Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;9(3):227–252. doi: 10.1111/j.1527-3458.2003.tb00251.x

Antinociception and the New COX Inhibitors: Research Approaches and Clinical Perspectives

Juan F Herrero 1,, E Alfonso Romero‐Sandoval 1, Gema Gaitan 1, Javier Mazario 1
PMCID: PMC6741672  PMID: 14530796

ABSTRACT

New generations of cyclooxygenase (COX) inhibitors are more potent and efficacious than their traditional parent compounds. They are also safer than the classic non‐steroidal anti‐inflammatory drugs (NSAIDs) and are starting to be used not only for low to moderate intensity pain, but also for high intensity pain. Three different strategies have been followed to improve the pharmacological profile of COX inhibitors:

1. Development of COX‐2 selective inhibitors. This is based on the initial hypothesis that considered COX‐2 as the enzyme responsible for the generation of prostaglandins only in inflammation, and, therefore, uniquely responsible for inflammation, pain and fever. Initial expectations gave rise to controversial results, still under discussion. The second generation of these compounds is being developed and should contribute to clarifying both their efficacy and the specific functions of the COX enzymes.

2. Modified non‐selective COX inhibitors. Molecules like nitro‐NSAIDs or tromethamine salt derivatives have been synthesized considering that both COX‐1 and COX‐2 are responsible for the synthesis of prostaglandins involved either in homeostatic functions or inflammation. Nitroaspirin, nitroparacetamol or dexketoprofen trometamol are some examples of molecules that are already showing an important clinical efficacy. The modifications performed in their structures seem to lower the unwanted side effects as well as to enhance their analgesic efficacy.

3. Combined therapy of classic NSAIDs with other drugs. This strategy looks for improvements in the incidence of adverse effects or to take advantage of the synergistic enhancement of their therapeutic effects. Some of the molecules resulting from these strategies are very valuable as therapeutic agents and open a wide range of possibilities in the treatment of high intensity pain, including neuropathic pain, and opiate sparing therapy.

Keywords: Analgesics, Arthritis, COX inhibitors, Cyclooxygenase, Inflammation, Nociception, NSAIDs, Pain, Spinal cord

Full Text

The Full Text of this article is available as a PDF (168.7 KB).

References

  • 1. Allais G, De Lorenzo C, Airola G, Peano S, Benedetto C. Dexketoprofen trometamol in the treatment of acute migraine attack. Minerva Med 2000;91:153–159. [PubMed] [Google Scholar]
  • 2. Al‐Swayeh OA, Futter LE, Clifford RH, Moore PK. Nitroparacetamol exhibits anti‐inflammatory and antinociceptive activity. Br J Pharmacol 2000;130:1453–1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Al‐Swayeh OA, Clifford RH, Del Soldato P, Moore PK. A comparison of the anti‐inflammatory and anti‐nociceptive activity of nitroaspirin and aspirin. Br J Pharmacol 2000;129:343–350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Bagan JV, Lopez Arranz JS, Valencia E, et al. Clinical comparison of dexketoprofen trometamol and dipyrone in postoperative dental pain. J Clin Pharmacol 1998;38:55S–64S. [PubMed] [Google Scholar]
  • 5. Bekemeier H, Hirschelmann R. On steroid‐saving drug combinations in carrageenin paw edema and adjuvant arthritis. Arzneimittelforschung 1986;36:1521–1524. [PubMed] [Google Scholar]
  • 6. Bandarage U, Chen L, Fang X, et al. Nitrosothiol esters of diclofenac: Synthesis and pharmacological characterization as gastrointestinal‐sparing prodrugs. J Med Chem 2000;43:4005–4016. [DOI] [PubMed] [Google Scholar]
  • 7. Barbanoj MJ, Gich I, Artigas R, et al. Pharmacokinetics of dexketoprofen trometamol in healthy volunteers after single and repeated oral doses. J Clin Pharmacol 1998;38:33S–40S. [PubMed] [Google Scholar]
  • 8. Barbanoj MJ, Antonijoan RM, Gich I. Clinical pharmacokinetics of dexketoprofen. Clin Pharmacokinet 2001;40:245–262. [DOI] [PubMed] [Google Scholar]
  • 9. Bejarano P. Management of inflammatory pain with selective COX‐2 inhibitors: Promises and facts. Curr Rev Pain 1999;3:432–439. [DOI] [PubMed] [Google Scholar]
  • 10. Beltran J, Martin‐Mola E, Figueroa M, et al. Comparison of dexketoprofen trometamol and ketoprofen in the treatment of osteoarthritis of the knee. J Clin Pharmacol 1998;38:74S–80S. [PubMed] [Google Scholar]
  • 11. Benoni G, Terzi M, Adami A, Grigolini L, Del Soldato P, Cuzzolin L. Plasma concentrations and pharmacokinetic parameters of nitrofenac using a simple and sensitive HPLC method. J Pharm Sci 1995;84:93–95. [DOI] [PubMed] [Google Scholar]
  • 12. Bensen WG, Fiechtner JJ, McMillen JI, et al. Treatment of osteoarthritis with celecoxib, a cyclooxygenase‐2 inhibitor: A randomized controlled trial. Mayo Clin Proc 1999;74:1095–1105. [DOI] [PubMed] [Google Scholar]
  • 13. Bensen WG. Antiinflammatory and analgesic efficacy of COX‐2 specific inhibition: From investigational trials to clinical experience. J Reumatol 2000;27 (S60): 17–24. [PubMed] [Google Scholar]
  • 14. Berry H, Hutchinson DR. Tizanidine and ibuprofen in acute low‐back pain: Results of a double‐blind multi‐centre study in general practice. J Int Med Res 1988;16:83–91. [DOI] [PubMed] [Google Scholar]
  • 15. Berthon G. Is copper pro‐ or anti‐inflammatory? A reconciling view and a novel approach for the use of copper in the control of inflammation. Agents Actions 1993;39:210–217. [DOI] [PubMed] [Google Scholar]
  • 16. Bombardier C, Laine L, Reicin A, et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 2000;343:1520–1528. [DOI] [PubMed] [Google Scholar]
  • 17. Bombardier C. An evidence‐based evaluation of the gastrointestinal safety of coxibs. Am J Cardiol 2002;89:3D–9D. [DOI] [PubMed] [Google Scholar]
  • 18. Bosek V, Miguel R. Comparison of morphine and ketorolac for intravenous patient‐controlled analgesia in postoperative cancer patients. Clin J Pain 1994;10:314–318. [DOI] [PubMed] [Google Scholar]
  • 19. Brater DC. Effects of nonsteroidal anti‐inflammatory drugs on renal function: Focus on cyclooxygenase‐2‐selective inhibition. Am J Med 1999;107:65S–70S. [DOI] [PubMed] [Google Scholar]
  • 20. Brown JF, Hanson PJ, Whittle BJ. Nitric oxide donors increase mucus gel thickness in rat stomach. Eur J Pharmacol 1992;223:103–104. [DOI] [PubMed] [Google Scholar]
  • 21. Brune K, Geisslinger G, Menzel‐Soglowek S. Pure enantiomers of 2‐arylpropionic acids: Tools in pain research and improved drugs in rheumatology. J Clin Pharmacol 1992;32:944–952. [DOI] [PubMed] [Google Scholar]
  • 22. Burgaud JL, Riffaud JP, Del Soldato P. Nitric‐oxide releasing molecules: Anew class of drugs with several major indications. Curr Pharm Des 2002;8:201–213. [DOI] [PubMed] [Google Scholar]
  • 23. Burns JW, Aitken HA, Bullingham RE, McArdle CS, Kenny GN. Double‐blind comparison of the morphine sparing effect of continuous and intermittent i.m. administration of ketorolac. Br J Anaesth 1991;67:235–238. [DOI] [PubMed] [Google Scholar]
  • 24. Buritova J, Honore P, Chapman V, Besson JM. Enhanced effects of co‐administered dexamethasone and diclofenac on inflammatory pain processing and associated spinal c‐Fos expression in the rat. Pain 1996;64:559–568. [DOI] [PubMed] [Google Scholar]
  • 25. Butirova J, Besson JM. Peripheral and/or central effects of racemic‐, S(+)‐ and R(‐)‐flurbiprofen on inflammatory nociceptive processes: A c‐fox protein study in the rat spinal cord. Br J Pharmacol 1998;125:87–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Cabre F, Fernandez MF, Calvo L, Ferrer X, Garcia ML and Mauleon D. Analgesic, anti‐inflammatory, and antipyretic effects of S(+)‐ketoprofen in vivo. J Clin Pharmacol 1998;38:3S–10S. [PubMed] [Google Scholar]
  • 27. Cabre F, Fernandez F, Zapatero I, Araño A, Garcia L, Mauleon D. Intestinal ulcerogenic effect of S(+)‐ketoprofen in the rat. J Clin Pharmacol 1998;38:27S–33S. [PubMed] [Google Scholar]
  • 28. Cannon GW, Caldwell JR, Holt P, et al. Rofecoxib, a specific inhibitor of cyclooxygenase 2, with clinical efficacy comparable with that of diclofenac sodium: Results of a one‐year, randomized, clinical trial in patients with osteoarthritis of the knee and hip. Rofecoxib phase III protocol 035 study group. Arthritis Rheum 2000;43:978–987. [DOI] [PubMed] [Google Scholar]
  • 29. Catella‐Lawson F, McAdam B, Morrison BW, et al. Effects of specific inhibition of cyclooxygenase‐2 on sodium balance, hemodynamics and vasoactive eicosanoids. J Pharmacol Exp Ther 1999;289:735–741. [PubMed] [Google Scholar]
  • 30. Catella‐Lawson F, Crofford LJ. Cyclooxygenase inhibition and thrombogenicity. Am J Med 2001;110:28S–32S. [DOI] [PubMed] [Google Scholar]
  • 31. Chandrasekharan NV, Dai H, Roos KL, et al. COX‐3, a cyclooxygenase‐1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002;99:13926–13931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Chang CC, Boyce S, Brideau C, et al. Rofecoxib [Vioxx, MK‐0966; 4‐(4′‐methylsulfonylphenyl)‐3‐phenyl‐2‐(5H)‐furanone]: A potent and orally active cyclooxygenase‐2 inhibitor. Pharmacological and biochemical profiles. J Pharmacol Exp Ther 1999;290:551–560. [PubMed] [Google Scholar]
  • 33. Cicala C, Ianaro A, Fiorucci S, et al. NO‐naproxen modulates inflammation, nociception and downregulates T cell response in rat Freund's adjuvant arthritis. Br J Pharmacol 2000;130:1399–1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Cuzzolin L, Conforti A, Adami A, et al. Anti‐inflammatory potency and gastrointestinal toxicity of a new compound, nitronaproxen. Pharmacol Res 1995;31:61–65. [DOI] [PubMed] [Google Scholar]
  • 35. Daniels SE, Desjardins PJ, Talwalker S, Recker DP, Verburg KM. The analgesic efficacy of valdecoxib vs. oxycodone/acetaminophen after oral surgery. J Am Dent Assoc 2002;133:611–621. [DOI] [PubMed] [Google Scholar]
  • 36. Davies, SN , Lodge D. Evidence for the involvement of N‐methylaspartate receptors in “wind‐up” of class 2 neurones in the dorsal horn of the rat. Brain Res 1987;424:402–406. [DOI] [PubMed] [Google Scholar]
  • 37. Davies NM, Roseth AG, Appleyard CB, et al. NO‐naproxen vs. naproxen: Ulcerogenic, analgesic and anti‐inflammatory effects. Aliment Pharmacol Ther 1997;11:69–79. [DOI] [PubMed] [Google Scholar]
  • 38. De Felipe C, Herrero, JF , O'Brieny JA, et al. Altered nociception, analgesia and aggression in the mice lacking the substance P receptor. Nature 1998;392:394–397. [DOI] [PubMed] [Google Scholar]
  • 39. Del Soldato P, Sorrentino R, Pinto A. NO‐aspirins: A class of new anti‐inflammatory and antithrombotic agents. Trends Pharmacol Sci 1999;20:319–323. [DOI] [PubMed] [Google Scholar]
  • 40. Dickenson AH, Sullivan AF. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology 1987;26:1235–1238. [DOI] [PubMed] [Google Scholar]
  • 41. Dinchuk JE, Car BD, Focht RJ, et al. Renal abnormalities and an altered response in mice lacking cyclo‐oxygenase II. Nature 1995;378:406–409. [DOI] [PubMed] [Google Scholar]
  • 42. Ehrich EW, Dallob A, De Lepeleire I, et al. Characterization of rofecoxib as a cyclooxygenase‐2 isoform inhibitor and demonstration of analgesia in the dental pain model. Clin Pharmacol Ther 1999;65:336–347. [DOI] [PubMed] [Google Scholar]
  • 43. Elliott SN, McKnight W, Cirino G, Wallace JL. A nitric oxide‐releasing nonsteroidal anti‐inflammatory drug accelerates gastric ulcer healing in rats. Gastroenterology 1995;109:524–530. [DOI] [PubMed] [Google Scholar]
  • 44. Emery P, Zeidler H, Kvien TK, et al. Celecoxib versus diclofenac in long‐term management of rheumatoid arthritis: Randomised double‐blind comparison. Lancet 1999;354:2106–2111. [DOI] [PubMed] [Google Scholar]
  • 45. Emre M. The gastroprotective effects of tizanidine: An overview. Curr Ther Res 1998;59:2–12. [Google Scholar]
  • 46. Fiorucci S. NO‐releasing NSAIDs are caspase inhibitors. Trends Immunol 2001;22:232–235. [DOI] [PubMed] [Google Scholar]
  • 47. Fiorucci S, Antonelli E, Santucci L, et al. Gastrointestinal safety of nitric oxide‐derived aspirin is related to inhibition of ICE‐like cysteine proteases in rats. Gastroenterology 1999;116:1089–1106. [DOI] [PubMed] [Google Scholar]
  • 48. Fiorucci S, Santucci L, Antonelli E, et al. NO‐aspirin protects from T cell‐mediated liver injury by inhibiting caspase‐dependent processing of Th1‐like cytokines. Gastroenterology 2000;118:404–421. [DOI] [PubMed] [Google Scholar]
  • 49. Fiorucci S, Antonelli E, Mencarelli A, et al. A NO‐releasing derivative of acetaminophen spares the liver by acting at several checkpoints in the Fas pathway. Br J Pharmacol 2002;135:589–599. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 50. Fiorucci S, Santucci L, Mencarelli A, Del Soldato P, Morelli A. Gastrointestinal safety of a NO‐releasing aspirin derivative (NCX4016) in humans: A double blind placebo controlled endoscopic study. Digestive Disease Week 2002; San Francisco , USA , 1922 May 2002.
  • 51. FitzGerald GA. Cardiovascular pharmacology of nonselective nonsteroidal anti‐inflammatory drugs and coxibs: Clinical considerations. Am J Cardiol 2002;89:26D–32D. [DOI] [PubMed] [Google Scholar]
  • 52. Fort J. Celecoxib, a COX‐2 specific inhibitor: The clinical data. Am J Orthop 1999;28:13–18. [PubMed] [Google Scholar]
  • 53. Fricke J, Varkalis J, Zwillich S, et al. Valdecoxib is more efficacious than rofecoxib in relieving pain associated with oral surgery. Am J Ther 2002;9:89–97. [DOI] [PubMed] [Google Scholar]
  • 54. Futter LE, Al‐Swayeh OA, Moore PK. A comparison of the effect of nitroparacetamol and paracetamol on liver injury. Br J Pharmacol 2001;132:10–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Gaitan G, Herrero JF. Subeffective doses of dexketoprofen trometamol enhance the potency and duration of fentanyl antinociception. Br J Pharmacol 2002;135:393–398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Gillies GW, Kenny GN, Bullingham RE, McArdle CS. The morphine sparing effect of ketorolac trometh‐amine. A study of a new, parenteral non‐steroidal anti‐inflammatory agent after abdominal surgery. Anaesthesia 1987;42:727–731. [DOI] [PubMed] [Google Scholar]
  • 57. Gilroy DW, Tomlinson A, Willoughby DA. Differential effects of inhibitors of cyclooxygenase (cyclooxygenase 1 and cyclooxygenase 2) in acute inflammation. Eur J Pharmacol 1998;355:211–217. [DOI] [PubMed] [Google Scholar]
  • 58. Gilroy DW, Tomlinson A, Willoughby DA. Differential effects of inhibition of isoforms of cyclooxygenase (COX‐1, COX‐2) in chronic inflammation. In flamm Res 1998;47:79–85. [DOI] [PubMed] [Google Scholar]
  • 59. Glenn EM, Bowman BJ, Rohloff NA. Anti‐inflammatory and PG inhibitory effects of phenacetin and acetaminophen. Agents Actions 1997;7:513–516. [DOI] [PubMed] [Google Scholar]
  • 60. Goldenberg MM. Celecoxib, a selective cyclooxygenase‐2 inhibitor for the treatment of rheumatoid arthritis and osteoarthritis. Clin Ther 1999;21:1497–1513. [DOI] [PubMed] [Google Scholar]
  • 61. Granados‐Soto V, Castaneda‐Hernandez G. A review of the pharmacokinetic and pharmacodynamic factors in the potentiation of the antinociceptive effect of nonsteroidal anti‐inflammatory drugs by caffeine. J Pharmacol Toxicol Meth 1999;42:67–72. [DOI] [PubMed] [Google Scholar]
  • 62. Green GA. Understanding NSAIDs: From aspirin to COX‐2. Clin Cornestone 2001;3:50–60. [DOI] [PubMed] [Google Scholar]
  • 63. Harris RC. Cyclooxygenase‐2 inhibition and renal physiology. Am J Cardiol 2002;89:10D–17D. [DOI] [PubMed] [Google Scholar]
  • 64. Harris SI, Kuss M, Hubbard RC, Goldstein JL. Upper gastrointestinal safety evaluation of parecoxib sodium, a new parenteral cyclooxygenase‐2‐specific inhibitor, compared with ketorolac, naproxen, and placebo. Clin Ther 2001;23:1422–1428. [DOI] [PubMed] [Google Scholar]
  • 65. Hawkey CJ. COX‐2 inhibitors. Lancet 1999;353:307–314. [DOI] [PubMed] [Google Scholar]
  • 66. Herrero JF, Cervero F. Supraspinal influences on the facilitation of rat nociceptive reflexes induced by carrageenan monoarthritis. Neurosci Lett 1996;209:21–24. [DOI] [PubMed] [Google Scholar]
  • 67. Herrero JF, Headley PM. Reversal by naloxone of the spinal antinociceptive actions of a systemically administered NSAID. Br J Pharmacol 1996;118:968–972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Herrero JF, Parrado A, Cervero F. Central and peripheral actions of the NSAID ketoprofen on spinal cord nociceptive reflexes. Neuropharmacology 1997;36:1425–1431. [DOI] [PubMed] [Google Scholar]
  • 69. Herrero JF, Laird JMA, Lopez‐Garcia JA. Wind‐up of spinal cord neurones and pain sensation: much ado about something Progr Neurobiol 2000;61:169–203. [DOI] [PubMed] [Google Scholar]
  • 70. Hla T, Neilson K. Human cyclooxygenase‐2 cDNA. Proc Natl Acad Sci USA 1992;89:7384–7388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Infante R, Lahita RG . Rheumatoid arthritis New disease‐modifying and anti‐inflammatory drugs. Geriatrics 2000;55:30–40. [PubMed] [Google Scholar]
  • 72. Jackson LM, Hawkey CJ. COX‐2 selective nonsteroidal anti‐inflammatory drugs. Do they really offer any advantages Drugs 2000;59:1207–1216. [DOI] [PubMed] [Google Scholar]
  • 73. Jain NK, Kulkarni SK, Singh A. Modulation of NSAID‐induced antinociceptive and anti‐inflammatory effects by α2‐adrenoceptor agonists with gastroprotective effects. Life Sci 2000;70:2857–2869. [DOI] [PubMed] [Google Scholar]
  • 74. Jeske AH. COX‐2 inhibitors and dental pain control. J Gt Houst Dent Soc 1999;71:39–40. [PubMed] [Google Scholar]
  • 75. Kaza CS, Khosrow K, Basil R. Colon cancer prevention with NO‐releasing NSAIDs. Prostaglandins & Other Lipid Mediators 2002;67:107–120. [DOI] [PubMed] [Google Scholar]
  • 76. Kiss JP, Vizi ES. Nitric oxide: A novel link between synaptic and nonsynaptic transmission. Trends Neurosci 2001;24:211–215. [DOI] [PubMed] [Google Scholar]
  • 77. Kurihara T, Yoshioka. The excitatory and inhibitory modulation of primary afferent fibre‐evoked responses of ventral roots in the neonatal rat spinal cord exerted by nitric oxide. Br J Pharmacol 1996;118:1743–1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Laine L, Harper S, Simon T, et al. A randomized trial comparing the effect of rofecoxib, a cyclooxygenase 2‐specific inhibitor, with that of ibuprofen on the gastroduodenal mucosa of patients with osteoarthritis. Rofecoxib Osteoarthritis Endoscopy Study Group. Gastroenterology 1999;117:776–83. [DOI] [PubMed] [Google Scholar]
  • 79. Langenbach R, Morham SG, Tiano HF, et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid‐induced inflammation and indomethacin‐induced gastric ulceration. Cell 1995;83:483–492. [DOI] [PubMed] [Google Scholar]
  • 80. Lashbrook JM, Ossipov MH, Hunter JC, Raffa RB, Tallarida RJ, Porreca F. Synergistic antiallodynic effects of spinal morphine with ketorolac and selective COX1‐ and COX2‐inhibitors in nerve‐injured rats. Pain 1999;82:65–72, . [DOI] [PubMed] [Google Scholar]
  • 81. Laitinen J, Nuutinen L. Intravenous diclofenac coupled with PCA fentanyl for pain relief after total hip replacement. Anesthesiology 1992;76:194–198. [DOI] [PubMed] [Google Scholar]
  • 82. Lechi C, Gaino S, Tommasoli R, et al. In vitro study of the anti‐aggregating activity of two nitroderivatives of acetylsalicylic acid. Blood Coagul Fibrinolysis 1996;7:206–209. [DOI] [PubMed] [Google Scholar]
  • 83. Lefkowith JB. Cyclooxygenase‐2 specificity and its clinical implications. Am J Med 1999;106:43S–50S. [DOI] [PubMed] [Google Scholar]
  • 84. Lewis AJ. A comparison of the anti‐inflammatory effects of copper aspirinate and other copper salts in the rat and guinea pig. Agents Actions 1978;8:244–250. [DOI] [PubMed] [Google Scholar]
  • 85. Malmberg B, Yaksh TL. Pharmacology of the spinal action of ketorolac, morphine, ST‐91, U50488H and L‐PIA on the formalin test and an isobolographic analysis of the NSAID interaction. Anesthesiology 1993;79:70–281. [DOI] [PubMed] [Google Scholar]
  • 86. Malmstrom K, Daniels S, Kotey P, Seidenberg BC, Desjardins PJ. Comparison of rofecoxib and celecoxib two cyclooxygenase‐2 inhibitors in postoperative dental pain: A randomized placebo‐ and active‐comparator‐controlled clinical trial. Clin Ther 1999;21:1653–1663. [DOI] [PubMed] [Google Scholar]
  • 87. Mandell BF. COX 2‐selective NSAIDs: biology promises and concerns. Cleve Clin J Med 1999;66:285–292. [DOI] [PubMed] [Google Scholar]
  • 88. Martin MJ, Jimenez MD, Motilva V. New issues about nitric oxide and its effects on the gastrointestinal tract. Curr Pharm Des 2001;7:881–908. [DOI] [PubMed] [Google Scholar]
  • 89. Mauleon D, Artigas R, Garcia M. L, Carganico G. Preclinical and clinical development of dexketoprofen. Drugs 1996;52:24–45. [DOI] [PubMed] [Google Scholar]
  • 90. Maves TJ, Pechman PS, Meller ST, Gebhart GF. Ketorolac potentiates morphine antinociception during visceral nociception in the rat. Anesthesiology 1994;80:1094–1101. [DOI] [PubMed] [Google Scholar]
  • 91. Mazario J, Roza C, Herrero JF. The NSAID dexketoprofen trometamol is as potent as μ‐opioids in the depression of wind‐up and spinal cord nociceptive reflexes in normal rats. Brain Res 1999;816:512–517. [DOI] [PubMed] [Google Scholar]
  • 92. Mazario J, Gaitan G, Herrero JF. Cyclooxygenase‐1 vs. cyclooxygenase‐2 inhibitors in the induction of antinociception in rodent withdrawal reflexes. Neuropharmacology 2001;40:937–945. [DOI] [PubMed] [Google Scholar]
  • 93. McCormack K. Non‐steroidal anti‐inflammatory drugs and spinal nociceptive processing. Pain 1994;59:9–43. [DOI] [PubMed] [Google Scholar]
  • 94. McGurk M, Robinson P, Rajayogeswaran V, et al. Clinical comparison of dexketoprofen trometamol ketoprofen and placebo in postoperative dental pain. J Clin Pharmacol 1998;38:46S–54S. [PubMed] [Google Scholar]
  • 95. Miche H, Brumas V, Berthon G. Copper(II) interactions with nonsteroidal anti‐inflammatory agents. II. Anthranilic acid as a potential. OH‐inactivating ligand. J Inorg Biochem 1997;68:27–38. [DOI] [PubMed] [Google Scholar]
  • 96. Miriam M, Marco D, Gian LG. Cyclo‐oxygenase‐inhibitors increase morphine effects on mesolimbic dopamine neurons. Eur J Pharmacol 2000;387:R1–R3. [DOI] [PubMed] [Google Scholar]
  • 97. Moertel CG, Ahmann DL, Taylor WF, Schwartau N. Relief of pain by oral medications. A controlled evaluation of analgesic combinations. JAMA 1974;229:55–59. [PubMed] [Google Scholar]
  • 98. Momi S, Emerson M, Paul W, et al. Prevention of pulmonary thromboembolism by NCX 4016 a nitric oxide‐releasing aspirin. Eur J Pharmacol 2000;397:177–185. [DOI] [PubMed] [Google Scholar]
  • 99. Morham SG, Langenbach R, Lofti CD, et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 1995;83:473–482. [DOI] [PubMed] [Google Scholar]
  • 100. Mukherjee D. Selective cyclooxygenase‐2 (COX‐2) inhibitors and potential risk of cardiovascular events. Biochem Pharmacol 2002;63:817–821. [DOI] [PubMed] [Google Scholar]
  • 101. Muscara MN, Vergnolle N, Lovren F, et al. Selective cyclo‐oxygenase‐2 inhibition with celecoxib elevated blood pressure and promotes leukocyte adherence. Br J Pharmacol 2000;129:1423–1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Nishihara I, Minami T, Watanabe Y, Ito S, Hayaishi O. Prostaglandin E2 stimulates glutamate release from synaptosomes of rat spinal cord. Neurosci Lett 1995;196:57–60. [DOI] [PubMed] [Google Scholar]
  • 103. O'Banion MK, Sadowski HB, Winn V, Young DA. A serum glucocorticoid‐regulated 4‐Kilobase mRNA encodes a cyclooxygenase‐related protein. J Biol Chem 1991;266:23261–23267. [PubMed] [Google Scholar]
  • 104. O'Sullivan MG, Huggins EM, Meade EA, DeWitt DL, McCall CE. Lipopolysaccharide induces prostaglandin H synthase‐2 in alveolar macrophages. Biochem Biophys Res Comm 1992;187:1123–1127. [DOI] [PubMed] [Google Scholar]
  • 105. Penning TD, Talley JJ, Bertenshaw SR, et al. Synthesis and biological evaluation of the 1 5‐diarylpyrazole class of cyclooxygenase‐2 inhibitors: identification of 4‐[5‐(4‐methylphenyl)‐3‐(trifluoromethyl)‐1H‐pyra‐zol‐1‐y]benzenesulfonamide (SC‐58635 celecoxib). J Med Chem 1997;40:1347–1365. [DOI] [PubMed] [Google Scholar]
  • 106. Pinardi G, Sierralta F, Miranda HF. Interaction between the antinociceptive effect of ketoprofen and adrenergic modularory susrems. Inflammation 2001;25:233–239. [DOI] [PubMed] [Google Scholar]
  • 107. Pomp E. A critical evaluation of side effect data on COX‐2 inhibitors. Tidsskr Nor Laegeforen 2002;122:476–480. [PubMed] [Google Scholar]
  • 108. Reasbeck PG, Rice ML, Reasbeck JC. Double‐blind controlled trial of indomethacin as an adjunct to narcotic analgesia after major abdominal surgery. Lancet 1982;17:115–118. [DOI] [PubMed] [Google Scholar]
  • 109. Reuter BK, Asfaha S, Buret A, Sharkey KA, Wallace JL. Exacerbation of inflammation‐associated colonic injury in rat through inhibition of cyclooxygenase‐2. J Clin Invest 1996;98:2076–2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Riendeau D, Percival MD, Boyce S, et al. Biochemical and pharmacological profile of a tetrasubstituted furanone as ahighly selective COX‐2 inhibitor. Br J Pharmacol 1997;121:105–117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Romero‐Sandoval EA, Mazario J, Howat D, Herrero JF. NCX‐701 (nitroparacetamol) is an effective antinociceptive agent in rat withdrawal reflexes and wind‐up. Br J Pharmacol 2002;135:1556–1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Romero‐Sandoval EA, Gaitan G, Herrero JF. Antinociceptive effects of NO‐paracetamol (NCX‐701) and paracetamol in spinal cord reflexes and wind‐up. Enhancement of mu‐opioid analgesia. Soc Neurosc Abstr 2002, Abs 3508. [Google Scholar]
  • 113. Rossoni G, Berti M, Colonna VD, Bernareggi M, Del Soldato P, Berti F. Myocardial protection by the nitro‐derivative of aspirin NCX 4016: In vitro and in vivo experiments in the rabbit. Ital Heart J 2000;1:146–155. [PubMed] [Google Scholar]
  • 114. Rovetta G, Monteforte P, Brignone A, Molfetta L, Buffrini L. Early‐morning administration of dexketoprofen‐trometamol in morning stiffness induced by nodal osteoarthritis of the hands. Int J Tissue React 2001;23:63–66. [PubMed] [Google Scholar]
  • 115. Rubin P, Yee JP, Ruoff G. Comparison of long‐term safety of ketorolac tromethamine and aspirin in the treatment of chronic pain. Pharmacotherapy 1990;10:106S–110S. [PubMed] [Google Scholar]
  • 116. Sardina M, Acuto G, Daussogne C, Santus G. Safety, tolerability, pharmacokinetics and preliminary pharmacodynamic profile of NCX 4016 in healthy volunteer studies. Nitric Oxide Based Drug Therapy Conference. William Harvey Research Institute Porto, Portugal April 2002:10–12. [Google Scholar]
  • 117. Seegers AJ, Jager LP, Zandberg P, Van Noordiwjk J. The anti‐inflammatory analgesic and antipyretic activities of non‐narcotic analgesic drug mixtures in rats. Arch Int Pharmacodyn Ther 1981;251:1265–1275. [PubMed] [Google Scholar]
  • 118. Seibert K, Zhang Y, Leahy K, et al. Pharmacological and biochemical demonstration of the role of cyclo‐oxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 1994;91:12013–12017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Siegers CP. Effects of caffeine on the absorption and analgesic efficacy of paracetamol in rats. Pharmacology 1973;10:19–27. [DOI] [PubMed] [Google Scholar]
  • 120. Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs. nonsteroidal anti‐inflammatory drugs for osteoarthritis and rheumatoid arthritis: The CLASS study: A randomized controlled trial. Celecoxib Long‐term Arthritis Safety Study. JAMA 2000;284:1247–1255. [DOI] [PubMed] [Google Scholar]
  • 121. Simon LS, Weaver AL, Graham DY, et al. Anti‐inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: A randomized controlled trial. JAMA 1999;24:282:1921–1928. [DOI] [PubMed] [Google Scholar]
  • 122. Smith CJ, Zhang Y, Koboldt C, et al. Pharmacological analysis of cyclooxygenase‐1 in inflammation. Proc Natl Acad Sci USA 1998;95:13313–13318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Sorenson JR. Copper complexes offer a physiological approach to treatment of chronic diseases. Prog Med Chem 1989;26:437–568. [DOI] [PubMed] [Google Scholar]
  • 124. Sorenson JR. In: Milanino. Cooper and Zinc in inflammation. Dordrecht : Kluwer Academic Publishers, 1989. [Google Scholar]
  • 125. Sousa AM, Prado WA. The dual effect of a nitric oxide donor in nociception. Brain Res 2001;897:9–19. [DOI] [PubMed] [Google Scholar]
  • 126. Takeuchi K, Ukawa H, Konaka A, Kitamura M, Sugawa Y. Effect of nitric oxide‐releasing aspirin derivative on gastric functional and ulcerogenic responses in rats: Comparison with plain aspirin. J Pharmacol Exp Ther 1998;286:115–121. [PubMed] [Google Scholar]
  • 127. Tzeng JI, Mok MS. Combination of intramuscular ketorolac and low dose epidural morphine for the relief of post‐caesarean pain. Ann Acad Med Singapore 1994;23:10–13. [PubMed] [Google Scholar]
  • 128. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin‐like drugs. Nature 1971;231:232–235. [DOI] [PubMed] [Google Scholar]
  • 129. Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases in the spinal cord. Progr Neurobiol 2001;64:327–63. [DOI] [PubMed] [Google Scholar]
  • 130. Vaughan CW. Enhancement of opioid inhibition of GABAergic synaptic transmission by cyclo‐oxygenase inhibitors in rat periaqueductal grey neurones. Br J Pharmacol 1998;123:1479–1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Vaughan CW, Ingram SL, Connor MA, Christie MJ. How opioids inhibit GABA‐mediated neurotransmission. Nature 1997;390:611–614. [DOI] [PubMed] [Google Scholar]
  • 132. Wallace JL. Selective COX‐2 inhibitors: is the water becoming muddy TiPS 1999;20:4–6. [DOI] [PubMed] [Google Scholar]
  • 133. Wallace JL. Distribution and expression of cyclooxygenase (COX) isoenzymes, their physiological roles, and the categorization of nonsteroidal anti‐inflammatory drugs (NSAIDs). Am J Med 1999;107:11S–16S. [DOI] [PubMed] [Google Scholar]
  • 134. Wallace JL, Reuter B, Cicala C, McKnight W, Grisham MB, Cirino G. Novel nonsteroidal anti‐inflammatory drug derivatives with markedly reduced ulcerogenic properties in the rat. Gastroenterology 1994;107:173–179. [DOI] [PubMed] [Google Scholar]
  • 135. Wallace JL, McKnight W, Del Soldato P, Baydoun AR, Cirino G. Anti‐thrombotic effects of a nitric oxide‐releasing, gastric‐sparing aspirin derivative. J Clin Invest 1995;96:2711–2718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136. Wallace JL, McKnight W, Wilson TL, Del Soldato P, Cirino G. Reduction of shock‐induced gastric damage by a nitric oxide‐releasing aspirin derivative: Role of neutrophils. Am J Physiol 1997;273:G1246–G1251. [DOI] [PubMed] [Google Scholar]
  • 137. Wallace JL, Bak A, McKnight W, Asfaha S, Sharkey KA, Macnaughton WK Cyclooxygenase 1 contributes to inflammatory responses in rats and mice: Implications for gastrointestinal toxicity. Gastroenterology 1998;115:101–109. [DOI] [PubMed] [Google Scholar]
  • 138. Wallace JL, Muscara MN, McKnight W, Dicay M, Del Soldato P, Cirino G. In vivo antithrombotic effects of a nitric oxide‐releasing aspirin derivative, NCX‐4016. Thromb Res 1999;93:43–50. [DOI] [PubMed] [Google Scholar]
  • 139. Wechter WJ, McCracken JD, Kantoci D, et al. Mechanism of enhancement of intestinal ulcerogenicity of S‐aryl propionic acids by their R‐enantiomers in the rat. Dig Dis Sci 1998;43:1264–1274. [DOI] [PubMed] [Google Scholar]
  • 140. Weder JE, Dillon CT, Hambley TW, et al. Copper complexes of non‐steroidal anti‐inflammatory drugs: An opportunity yet to be realized. Coord Chem Rev 2002, in press. [Google Scholar]
  • 141. Whelton A, Maurath CJ, Verburg KM, Geis GS. Renal safety and tolerability of celecoxib, a novel cyclooxygenase 2 (COX‐2) inhibitor. Am J Ther 2000;7:159–175. [DOI] [PubMed] [Google Scholar]
  • 142. Whelton A, Schulman G, Wallemark C, et al. Effects of celecoxib and naproxen on renal function in the elderly. Arch Intern Med 2000;160:1465–1470. [DOI] [PubMed] [Google Scholar]
  • 143. Whittle BJ. Thirteenth Gaddum Memorial Lecture. Neuronal and endothelium‐derived mediators in the modulation of the gastric microcirculation: integrity in the balance. Br J Pharmacol 1993;110:3–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144. Willingale H L, Gardiner N J, McLymont N, Giblett S, Grubb BD. Prostanoids synthesized by cyclo‐oxygenase isoforms in rat spinal cord and their contribution to the development of neuronal hyperexcitability. Br J Pharmacol 1997;122:1593–1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145. Willoughby DA, Moore AR, Colville‐Nash PR. COX‐1, COX‐2, and COX‐3 and the future treatment of chronic inflammatory disease. Lancet 2000;355:646–648. [DOI] [PubMed] [Google Scholar]
  • 146. Wimpey TL, Chavkin C. Opioids activate both an inward rectifier and a novel voltage‐gated potassium conductance in the hippocampal formation. Neuron 1991;6:281–289. [DOI] [PubMed] [Google Scholar]
  • 147. Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL Expression of a mitogen‐responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA 1991;88:2692–2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148. Yee JP, Koshiver JE, Allbon C, Brown CR. Comparison of intramuscular ketorolac tromethamine and morphine sulfate for analgesia of pain after major surgery. Pharmacotherapy 1986;6:253–261. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES