormann J. Memantine is a potent blocker of N‐methyl‐D‐aspartate (NMDA) receptor channels. Eur J Pharmacol 1989;166:591–592. [DOI] [PubMed] [Google Scholar]
- 18. Braak H, Braak E. Evolution of the neuropathology of Alzheimer's disease. Acta Neurol Scand Suppl 1996;165:3–12. [DOI] [PubMed] [Google Scholar]
- 19. Braak H, Braak E, Bohl J. Staging of Alzheimer‐related cortical destruction. Eur Neurol 1993;33:403–408. [DOI] [PubMed] [Google Scholar]
- 20. Bresink I, Benke TA, Collett VJ, et al. Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. Br J Pharmacol 1996;119:195–204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Buisson B, Bertrand D. Open‐channel blockers at the human α4β2 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 1998;53:555–563. [DOI] [PubMed] [Google Scholar]
- 22. Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta‐peptide‐induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol Aging 2002;23:655–664. [DOI] [PubMed] [Google Scholar]
- 23. Chen D, Alley GM, Ge Y‐W, Farlow MR, Banerjee PK, Lahiri DK. Memantine and the processing of the beta‐amyloid precursor protein. Program No. 296.3 (abstract). Washington , DC : Society for Neuroscience, 2002. Online. [Google Scholar]
- 24. Chen HS, Lipton SA. Mechanism of memantine block of NMDA‐activated channels in rat retinal ganglion cells: Uncompetitive antagonism. J Physiol (Lond) 1997;499:27–46. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Chen HS, Pellegrini JW, Aggarwal SK, et al. Open‐channel block of N‐methyl‐D‐aspartate (NMDA) responses by memantine: Therapeutic advantage against NMDA receptor‐mediated neurotoxicity. J Neurosci 1992;12:4427–4436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Chen H‐SV, Wang YF, Rayudu PV, et al. Neuroprotective concentrations of the N‐methyl‐D‐aspartate open‐channel blocker memantine are effective without cytoplasmic vacuolation following post‐ischemic administration and do not block maze learning or long‐term potentiation. Neuroscience 1998;86:1121–1132. [DOI] [PubMed] [Google Scholar]
- 27. Choi DW, Maulucci‐Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci 1987;7:357–368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Coan EJ, Irving AJ, Collingridge GL. Low‐frequency activation of the NMDA receptor system can prevent the induction of LTP. Neurosci Lett 1989;105:205–210. [DOI] [PubMed] [Google Scholar]
- 29. Costall B, Naylor RJ. 5‐HT3 receptor antagonists in the treatment of cognitive disorders In: King FD, Jones BJ, Sanger GJ, Eds. 5–Hydroxytryptamine‐3 Receptor Antagonists. Boca Raton , FL : CRC Press, 1993. [Google Scholar]
- 30. Couratier P, Lesort M, Sindou P, Esclaire F, Yardin C, Hugon J. Modifications of neuronal phosphorylated tau immunoreactivity induced by NMDA toxicity. Mol Chem Neuropathol 1996;27:259–273. [DOI] [PubMed] [Google Scholar]
- 31. Couratier P, Lesort M, Terro F, Dussartre C, Hugon J. NMDA antagonist blockade of AT8 tau immunoreactive changes in neuronal cultures. Fundam Clin Pharmacol 1996;10:344–349. [DOI] [PubMed] [Google Scholar]
- 32. Cowburn RF, Wiehager B, Trief E, Li‐Li M, Sundstrom E. Effects of beta‐amyloid‐(25–35) peptides on radioligand binding to excitatory amino acid receptors and voltage‐dependent calcium channels: evidence for a selective affinity for the glutamate and glycine recognition sites of the NMDA receptor. Neurochem Res 1997;22:1437–1442. [DOI] [PubMed] [Google Scholar]
- 33. Csernansky JG, Bardgett ME, Sheline YI, Morris JC, Olney JW. CSF excitatory amino acids and severity of illness in Alzheimer's disease. Neurology 1996;46:1715–1720. [DOI] [PubMed] [Google Scholar]
- 34. Danysz W, Parsons CG, Kornhuber J, Schmidt WJ, Quack G. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents — preclinical studies. Neurosci Biobehav Rev 1997;21:455–468. [DOI] [PubMed] [Google Scholar]
- 35. Danysz W, Zajaczkowski W, Parsons CG. Modulation of learning processes by ionotropic glutamate receptor ligands. Behav Pharmacol 1995;6:455–474. [PubMed] [Google Scholar]
- 36. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51:7–61. [PubMed] [Google Scholar]
- 37. Dinse HR, Ragert P, Pleger B, Schwenkreis P, Tegenthoff M. Pharmacological modulation of perceptual learning and associated cortical reorganization. Science 2003;301:91–94. [DOI] [PubMed] [Google Scholar]
- 38. Ditzler K. Efficacy and tolerability of memantine in patients with dementia syndrome. A double‐blind, placebo controlled trial. Arzneimittelforschung 1991;41:773–780. [PubMed] [Google Scholar]
- 39. Doble A. The role of excitotoxicity in neurodegenerative disease: Implications for therapy. Pharmacol Ther 1999;81:163–221. [DOI] [PubMed] [Google Scholar]
- 40. Dodd PR. Excited to death: different ways to lose your neurones. Biogerontology 2002;3:51–56. [DOI] [PubMed] [Google Scholar]
- 41. Eichenbaum H, Harris K. Toying with memory in the hippocampus. Nat Neurosci 2000;3:205–206. [DOI] [PubMed] [Google Scholar]
- 42. Enarson MC, Hays H, Woodroffe MA. Clinical experience with oral ketamine. J Pain Symptom Manage 1999;17:384–386. [DOI] [PubMed] [Google Scholar]
- 43. Erdo SL, Schafer M. Memantine is highly potent in protecting cortical cultures against excitotoxic cell death evoked by glutamate and N‐methyl‐D‐aspartate. Eur J Pharmacol 1991;198:215–217. [DOI] [PubMed] [Google Scholar]
- 44. Ferrarese C, Aliprandi A, Tremolizzo L, et al. Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 2001;57:671–675. [DOI] [PubMed] [Google Scholar]
- 45. Ferger D, Krieglstein J. Determination of intracellular Ca2+ concentration can be a useful tool to predict neuronal damage and neuroprotective properties of drugs. Brain Res 1996;732:87–94. [DOI] [PubMed] [Google Scholar]
- 46. Ferrarese C, Aliprandi A, Tremolizzo L, et al. Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 2001;57:671–675. [DOI] [PubMed] [Google Scholar]
- 47. Fischer PA, Jacobi P, Schneider E, Schonberger B. [Effects of intravenous administration of memantine in parkinsonian patients (author's transl)]. Arzneimittelforschung 1977;27:1487–1489. [PubMed] [Google Scholar]
- 48. Fleischhacker WW, Buchgeher A, Schubert H. Memantine in the treatment of senile dementia of the Alzheimer type. Prog Neuropsychopharmacol Biol Psychiatry 1986;10:87–93. [DOI] [PubMed] [Google Scholar]
- 49. Flicker C, Dean RL, Watkins DL, Fisher SK, Bartus RT. Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacol Biochem Behav 1983;18:973–981. [DOI] [PubMed] [Google Scholar]
- 50. Frankiewicz T, Parsons CG. Memantine restores long term potentiation impaired by tonic N‐methyl‐D‐aspartate (NMDA) receptor activation following reduction of Mg2+ in hippocampal slices. Neuropharmacology 1999;38:1253–1259. [DOI] [PubMed] [Google Scholar]
- 51. Frankiewicz T, Potier B, Bashir ZI, Collingridge GL, Parsons CG. Effects of memantine and MK‐801 on NMDA‐induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. Br J Pharmacol 1996;117:689–697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Geter‐Douglass B, Witkin JM. Behavioral effects and anticonvulsant efficacies of low‐affinity, uncompetitive NMDA antagonists in mice. Psychopharmacology (Berl) 1999;146:280–289. [DOI] [PubMed] [Google Scholar]
- 53. Geula C. Abnormalities of neural circuitry in Alzheimer's disease: hippocampus and cortical cholinergic innervation. Neurology 1998;51:S18–29 ; discussion S65–17. [DOI] [PubMed] [Google Scholar]
- 54. Giacobini E. Cholinergic foundations of Alzheimer's disease therapy. J Physiol Paris 1998;92:283–287. [DOI] [PubMed] [Google Scholar]
- 55. Giacobini E. Cholinesterase inhibitor therapy stabilizes symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord 2000;14 (Suppl 1): S3–10. [DOI] [PubMed] [Google Scholar]
- 56. Giacobini E. Cholinesterases: New roles in brain function and in Alzheimer's disease. Neurochem Res 2003;28:515–522. [DOI] [PubMed] [Google Scholar]
- 57. Görtelmeyer R, Erbler H. Memantine in the treatment of mild to moderate dementia syndrome. A doubleblind placebo‐controlled study. Arzneimittelforschung 1992;42:904–913. [PubMed] [Google Scholar]
- 58. Grant KA, Colombo G, Grant J, Rogawski MA. Dizocilpine‐like discriminative stimulus effects of low‐affinity uncompetitive NMDA antagonists. Neuropharmacology 1996;35:1709–1719. [DOI] [PubMed] [Google Scholar]
- 59. Grossman W, Schütz W. Memantin und neurogene Blasenstörungen im Rahmen spastischer Zustandsbilder. Arzneimittelforschung 1982;32:1273–1276. [PubMed] [Google Scholar]
- 60. Ha HC, Snyder SH. Poly(ADP‐ribose) polymerase‐1 in the nervous system. Neurobiol Dis 2000;7:225–239. [DOI] [PubMed] [Google Scholar]
- 61. Hargreaves RJ, Hill RG, Iversen LL. Neuroprotective NMDA antagonists: The controversy over their potential for adverse effects on cortical neuronal morphology. Acta Neurochir Suppl (Wien) 1994;60:15–19. [DOI] [PubMed] [Google Scholar]
- 62. Hartmann S, Möbius HJ. Tolerability of memantine in combination with cholinesterase inhibitors in dementia therapy. Int Clin Psychopharmacol 2003;18:81–85. [DOI] [PubMed] [Google Scholar]
- 63. Hay AJ. The action of adamantanamines against influenza A viruses: Inhibition of the M2 ion channel protein. Semin Virol 1992;3:21–30. [Google Scholar]
- 64. Hesselink MB, De Boer BG, Breimer DD, Danysz W. Brain penetration and in vivo recovery of NMDA receptor antagonists amantadine and memantine: A quantitative microdialysis study. Pharm Res 1999;16:637–642. [DOI] [PubMed] [Google Scholar]
- 65. Iqbal K, Li L, Sengupta A, Grundke‐Iqbal I. Memantine restores okadaic acid‐induced changes in protein phosphatase‐2A, CAMKII and tau hyperphosphorylation in rat. J Neurochem 2003;85 (Suppl 1): 43. [Google Scholar]
- 66. Jackisch R, Link T, Neufang B, Koch R. Studies on the mechanism of action of the antiparkinsonian drugs memantine and amantadine: No evidence for direct dopaminomimetic or antimuscarinic properties. Arch Int Pharmacodyn Ther 1992;320:21–42. [PubMed] [Google Scholar]
- 67. Jain KK. Evaluation of memantine for neuroprotection in dementia. Exp Opin Invest Drugs 2000;9:1397–1406. [DOI] [PubMed] [Google Scholar]
- 68. Jimenez‐Jimenez FJ, Molina JA, Gomez P, et al. Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer's disease. J Neural Transm 1998;105:269–277. [DOI] [PubMed] [Google Scholar]
- 69. Jones KW, Schaeffer CL, DeNoble VJ. Systemically administered N‐methyl‐D‐aspartate interferes with acquisition of a passive avoidance response in rats. Pharmacol Biochem Behav 1989;34:181–185. [DOI] [PubMed] [Google Scholar]
- 70. Kashiwagi K, Masuko T, Nguyen CD, et al. Channel blockers acting at N‐methyl‐D‐aspartate receptors: Differential effects of mutations in the vestibule and ion channel pore. Mol Pharmacol 2002;61:533–545. [DOI] [PubMed] [Google Scholar]
- 71. Katzman R, Saitoh T. Advances in Alzheimer's disease. FASEB J 1991;5:278–286. [PubMed] [Google Scholar]
- 72. Kemp JA, McKernan RM. NMDA receptor pathways as drug targets. Nat Neurosci 2002;5 (Suppl): 1039–1042. [DOI] [PubMed] [Google Scholar]
- 73. Koh JY, Yang LL, Cotman CW. Beta‐amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 1990;533:315–320. [DOI] [PubMed] [Google Scholar]
- 74. Korinthenberg R. Is infantile alternating hemiplegia mediated by glutamate toxicity and can it be treated with memantine? [letter]. Neuropediatrics 1996;27:277–278. [DOI] [PubMed] [Google Scholar]
- 75. Kornhuber J, Bormann J, Retz W, Hubers M, Riederer P. Memantine displaces [3H]MK‐801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 1989;166:589–590. [DOI] [PubMed] [Google Scholar]
- 76. Kornhuber J, Quack G. Cerebrospinal fluid and serum concentrations of the N‐methyl‐D‐aspartate (NMDA) receptor antagonist memantine in man. Neurosci Lett 1995;195:137–139. [DOI] [PubMed] [Google Scholar]
- 77. Kornhuber J, Weller M. Psychotogenicity and N‐methyl‐D‐aspartate receptor antagonism: Implications for neuroprotective pharmacotherapy. Biol Psychiatry 1997;41:135–144. [DOI] [PubMed] [Google Scholar]
- 78. Kornhuber J, Weller M, Schoppmeyer K, Riederer P. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 1994;43:91–104. [PubMed] [Google Scholar]
- 79. Krieglstein J, El Nasr MS, Lippert K. Neuroprotection by memantine as increased by hypothermia and nimodipine. Eur J Pharm Sci 1997;5:71–77. [Google Scholar]
- 80. Krieglstein J, Lippert K, Poch G. Apparent independent action of nimodipine and glutamate antagonists to protect cultured neurons against glutamate‐induced damage. Neuropharmacology 1996;35:1737–1742. [DOI] [PubMed] [Google Scholar]
- 81. Kuiper MA, Teerlink T, Visser JJ, Bergmans PL, Scheltens P, Wolters EC. L‐glutamate, L‐arginine and L‐citrulline levels in cerebrospinal fluid of Parkinson's disease, multiple system atrophy, and Alzheimer's disease patients. J Neural Transm 2000;107:183–189. [DOI] [PubMed] [Google Scholar]
- 82. Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B. Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 1996;17:343–352. [DOI] [PubMed] [Google Scholar]
- 83. Lancelot E, Beal MF. Glutamate toxicity in chronic neurodegenerative disease. Prog Brain Res 1998;116:331–347. [DOI] [PubMed] [Google Scholar]
- 84. Lee HG, Zhu X, Ghanbari HA, et al. Differential regulation of glutamate receptors in Alzheimer's disease. Neurosignals 2002;11:282–292. [DOI] [PubMed] [Google Scholar]
- 85. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 1994;330:613–622. [DOI] [PubMed] [Google Scholar]
- 86. Löscher W, Fredow G, Ganter M. Comparison of pharmacodynamic effects of the non‐competitive NMDA receptor antagonists MK‐801 and ketamine in pigs. Eur J Pharmacol 1991;192:377–382. [DOI] [PubMed] [Google Scholar]
- 87. Löscher W, Rogawski MA. Epilepsy In: Lodge D, Danysz W, Parsons CG, Eds. Ionotropic glutamate receptors as therapeutic targets. Johnson City , TN : F.P. Graham Publishing Company, 2002;91–132. [Google Scholar]
- 88. Malenka RC, Nicoll RA. Long‐term potentiation — a decade of progress Science 1999;285:1870–1874. [DOI] [PubMed] [Google Scholar]
- 89. Markesbery WR. Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 1997;23:134–147. [DOI] [PubMed] [Google Scholar]
- 90. Martin SJ, Morris RG. New life in an old idea: The synaptic plasticity and memory hypothesis revisited. Hippocampus 2002;12:609–636. [DOI] [PubMed] [Google Scholar]
- 91. Maskell PD, Newberry N, Bermudez I. The effects of the NMDA receptor antagonists cerestat and memantine on the human nicotinic á7 receptor expressed in Xenopus oocytes. Program Number 137.9 (abstract). Washington , DC : Society for Neuroscience, 2002. Online. [Google Scholar]
- 92. Masuo K, Enomoto K, Maeno T. Effects of memantine on the frog neuromuscular junction. Eur J Pharmacol 1986;130:187–195. [DOI] [PubMed] [Google Scholar]
- 93. Mattson MP. Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 1990;4:105–117. [DOI] [PubMed] [Google Scholar]
- 94. Mattson MP. Cellular actions of β‐amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997;77:1081–1132. [DOI] [PubMed] [Google Scholar]
- 95. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. β‐Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992;12:376–389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96. Mattson MP, Liu D. Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med 2002;2:215–231. [DOI] [PubMed] [Google Scholar]
- 97. McBain CJ, Mayer ML. N‐methyl‐D‐aspartic acid receptor structure and function. Physiol Rev 1994;74:723–760. [DOI] [PubMed] [Google Scholar]
- 98. Mealing GA, Lanthorn TH, Murray CL, Small DL, Morley P. Differences in degree of trapping of low‐affinity uncompetitive N‐methyl‐D‐aspartic acid receptor antagonists with similar kinetics of block. J Pharmacol Exp Ther 1999;288:204–210. [PubMed] [Google Scholar]
- 99. Mealing GA, Lanthorn TH, Small DL, et al. Structural modifications to an N‐methyl‐D‐aspartate receptor antagonist result in large differences in trapping block. J Pharmacol Exp Ther 2001;297:906–914. [PubMed] [Google Scholar]
- 100. Miguel‐Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G. Neuroprotection by memantine against neurodegeneration induced by β‐amyloid(1–40). Brain Res 2002;958:210–221. [DOI] [PubMed] [Google Scholar]
- 101. Miltner FO. Use of symptomatic therapy with memantine in cerebral coma. II. Development of stretch synergisms in coma with brain stem symptoms. Arzneimittelforschung 1982;32:1271–1273. [PubMed] [Google Scholar]
- 102. Misztal M, Frankiewicz T, Parsons CG, Danysz W. Learning deficits induced by chronic intraventricular infusion of quinolinic acid — protection by MK‐801 and memantine. Eur J Pharmacol 1996;296:1–8. [DOI] [PubMed] [Google Scholar]
- 103. Mothet JP, Parent AT, Wolosker H, et al. D‐serine is an endogenous ligand for the glycine site of the N‐methyl‐D‐aspartate receptor. Proc Natl Acad Sci USA 2000;97:4926–4931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104. Muller WE, Mutschler E, Riederer P. Noncompetitive NMDA receptor antagonists with fast open‐channel blocking kinetics and strong voltage‐dependency as potential therapeutic agents for Alzheimer's dementia. Pharmacopsychiatry 1995;28:113–124. [DOI] [PubMed] [Google Scholar]
- 105. Nicholson KL, Jones HE, Balster RL. Evaluation of the reinforcing and discriminative stimulus properties of the low‐affinity N‐methyl‐D‐aspartate channel blocker memantine. Behav Pharmacol 1998;9:231–243. [PubMed] [Google Scholar]
- 106. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 1989;244:1360–1362. [DOI] [PubMed] [Google Scholar]
- 107. Osborne NN, Quack G. Memantine stimulates inositol phosphates production in neurones and nullifies N‐methyl‐D‐aspartate‐induced destruction of retinal neurones. Neurochem Int 1992;21:329–336. [DOI] [PubMed] [Google Scholar]
- 108. Parsons CG, Danysz W, Bartmann A, et al. Amino‐alkyl‐cyclohexanes are novel uncompetitive NMDA receptor antagonists with strong voltage‐dependency and fast blocking kinetics: In vitro and in vivo characterization. Neuropharmacology 1999;38:85–108. [DOI] [PubMed] [Google Scholar]
- 109. Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N‐methyl‐D‐aspartate (NMDA) receptor antagonist — A review of preclinical data. Neuropharmacology 1999;38:735–767. [DOI] [PubMed] [Google Scholar]
- 110. Parsons CG, Stöffler A., Winblad B. Dementia In: Lodge D, Danysz W, Parsons CG. Ionotropic glutamate receptors as therapaeutic targets. Johnson City , TN : F.P. Graham Publishing Company, 2002;229–262. [Google Scholar]
- 111. Parsons CG, Gruner R, Rozental J, Millar J, Lodge D. Patch clamp studies on the kinetics and selectivity of N‐methyl‐D‐aspartate receptor antagonism by memantine (1‐amino‐3,5‐dimethyladamantan). Neuropharmacology 1993;32:1337–1350. [DOI] [PubMed] [Google Scholar]
- 112. Parsons CG, Quack G, Bresink I, et al. Comparison of the potency, kinetics and voltage‐dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 1995;34:1239–1258. [DOI] [PubMed] [Google Scholar]
- 113. Parsons CG, Stöffler A., Winblad B. Dementia In: Lodge D, Danysz W, Parsons CG. Ionotropic glutamate receptors as therapaeutic targets. Johnson City , TN : F.P. Graham Publishing Company, 2002;229–262. [Google Scholar]
- 114. Patel TR, McCulloch J. AMPA receptor antagonism attenuates MK‐801‐induced hypermetabolism in the posterior cingulate cortex. Brain Res 1995;686:254–258. [DOI] [PubMed] [Google Scholar]
- 115. Pellegrini JW, Lipton SA. Delayed administration of memantine prevents N‐methyl‐D‐aspartate receptor‐mediated neurotoxicity. Ann Neurol 1993;33:403–407. [DOI] [PubMed] [Google Scholar]
- 116. Perry G, Nunomura A, Cash AD, et al. Reactive oxygen: Its sources and significance in Alzheimer disease. J Neural Transm Suppl 2002;69–75. [DOI] [PubMed] [Google Scholar]
- 117. Pizzi M, Valerio A, Arrighi V, et al. Inhibition of glutamate‐induced neurotoxicity by a tau antisense oligonucleotide in primary culture of rat cerebellar granule cells. Eur J Neurosci 1995;7:1603–1613. [DOI] [PubMed] [Google Scholar]
- 118. Price DL, Tanzi RE, Borchelt DR, Sisodia SS. Alzheimer's disease: Genetic studies and transgenic models. Annu Rev Genet 1998;32:461–493. [DOI] [PubMed] [Google Scholar]
- 119. Reisberg B. Long‐term treatment with the NMDA antagonist memantine: Results of a 24‐week open‐label extension study in moderate to severe Alzheimer's disease (abstract). Neurobiol Aging 2002;23:S555. [Google Scholar]
- 120. Rammsayer TH. Effects of pharmacologically induced changes in NMDA‐receptor activity on long‐term memory in humans. Learn Mem 2001;8:20–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A. Tau is essential to β‐amyloid‐induced neurotoxicity. Proc Natl Acad Sci USA 2002;99:6364–6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122. Reisberg B. Long‐term treatment with the NMDA antagonist memantine: Results of a 24‐week open‐label extension study in moderate to severe Alzheimer's disease (abstract). Neurobiol Aging 2002;23:S555. [Google Scholar]
- 123. Reisberg B, Doody R, Stöffler A, et al. Memantine in moderate‐to‐severe Alzheimer's disease. N Engl J Med 2003;348:1333–1341. [DOI] [PubMed] [Google Scholar]
- 124. Reiser G, Binmoller FJ, Koch R. Memantine (1‐amino‐3,5‐dimethyladamantane) blocks the serotonin‐induced depolarization response in a neuronal cell line. Brain Res 1988;443:338–344. [DOI] [PubMed] [Google Scholar]
- 125. Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res 2003;140:1–47. [DOI] [PubMed] [Google Scholar]
- 126. Riederer P, Lange KW, Kornhuber J, Danielczyk W. Pharmacotoxic psychosis after memantine in Parkinson's disease. Lancet 1991;338:1022–1023. [DOI] [PubMed] [Google Scholar]
- 127. Rogawski MA. Therapeutic potential of excitatory amino acid antagonists: Channel blockers and 2,3‐ben‐zodiazepines. Trends Pharmacol Sci 1993;14:325–331. [DOI] [PubMed] [Google Scholar]
- 128. Rogawski MA. Epilepsy In: Pullan L, Patel J, Eds. Neurotherapeutics: emerging strategies. Totawa , NJ : Humana Press, 1996;193–273. [Google Scholar]
- 129. Rogawski MA. Low affinity channel blocking (uncompetitive) NMDA receptor antagonists as therapeutic agents — toward an understanding of their favorable tolerability. Amino Acids 2000;19:133–149. [DOI] [PubMed] [Google Scholar]
- 130. Rondi‐Reig L, Libbey M, Eichenbaum H, Tonegawa S. CA1‐specific N‐methyl‐D‐aspartate receptor knockout mice are deficient in solving a nonspatial transverse patterning task. Proc Natl Acad Sci USA 2001;98:3543–3548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131. Rothman SM, Thurston JH, Hauhart RE. Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience 1987;22:471–480. [DOI] [PubMed] [Google Scholar]
- 132. Ruther E, Glaser A, Bleich S, Degner D, Wiltfang J. Aprospective PMS study to validate the sensitivity for change of the D‐scale in advanced stages of dementia using the NMDA‐antagonist memantine. Pharmacopsychiatry 2000;33:103–108. [DOI] [PubMed] [Google Scholar]
- 133. Schwab RS, Poskanzer DC, England AC, Jr. , Young RR. Amantadine in Parkinson's disease. Review of more than two years' experience. JAMA 1972;222:792–795. [DOI] [PubMed] [Google Scholar]
- 134. Schenk F, Morris RG. Dissociation between components of spatial memory in rats after recovery from the effects of retrohippocampal lesions. Exp Brain Res 1985;58:11–28. [DOI] [PubMed] [Google Scholar]
- 135. Schneider E, Fischer PA, Clemens R, Balzereit F, Funfgeld EW, Haase HJ. [Effects of oral memantine administration on Parkinson symptoms.Results of a placebo‐controlled multicenter study]. Deutsch Med Wochenschr 1984;109:987–990. [DOI] [PubMed] [Google Scholar]
- 136. Schwab RS, Poskanzer DC, England AC, Jr. , Young RR. Amantadine in Parkinson's disease. Review of more than two years' experience. JAMA 1972;222:792–795. [DOI] [PubMed] [Google Scholar]
- 137. Selkoe DJ. Alzheimer's disease: Genes, proteins, and therapy. Physiol Rev 2001;81:741–766. [DOI] [PubMed] [Google Scholar]
- 138. Sheng M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci USA 2001;98:7058–7061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139. Sindou P, Couratier P, Barthe D, Hugon J. A dose‐dependent increase of tau immunostaining is produced by glutamate toxicity in primary neuronal cultures. Brain Res 1992;572:242–246. [DOI] [PubMed] [Google Scholar]
- 140. Sisodia SS, St George‐Hyslop PH. γ‐Secretase, Notch, Aβ and Alzheimer's disease: Where do the presenilins fit in Nat Rev Neurosci 2002;3:281–290. [DOI] [PubMed] [Google Scholar]
- 141. Sobolevsky AI, Koshelev SG, Khodorov BI. Interaction of memantine and amantadine with agonist‐unbound NMDA‐receptor channels in acutely isolated rat hippocampal neurons. J Physiol 1998;512 (Pt 1): 47–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142. Starck M, Albrecht H, Pollmann W, Straube A, Dieterich M. Drug therapy for acquired pendular nystagmus in multiple sclerosis. J Neurol 1997;244:9–16. [DOI] [PubMed] [Google Scholar]
- 143. Subramaniam S, Donevan SD, Rogawski MA. Hydrophobic interactions of n‐alkyl diamines with the N‐methyl‐D‐aspartate receptor: Voltage‐dependent and ‐independent blocking sites. Mol Pharmacol 1994;45:117–124. [PubMed] [Google Scholar]
- 144. Takeda M, Pekosz A, Shuck K, Pinto LH, Lamb RA. Influenza A virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol 2002;76:1391–1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145. Trinh NH, Hoblyn J, Mohanty S, Yaffe K. Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease: A meta‐analysis. JAMA 2003;289:210–216. [DOI] [PubMed] [Google Scholar]
- 146. Troupin AS, Medius JR, Cheng F, Risinger MW. MK‐801 In: Meldrum BS, Porter RJ, Eds. New anticonvulsant drugs. London : John Libbey, 1986;191–202. [Google Scholar]
- 147. Tremblay R, Chakravarthy B, Hewitt K, et al. Transient NMDA receptor inactivation provides long‐term protection cultured cortical neurons from a variety of death signals. J Neurosci 2000;20:7183–7192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148. Trinh NH, Hoblyn J, Mohanty S, Yaffe K. Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease: A meta‐analysis. JAMA 2003;289:210–216. [DOI] [PubMed] [Google Scholar]
- 149. Troupin AS, Medius JR, Cheng F, Risinger MW. MK‐801 In: Meldrum BS, Porter RJ, Eds. New anticonvulsant drugs. London : John Libbey, 1986;191–202. [Google Scholar]
- 150. Wenk GL, Olton DS. Basal forebrain cholinergic neurons and Alzheimer's disease In: Coyle JT, Animal models of dementia: A synaptic neurochemical perspective. New York : Alan R. Liss, 1987;81–101. [Google Scholar]
- 151. Wenk GL, Danysz W, Mobley SL. Investigations of neurotoxicity and neuroprotection within the nucleus basalis of the rat. Brain Res 1994;655:7–11. [DOI] [PubMed] [Google Scholar]
- 152. Wenk GL, Danysz W, Mobley SL. MK‐801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. Eur J Pharmacol 1995;293:267–270. [DOI] [PubMed] [Google Scholar]
- 153. Wenk GL, Danysz W, Roice DD. The effects of mitochondrial failure upon cholinergic toxicity in the nucleus basalis. NeuroReport 1996;7:1453–1456. [DOI] [PubMed] [Google Scholar]
- 154. Wenk GL, Quack G, Möbius H‐J, Danysz W. No interaction of memantine with acetylcholinesterase inhibitors approved for clinical use. Life Sci 2000;66:1079–1083. [DOI] [PubMed] [Google Scholar]
- 155. Wenk GL, Zajaczkowski W, Danysz W. Neuroprotection of acetylcholinergic basal forebrain neurons by memantine and neurokinin B. Behav Brain Res 1997;83:129–133. [DOI] [PubMed] [Google Scholar]
- 156. Wenzel A, Villa M, Mohler H, Benke D. Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J Neurochem 1996;66:1240–1248. [DOI] [PubMed] [Google Scholar]
- 157. Wesemann W, Sturm G, Funfgeld EW. Distribution of metabolism of the potential anti‐parkinson drug memantine in the human. J Neural Transm Suppl 1980;16:143–148. [DOI] [PubMed] [Google Scholar]
- 158. Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 1981;10:122–126. [DOI] [PubMed] [Google Scholar]
- 159. Wilcock G, Möbius HJ, Stöffler A. A double‐blind, placebo‐controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol 2002;17:297–305. [DOI] [PubMed] [Google Scholar]
- 160. Willmore CB, Bespalov AY, Beardsley PM. Competitive and noncompetitive NMDA antagonist effects in rats trained to discriminate lever‐press counts. Pharmacol Biochem Behav 2001;69:493–502. [DOI] [PubMed] [Google Scholar]
- 161. Winblad B, Poritis N. Memantine in severe dementia, results of the M‐best study (benefit and efficacy in severly demented patients during treatment with memantine). Int J Geriatr Psychiatry 1999;14:135–146. [DOI] [PubMed] [Google Scholar]
- 162. Woodhull AM. Ionic blockage of sodium channels in nerve. J Gen Physiol 1973;61:687–708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163. Wozniak DF, Brosnan‐Watters G, Nardi A, et al. MK‐801 neurotoxicity in male mice: Histologic effects and chronic impairment in spatial learning. Brain Res 1996;707:165–179. [DOI] [PubMed] [Google Scholar]
- 164. Wu J, Anwyl R, Rowan MJ. β‐Amyloid‐(l‐40) increases long‐term potentiation in rat hippocampus in vitro. Eur J Pharmacol 1995;284:R1–3. [DOI] [PubMed] [Google Scholar]
- 165. Yamada K, Fuji K, Nabeshima T, Kameyama T. Neurotoxicity induced by continuous infusion of quinolinic acid into the lateral ventricle in rats. Neurosci Lett 1990;118:128–131. [DOI] [PubMed] [Google Scholar]
- 166. Yamada K, Nabeshima T, Kameyama T. Impairment of active avoidance response in rats with continuous infusion of quinolinic acid into the lateral ventricle. J Pharmacobiodyn 1991;14:351–355. [DOI] [PubMed] [Google Scholar]
- 167. Zajaczkowski W, Frankiewicz T, Parsons CG, Danysz W. Uncompetitive NMDA receptor antagonists attenuate NMDA‐induced impairment of passive avoidance learning and LTP. Neuropharmacology 1997;36:961–971. [DOI] [PubMed] [Google Scholar]
- 168. Zajaczkowski W, Moryl E, Papp M. Discriminative stimulus effects of the NMDA receptor antagonists MK‐801 and CGP 37849 in rats. Pharmacol Biochem Behav 1996;55:163–168. [DOI] [PubMed] [Google Scholar]
- 169. Zajaczkowski W, Quack G, Danysz W. Infusion of (+) ‐MK‐801 and memantine — contrasting effects on radial maze learning in rats with entorhinal cortex lesion. Eur J Pharmacol 1996;296:239–246. [DOI] [PubMed] [Google Scholar]