ABSTRACT
Recently, series of 5‐HT7 receptor antagonists have been developed (24,29,36,68). Among them SB‐258741, R‐(+)‐1‐(toluene‐3‐sulfonyl)‐2‐[2‐(4‐methylpiperidin‐1‐yl)ethyl]pyrrolidine, (compound “13” in 36,37) was one of the most potent and specific compounds. Due to a lack of specific ligands the pharmacology of 5‐HT7 receptor antagonists is still relatively unexplored. It has been suggested, however, that 5‐HT7 receptor ligands could be useful in the therapy of various disorders such as sleep disorders, schizophrenia, depression, migraine, epilepsy, pain, or memory impairment. Many of these conceivable indications are not supported by pharmacological data. It is, therefore, of particular interest to review the data generated from studies of one of these most potent and specific 5‐HT7 receptor antagonists, SB‐258741, with a goal of testing the validity of the proposed clinical indications. In this review, the author describes pharmacology of this compound in order to define its potential clinical use. The available safety pharmacology data are discussed in an attempt to predict potential side effects of specific 5‐HT7 receptor antagonists.
Keywords: SB‐258741, Serotonin antagonist, 5‐HT7 receptors, Antidepressant, Pharmacology
Full Text
The Full Text of this article is available as a PDF (89.6 KB).
References
- 1. Anderson WP, Evans RG, Malpas SC. Pressure natriuresis and long‐term blood pressure control. J Cardiovasc Pharmacol 1995;26 (Suppl 2): S17–S23. [PubMed] [Google Scholar]
- 2. Arnt J. Pharmacological specificity of conditioned avoidance response inhibition in rats: inhibition by neuroleptics and correlation to dopamine receptor blockade. Acta pharmacologica et toxicologica 1982;51:321–329. [DOI] [PubMed] [Google Scholar]
- 3. Arnt J. Differential effects of classical and newer antipsychotics on the hypermotility induced by two dose levels of D‐amphetamine. Eur J Pharmacol 1995;283:55–62. [DOI] [PubMed] [Google Scholar]
- 4. Arnt J. Screening models for antipsychotic drugs In: Ellenbroek BA, Cools AR, Eds. Atypical antipsychotics. Basel : Bikhäuser, 2000:99–119. [Google Scholar]
- 5. Arnt J, Skarsfeldt T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 1998;18:63–101. [DOI] [PubMed] [Google Scholar]
- 6. Atkinson PJ, Price GW, Hagan JJ, et al. [3H]‐SB‐269970 radiolabels 5‐HT7 receptors in human brain menbrane homogenates. [Abstract] Br J Pharmacol 2000;131(Suppl): 40P. [Google Scholar]
- 7. Bakshi VP, Geyer MA. Antagonism of phencyclidine‐induced deficits in prepulse inhibition by the putative atypical antipsychotic olanzapine. Psychopharmacology 1995;122:198–201. [DOI] [PubMed] [Google Scholar]
- 8. Bakshi VP, Swerdlow NR, Geyer MA. Clozapine antagonizes phencyclidine‐induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 1994;271:787–794. [PubMed] [Google Scholar]
- 9. Barden N, Reul JM, Holsboer F. Do antidepressants stabilize mood through actions on the hypothalamic‐pituitary‐adrenocortical system. Trends Neurosci 1995;18:6–11. [DOI] [PubMed] [Google Scholar]
- 10. Barnes NM, Sharp T. A review of central 5‐HT receptors and their function. Neuropharmacology 1999;38:1083–1152. [DOI] [PubMed] [Google Scholar]
- 11. Blackburn‐Munro G, Blackburn‐Munro RE. Chronic pain, chronic stress and depression: coincidence or consequence. J Neuroendocrinology 2001;13:1009–1023. [DOI] [PubMed] [Google Scholar]
- 12. Bogerts B. Basal ganglia and limbic system pathology in schizophrenia. Arch Gen Psychiatry 1985;42:784–791. [DOI] [PubMed] [Google Scholar]
- 13. Bourson A, Kapps V, Zwingelstein C, Boess FG, Sleight AJ. Correlation between 5‐HT7 receptor affinity and protection against sound‐induced seizures in DB A/2 J mice. Naunyn Schmiedeberg 's Arch Pharmacol 1997;356:820–826. [DOI] [PubMed] [Google Scholar]
- 14. Branchek TA, Gustafson EL, Durkin MM, Bard JA, Weinshank RL. Autoradiographic localization of 5‐HT7 and its mRNA in rats CNS by radioligand binding and in situ hybridization histochemistry. Br J Pharmacol 1994;112(Suppl): 100P. [Google Scholar]
- 15. Christensen AV, Larsen JJ. Antinociceptive and anticonvulsive effect of THIP, a pure GAB A agonist. Pol J Pharmacol Pharm 1982;34:127–134. [PubMed] [Google Scholar]
- 16. Clemett DA, Cockett MI, Marsden CA, Fone KC. Antisense oligonucleotide‐induced reduction in 5‐hydroxytryptamine‐7 receptors in the rat hypothalamus without alteration in exploratory behaviour or neuroendocrine function. J Neurochem 1998;71:1271–1279. [DOI] [PubMed] [Google Scholar]
- 17. Compton MT, Nemeroff CB. The treatment of bipolar depression. J Clin Psychiatry 2000;61 (Suppl): 957–967. [PubMed] [Google Scholar]
- 18. Contesse V, Lenglet S, Grumolato L, et al. Pharmacological and molecular characterization of 5‐Hydroxytryptamine‐7 receptors in the rat adrenal gland. Mol Pharmacol 1999;56:552–561. [DOI] [PubMed] [Google Scholar]
- 19. Corbett R, Camacho F, Woods AT, et al. Antipsychotic agents antagonize non‐competitive N‐methyl‐Daspartate antagonist‐induced behaviors. Psychopharmacology 1995;120:67–74. [DOI] [PubMed] [Google Scholar]
- 20. De Vries P, De Visser PA, Heiligers JPC, Villalón CM, Saxena PR. Changes in systemic and regional haemodynamics during 5‐HT7 receptor‐mediated depressor responses in rats. Naunyn Schmiedeberg's Arch Pharmacol 1999;359:331–338. [DOI] [PubMed] [Google Scholar]
- 21. Eglen RM, Jasper JR, Chang DJ, Martin GR. The 5‐HT7 receptor: orphan found. Trends Pharmacol Sci 1997;18:104–107. [DOI] [PubMed] [Google Scholar]
- 22. Ehlen JC, Grossman GH, Glass JD. In Vivo resetting of the hamster circadian clock by 5‐HT7 receptor in the suprachiasmatic nucleus. J Neurosci 2001;21:5351–5357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Feifel D, Reza T. Oxytocin modulates psychomimetic‐induced deficits in sensorimotor gating. Psychopharmacology 1999;141:93–98. [DOI] [PubMed] [Google Scholar]
- 24. Forbes IT, Dabbs S, Duckworth DM, et al. (R)‐3.N‐Dimethyl‐N‐[1‐methyl‐3‐(4‐methyl‐piperidin‐1‐yl)propyl]benzenesulfonamide: The first selective 5‐HT7 receptor antagonist. J Med Chem 1998;41:655–657. [DOI] [PubMed] [Google Scholar]
- 25. Forbes IT, King FD, Rahman SK. Inventors Sulphonamide derivatives and their use in the treatment of CNS disorders. GB. WO 97/48681. 1997.
- 26. Forbes IT, King FD, Rahman SK, Inventors Heterocyclic sulfonamide derivates and their use in the treatment of CNS disorders. WO 97/48681. 1998.
- 27. Gleason SD, Shannon HE. Blockade of phencyclidine‐induced hyperlocomotion by olanzapine, clozapine, and serotonin receptor subtype selective antagonists in mice. Psychopharmacology 1997;129:79–84. [DOI] [PubMed] [Google Scholar]
- 28. Gustafson EL, Durkin MA, Bard JA, Zgombick J, Branchek TA. A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5‐HT7 receptor in rat brain. Br J Pharmacol 1996;117:657–666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Hagan JJ, Price GW, Jeffrey P, et al. Characterization of SB‐269970‐A, a selective 5‐HT7 receptor antagonist. Br J Pharmacol 2000;130:539–548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Kleinman JE, Nawroz S. Schizophrenia: postmortem studies In: Watson SJ, ed. Biology of schizophrenia and affective disease. Washington , DC : American Psychiatric Press, Inc ed., 1996;9:223–38. [Google Scholar]
- 31. Kupfer DJ. Sleep research in depressive illness: Clinical implications. Biol Psychiatry 1995;38:391–403. [DOI] [PubMed] [Google Scholar]
- 32. Le Corre S, Sharp T, Young AH, Harrison PJ. Increase of 5‐HT7 (serotonin‐7) and 5‐HT1A (serotonin‐1A) receptor mRNA expression in rat hippocampus after adrenalectomy. Psychopharmacology 1997;130:368–374. [DOI] [PubMed] [Google Scholar]
- 33. Lena Mullins U, Gianutsos G, Eison AS. Effects of antidepressants on 5‐HT7 receptor regulation in the rat hypothalamus. Neuropsychopharmacology 1999;21:352–367. [DOI] [PubMed] [Google Scholar]
- 34. Leung E, Walsh LKM, Pulido‐Rios MT, Eglen RM. Characterization of putative 5‐HT7 receptors mediating direct relaxation in Cynomolgus monkey isolated jugular vein. Br J Pharmacol 1996;117:926–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Lovell PJ, Inventor. Preparation of N‐[2‐piperazino (or piperidino) ethyl]benzenesulfonamides and thiophenesulfonamides as 5‐HT7 receptor antagonists. WO 2000056712.2000.
- 36. Lovell PJ, Bromidge SM, Dabbs S, et al. A novel, potent, and selective 5‐HT7 antagonist: (R)‐3‐(2‐(2‐(4‐Methylpiperidin‐1‐yl)‐ethyl)pyrrolidine‐1‐sulfonyl)phenol (SB‐269970). J Med Chem 2000;43:342–345. [DOI] [PubMed] [Google Scholar]
- 37. Lovell PJ, Dabbs S, Duckworth DM, et al. SB‐258741: a novel, potent and selective 5‐HT7 receptor antagonist. [Abstract] 15th International Symposium on Medicinal Chemistry 1998:339.
- 38. Lovenberg TW, Baron BM, De Lecea L, et al. A novel adenylyl cyclase‐activating serotonin receptor (5‐HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 1993;11:449–458. [DOI] [PubMed] [Google Scholar]
- 39. Mansbach RS, Geyer MA. Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 1989;2:299–308. [DOI] [PubMed] [Google Scholar]
- 40. Manthey I, Richter G, Richter J, Dreves B, Haiduk A. Study approach and initial results of the effect of sleep deprivation on the depressive syndrome. Psychiatr Neurol Med Psychol (Leipz) 1983;35:398–404. [PubMed] [Google Scholar]
- 41. Mason P. Central mechanisms of pain modulation. Curr Opin Neurobiol 1999;9:436–441. [DOI] [PubMed] [Google Scholar]
- 42. McMillen BA, Chamberlain JK, DaVanzo JP. Effects of housing and muricidal behavior on serotonergic receptors and interactions with novel anxiolytic drugs. J Neural Transmission 1988;71:123–132. [DOI] [PubMed] [Google Scholar]
- 43. Meneses A, Terrón JA. Role of 5‐HT1A and 5‐HT7 receptors in the facilitatory response induced by 8‐OH‐DPAT on learning consolidation. Behav Brain Res 2001;21:21–28. [DOI] [PubMed] [Google Scholar]
- 44. Meuser T, Pierce PA. 5‐Hydroxytryptamine7 (5‐HT7) receptor distribution in dorsal root ganglion. [Abstract] Anaesthesiology 1997;87:A816. [Google Scholar]
- 45. Monsma FJ, Shen Y, Ward RP, Hamblin MW, Sibley DR. Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol 1993;43:320–327. [PubMed] [Google Scholar]
- 46. Nutt DJ, Taylor SC, Little HJ. Optimizing the pentetrazol infusion test for seizure threshold measurement. J Pharm Pharmacol 1986;38:697–698. [DOI] [PubMed] [Google Scholar]
- 47. Paabøl Andersen M, Pouzet B. Effects of acute versus chronic treatment with typical or atypical antipsychotics on d‐Amphetamine‐induced sensorimotor gating deficits in rats. Psychopharmacology 2001;156:291–304. [DOI] [PubMed] [Google Scholar]
- 48. Pierce PA, Xie GX, Meuser T, Peroutka SJ. 5‐Hydroxytryptamine receptor subtype messenger RNAs in human dorsal root ganglia: a polymerase chain reaction study. Neuroscience 1997;81 (3): 813–819. [DOI] [PubMed] [Google Scholar]
- 49. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharcodyn Ther 1977;229 (2): 327–336. [PubMed] [Google Scholar]
- 50. Porsolt RD, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977;266 (5604): 730–732. [DOI] [PubMed] [Google Scholar]
- 51. Pouzet B, Didriksen M, Arnt J. Effects of the 5‐HT7 receptor antagonist SB‐258741 in animal models of schizophrenia. Pharmacol Biochem Behav 2001. (in press) . [DOI] [PubMed] [Google Scholar]
- 52. Prosser RA, Dean RR, Edgar DM, Heller HC, Miller JD. Serotonin and the mammalian circadian system. I. In vitro phase shifts by serotonergic agonists and antagonists. J Biol Rhythms 1993;8:1–16. [DOI] [PubMed] [Google Scholar]
- 53. Roberts C, Allen L, Langmead CJ, Hagan JJ, Middlemiss DN, Price GW. The effects of SB‐269970, a 5‐HT7 receptor antagonist, on 5‐HT release from serotonergic terminals and cell bodies. Br J Pharmacol 2001;132:1574–1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Roth BL, Craigo SC, Salman Choudhary M, et al. Binding of typical and atypical antipsychotic agents to 5‐hydroxytryptamine‐6 and 5‐hydroxytriptamine‐7 receptors. J Pharmacol Exp Ther 1994;268:1403–1410. [PubMed] [Google Scholar]
- 55. Ruat M, Traiffort E, Leurs R, et al. Molecular cloning, characterisation and localisation of a high affinity serotonin receptor (5‐HT7) activating cAMP formation. Proc NatlAcadSci 1993;90:8547–8551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Sams‐Dodd F. Phencyclidine‐induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav Pharmacol 1996;7:3–23. [PubMed] [Google Scholar]
- 57. Sams‐Dodd F. Effect of novel antipsychotic drugs on phencyclidine‐induced strereotyped behaviour and social isolation in the rat social interaction test. Behav Pharmacol 1997;8:196–215. [PubMed] [Google Scholar]
- 58. Sams‐Dodd F. A test of the predictive validity of animal models of schizophrenia based on phencyclidine and d‐apomorphine. Neurophsychopharmacology 1998;18:293–304. [DOI] [PubMed] [Google Scholar]
- 59. Sánchez C. Effect of serotonergic drugs on footshock‐induced ultrasonic vocalization in adult male rats. Behav Pharmacol 1993;4:269–277. [PubMed] [Google Scholar]
- 60. Schoeffter P, Ullmer C, Bobirnac I, Gabbiani G, Lübbert H. Functional, endogenously expressed 5‐ht7 receptor in human vascular smooth muscle cells. Br J Pharmacol 1996;117:993–994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61. Schwartz WJ. A clinician's primer on the circadian clock: Its localization, function and resetting. Adv Int Med 1993;38:81–106. [PubMed] [Google Scholar]
- 62. Shen Y, Monsma FJ, Metcalf MA, Jose PA, Hamblin MW, Sibley DR. Molecular cloning and expression of a 5‐hydroxytryptamine 7 serotonin receptor subtype. J Biol Chem 1993;268:18200–18204. [PubMed] [Google Scholar]
- 63. Sleight AJ, Carolo C, Petit N, Zwingelstein C, Bourson A. Identification of 5‐HT7 receptor binding sites in rat hypothalamus: Sensitivity to chronic antidepressant treatment. Mol Pharmacol 1995;47:99–103. [PubMed] [Google Scholar]
- 64. Swerdlow NR, Braff DL, Geyer MA. Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 2000;11:185–204. [DOI] [PubMed] [Google Scholar]
- 65. Terrón JA. The relaxant 5‐HT receptor in the dog coronary artery smooth muscle: pharmacological resemblance to the cloned 5‐HT7 receptor subtype. Br J Pharmacol 1996;118:1421–1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66. Terrón JA. Involvement of the 5‐HT7 receptor in craniovascular vasodilatation: Potential in migraine. Proc West Pharmacol Soc 1998;41:247–251. [PubMed] [Google Scholar]
- 67. Terrón JA, Falcón‐Neri A. Pharmacological evidence for the 5‐HT7 receptor mediating smooth muscle relaxation in canine cerebral arteries. Br J Pharmacol 1999;127:609–616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68. Thomas DR, Atkinson PJ, Ho M et al. [3H]‐SB‐269970 – A selective antagonist radioligand for 5‐HT7 receptors. Br J Pharmacol 2000;130:409–417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Thomas DR, Gittins SA, Collin LL, et al. Functional characterisation of the human cloned 5‐HT7 receptor (long form); antagonist profile of SB‐258719. Br J Pharmacol 1999;128:258–164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70. Thomas DR, Middlemiss DN, Taylor SG, Nelson P, Brown AM. 5‐CT stimulation of adenyl cyclase activity in guinea‐pig hippocampus: evidence for involvement of 5‐HT7 and 5‐HT1A receptors. Br J Pharmacol 1999;128:158–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. To ZP, Bonhaus DW, Eglen RM, Jakeman LB. Characterisation and distribution of putative 5‐HT7 receptors in the guinea‐pig brain. Br J Pharmacol 1995;115:107–116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72. Tonoue T, Ashida Y, Makino H, Hata H. Inhibition of shock‐elicited ultrasonic vocalization by opioid peptides in the rat: a psychotropic effect. Psychoneuroendocrinol 1986;11:177–184. [DOI] [PubMed] [Google Scholar]
- 73. Torpy DJ, Stratakis CA, Chrousos GP. Hyper‐ and hypoaldosteronism. Vitam Horm 1999;57:177–216. [DOI] [PubMed] [Google Scholar]
- 74. Tsou A, Kosaka A, Bach C, et al. Cloning and expression of a 5‐HT7 receptor positively coupled to adenylyl cyclase. J Neurochem 1994;63:456–464. [DOI] [PubMed] [Google Scholar]
- 75. Ullmer C, Schmuck K, Kalkman HO, Lubbert H. Expression of serotonin mRNAs in blood vessels. FEBS Letts 1995;370:215–221. [DOI] [PubMed] [Google Scholar]
- 76. Villalón CM, Centurián D, Luján‐Estrada M, Terrón JA, Sánchez‐López A. Mediation of the 5‐HT‐induced external carotid vasodilatation in GR 127935‐pretreated vagosympathectomized dogs by the putative 5‐HT7 receptor. Br J Pharmacol 1997;120:1319–1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77. Wehr T, Wirz‐Justice A, Goodwin F, Duncan W, Gillin J. Phase advance of the circadian sleep‐wake cycle as an antidepressant. Science 1979;206:710–713. [DOI] [PubMed] [Google Scholar]
- 78. Yamada S, Harano M, Annoh N, Nakamura K, Tanaka M. Involvement of serotonin 2A receptors in phencyclidine‐induced disruption of prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 1999;46:832–838. [DOI] [PubMed] [Google Scholar]
- 79. Yau JLW, Noble J, Widdowson J, Seckl JR. Impact of adrenalectomy on the 5‐HT6 and 5‐HT7 receptor gene expression in the rat hippocampus. Mol Brain Res 1997;45:182–186. [DOI] [PubMed] [Google Scholar]
- 80. Ying SW, Rusak B. 5‐HT7 receptors mediate serotonergic effects on light‐sensitive suprachiasmatic nucleus neurons. Brain Res 1997;755:246–254 [DOI] [PubMed] [Google Scholar]