Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;7(3):265–282. doi: 10.1111/j.1527-3458.2001.tb00199.x

Pharmacology of the Atypical Antipsychotic Remoxipride, a Dopamine D2 Receptor Antagonist

Roser Nadal 1,
PMCID: PMC6741677  PMID: 11607043

ABSTRACT

Remoxipride is a substituted benzamide that acts as a weak but very selective antagonist of dopamine D2 receptors. It was introduced by Astra (Roxiam) at the end of the eighties and was prescribed as an atypical antipsychotic. This article reviews its putative selective effects on mesolimbic versus nigrostriatal dopaminergic systems. In animals, remoxipride has minimal cataleptic effects at doses that block dopamine agonist‐induced hyperactivity. These findings are predictive of antipsychotic activity with a low likelihood of extrapyramidal symptoms. Remoxipride also appears to be effective in more recent animal models of schizophrenia, such as latent inhibition or prepulse inhibition. In clinical studies, remoxipride shows a relatively low incidence of extrapyramidal side effects and its effects on prolactin release are short‐lasting and generally mild. The clinical efficacy of remoxipride is similar to that of haloperidol or chlorpromazine. Although its clinical use was severely restricted in 1993, due to reports of aplastic anemia in some patients receiving remoxipride, this drug has been found to exhibit relatively high selectivity for dopamine D2 receptors making remoxipride an interesting tool for neurochemical and behavioral studies.

Keywords: Atypical antipsychotics, Dopamine, Remoxipride, Schizophrenia

Full Text

The Full Text of this article is available as a PDF (162.1 KB).

References

  • 1. Ahlenius S, Ericson E, Hillegaart V, Nilsson LB, Salmi P, Wijkström A. In vivo effects of remoxipride and aromatic ring metabolites in the rat. J Pharmacol Exp Ther 1997;283:1356–1366. [PubMed] [Google Scholar]
  • 2. Ahlfors UG, Rimon R, Appelberg B, et al. Remoxipride and haloperidol in schizophrenia: A double‐bind multicentre study. Acta Psychiatr Scand 1990;82 (Suppl 358): 99–103. [DOI] [PubMed] [Google Scholar]
  • 3. Amit Z, Smith BR. Remoxipride, a specific D2 dopamine antagonist: An examination of its self‐administration liability and its effects on D‐amphetamine self‐administration. Pharmacol Biochem Behav 1991;41:259–261. [DOI] [PubMed] [Google Scholar]
  • 4. Andersen J, Korner A, Ostegaard P, et al. A double blind comparative multicentre study of remoxipride and haloperidol in schizophrenia. Acta Psychiatr Scand 1990;82 (Suppl 358): 104–107. [DOI] [PubMed] [Google Scholar]
  • 5. Arnt J. Differential effects of classical and newer antipsychotics on the hypermotility induced by two dose levels of D‐amphetamine. Eur J Pharmacol 1995;283:55–62. [DOI] [PubMed] [Google Scholar]
  • 6. Arnt J, Skarsfeldt T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 1998;18:63–101. [DOI] [PubMed] [Google Scholar]
  • 7. Awad, AG , Lapierre YD, Angus C, Rylander A. Quality of life and response of negative symptoms in schizophrenia to haloperidol and the atypical antipsychotic remoxipride. The Canadian remoxipride group. J Psychiatry Neurosci 1997;22:244–248. [PMC free article] [PubMed] [Google Scholar]
  • 8. Bergman J, Madras BK, Spealman RD. Behavioral effects of D1 and D2 dopamine receptor antagonists in squirrel monkeys. J Pharmacol Exp Ther 1991;258:910–917. [PubMed] [Google Scholar]
  • 9. Bourland JA, French ED. Effects of remoxipride, an atypical antipsychotic, on cocaine self‐administration in the rat using fixed‐ and progressive‐ratio schedules of reinforcement. Drug Alcohol Dependence 1995;40:111–114. [DOI] [PubMed] [Google Scholar]
  • 10. Bunney WE, Bunney BG. Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res Rev 2000;31:138–146. [DOI] [PubMed] [Google Scholar]
  • 11. Busatto GF, Pilowsky LS, Costa DC, Ell PJ, Verhoeff NPLG, Kerwin RW. Dopamine D2receptor blockade in vivo with the novel antipsychotics risperidone and remoxipride ‐ an 123I‐IBZM single photon emission tomography (SPET) study. Psychopharmacology 1995;117:55–61. [DOI] [PubMed] [Google Scholar]
  • 12. Bymaster FP, Calligaro DO, Falcone JF, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996;14:87–96. [DOI] [PubMed] [Google Scholar]
  • 13. Carey GJ, Bergman J. Discriminative‐stimulus effects of clozapine in squirrel monkeys: Comparison with conventional and novel antipsychotic drugs. Psychopharmacology 1997;132:261–269. [DOI] [PubMed] [Google Scholar]
  • 14. Carlsson A, Waters N, Waters S, Carlsson ML. Network interactions in schizophrenia — therapeutic implications. Brain Res Rev 2000;31:342–349. [DOI] [PubMed] [Google Scholar]
  • 15. Chouinard G. A placebo‐controlled clinical trial of remoxipride and chlorpromazine in newly admitted schizophrenic patients with acute exacerbation. Acta Psychiatr Scand 1990;82 (Suppl358): 111–119. [DOI] [PubMed] [Google Scholar]
  • 16. Chouinard G, Turnier L. An early phase II clinical trial of remoxipride in schizophrenia with measurement of plasma neuroleptic activity. Psychopharmacol Bull 1986;22:267–271. [PubMed] [Google Scholar]
  • 17. Cook L, Davidson AB. Behavioral pharmacology: animal models involving aversive control of behavior In: Lipton A, Damasio A, Killam K, Eds. Psychopharmacology, a generation of progress. New York : Raven Press, 1978;563–567. [Google Scholar]
  • 18. Csernansky JG, Bardgett ME. Limbic cortical neuronal damage and the pathophysiology of schizophrenia. Schizophr Bull 1998;24:231–248. [DOI] [PubMed] [Google Scholar]
  • 19. Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in shizophrenia: A review and reconceptualization. Am J Psychiatry 1991;148:1474–1486. [DOI] [PubMed] [Google Scholar]
  • 20. Debonnel G, de Montigny C. Modulation of NMDA and dopaminergic neurotransmissions by sigma ligands: Possible implications for the treatment of psychiatric disorders. Life Sci 1996;58:721–34. [DOI] [PubMed] [Google Scholar]
  • 21. Deo R, Soni S, Rastogi SC, et al. Remoxipride and haloperidol in the acute phase of schizophrenia: A double‐blind comparison. Acta Psychiatr Scand 1990;82 (Suppl 358): 120–124. [DOI] [PubMed] [Google Scholar]
  • 22. Depoortere R, Perrault G, Sanger DJ. Some, but not all, antipsychotic‐drugs potentiate a low level of pre‐pulse inhibition shown by rats of the Wistar strain. Behav Pharmacol 1997;8:364–372. [DOI] [PubMed] [Google Scholar]
  • 23. Depoortere R, Perrault G, Sanger DJ. Potentiation of prepulse inhibition of the startle reflex in rats: Pharmacological evaluation of the procedure as a model for detecting antipsychotic activity. Psychopharmacology 1997;132:366–374. [DOI] [PubMed] [Google Scholar]
  • 24. Deutch AY, Duman RS. The effects of antipsychotic drugs on fos protein expression in the prefrontal cortex: Cellular localization and pharmacological characterization. Neuroscience 1996;70:377–389. [DOI] [PubMed] [Google Scholar]
  • 25. Deutch AY, Lee MC, Iadorola MJ. Regionally specific effects of atypical antipsychotic drugs on striatal fos expression: The nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 1992;3:332–341. [DOI] [PubMed] [Google Scholar]
  • 26. Deutch AY, Moghaddam B, Innis RB, et al. Mechanisms of action of atypical antipsychotic drugs: Implications for novel therapeutic strategies for schizophrenia. Schizophr Res 1991;4:121–156. [DOI] [PubMed] [Google Scholar]
  • 27. Deutch AY, Öngür D, Duman RS. Antipsychotic drugs induce fos protein in the thalamic paraventricular nucleus: A novel locus of antipsychotic drug action. Neuroscience 1995;66:337–346. [DOI] [PubMed] [Google Scholar]
  • 28. Duncan GE, Sheitman BB, Lieberman JA. An integrated view of pathophysiological models of schizophrenia. Brain Res Rev 1999;29:250–264. [DOI] [PubMed] [Google Scholar]
  • 29. Ericson H, Ross SB. Subchronic treatment of rats with remoxipride fails to modify X binding sites in the brain. Eur J Pharmacol 1992;226:157–161. [DOI] [PubMed] [Google Scholar]
  • 30. Farde L, Nordström A‐L, Wiesel F‐A, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Arch Gen Psychiatry 1992;49:538–544. [DOI] [PubMed] [Google Scholar]
  • 31. Farde L, von Bahr C. Distribution of remoxipride to the human brain and central D2‐dopamine receptor binding examined in vivo by PET. Acta Psychiatr Scand 1990;82 (Suppl 358): 67–71. [DOI] [PubMed] [Google Scholar]
  • 32. Files FJ, Denning CE, Samson HH. Effects of the atypical antipsychotic remoxipride on alcohol self‐administration. Pharmacol Biochem Behav 1998;59:281–285. [DOI] [PubMed] [Google Scholar]
  • 33. Fuxe K, Ögren SO. The unique effect of remoxipride on dopamine utilization in the basal ganglia. Acta Physiol Scand 1991;141:577–578. [DOI] [PubMed] [Google Scholar]
  • 34. Georgieva J, Mohringe B, Magnusson O. Neurochemical effects of prolonged treatment with remoxipride as assessed by intracerebral microdialysis in freely moving rats. Prog Neuropsychopharmacol Biol Psychiatry 1994;18:1187–1201. [DOI] [PubMed] [Google Scholar]
  • 35. Gray JA. A model of the limbic system and basal ganglia: applications to anxiety and schizophrenia In: Gazzaniga MS, ed. The cognitive neurosciences. Cambridge : The MIT Press, 1995;1165–1176. [Google Scholar]
  • 36. Gudelsky GA, Nash JF. Neuroendocrinological and neurochemical effects of sigma ligands. Neuropharmacology 1992;31:157–162. [DOI] [PubMed] [Google Scholar]
  • 37. Guinetdinov RR, Bogdanov MB, Kudrin VS, Rayevsky KS. Remoxipride and raclopride differ from metoclopramide by their effects on striatal dopamine release and biosynthesis in rats. Neuropharmacology 1994;33:215–219. [DOI] [PubMed] [Google Scholar]
  • 38. Hall H, Farde L, Sedvall G. Human dopamine receptor subtypes —in vitro binding analysis using 3H‐SCH 23390 and3H‐raclopride. J Neural Transm 1988;73:7–21. [DOI] [PubMed] [Google Scholar]
  • 39. Hall H, Sallemark M. Effects of chronic neuroleptic treatment on agonist affinity sates of the dopamine‐D2 receptor in the rat brain. Pharmacol Toxicol 1987;60:359–363. [DOI] [PubMed] [Google Scholar]
  • 40. Holm AC, Edsman I, Lundberg T, Odlind B. Tolerability of remoxipride in the long term treatment of schizophrenia. An overview. Drug Safety 1993;8:445–456. [DOI] [PubMed] [Google Scholar]
  • 41. Holt DJ, Hersh LB, Saper CB. Cholinergic innervation in the human striatum: A three‐compartment model. Neuroscience 1996;74:67–87. [DOI] [PubMed] [Google Scholar]
  • 42. Jackson DM, Johansson C, Lindgren L‐M, Bengtsson A. Dopamine receptor antagonists block amphetamine and phencyclidine‐induced motor stimulation in rats. Pharmacol Biochem Behav 1994;48:465–471. [DOI] [PubMed] [Google Scholar]
  • 43. Jackson DM, Ryan C, Evenden J, Mohell N. Preclinical findings with new antipsychotic agents: what makes them atypical Acta Psychiatr Scand 1994;89 (Suppl 380): 41–48. [DOI] [PubMed] [Google Scholar]
  • 44. Jeanjean AP, Laterre EC, Maloteaux JM. Neuroleptic binding to sigma receptors: Possible involvement in neuroleptic‐induced acute dystonia. Biol Psychiatry 1997;41:1010–1019. [DOI] [PubMed] [Google Scholar]
  • 45. Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizoprenia. Neuropsychopharmacology 1999;20:201–225. [DOI] [PubMed] [Google Scholar]
  • 46. Johansson C, Jackson DM, Svensson L. The atypical antipsychotic, remoxipride, blocks phencyclidine‐induced disruption of prepulse inhibition in the rat. Psychopharmacology 1994;116:437–442. [DOI] [PubMed] [Google Scholar]
  • 47. Johansson C, Jackson DM, Zhang J, Svensson L. Prepulse inhibition of acoustic startle, a measure of sensorimotor gating: Effects of antipsychotics and other agents in rats. Pharmacol Biochem Behav 1995;52:649–654. [DOI] [PubMed] [Google Scholar]
  • 48. Keks N, McGrath J, Lambert T, et al. The Australian multicentre double‐bind comparative study of remoxipride and thioridazine in schizophrenia. Acta Psychiatr Scand 1994;90:358–365. [DOI] [PubMed] [Google Scholar]
  • 49. Kerwin RW. The new atypical antipsychotics. A lack of extrapyramidal side‐effects and new routes in schizophrenia research. Br J Psychiatry 1994;164:141–148. [DOI] [PubMed] [Google Scholar]
  • 50. King DJ, Blomqvist M, Cooper SJ, Doherty MM, Mitchell MJ, Montgomery RC. A placebo controlled trial of remoxipride in the prevention of relapse in chronic schizophrenia. Psychopharmacology 1992;107:175–179. [DOI] [PubMed] [Google Scholar]
  • 51. Kinon BJ, Lieberman JA. Mechanisms of action of atypical antipsychotic drugs: A critical analysis. Psychopharmacology 1996;124:2–34. [DOI] [PubMed] [Google Scholar]
  • 52. Klemm E, Grünwald, F , Kasper S, et al. [123I]IBZM SPECT for imaging of striatal D2 dopamine receptors in 56 schizophrenic patients taking various neuroleptics. Am J Psychiatry 1996;153:183–190. [DOI] [PubMed] [Google Scholar]
  • 53. Knable MB, Weinberger DR. Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 1997;11:123–131. [DOI] [PubMed] [Google Scholar]
  • 54. Köhler C, Hall H, Magnusson O, Lewander T, Gustafsson K. Biochemical pharmacology of the atypical neuroleptic remoxipride. Acta Psychiatr Scand 1990;82 (Suppl 358): 27–36. [DOI] [PubMed] [Google Scholar]
  • 55. Köhler C, Radesäter AC, Karlsson‐Boethius G, Bryske B, Widman M. Regional distribution and in vivo binding of the atypical antipsychotic drug remoxipride. A biochemical and autoradiographic analysis in the rat brain. J Neural Transm 1992;87:49–62. [DOI] [PubMed] [Google Scholar]
  • 56. Lahti AC, Lahti RA, Tamminga CA. New neuroleptics and experimental antipsychotics: Future roles In: Breier A, ed. The new pharmacotherapy of schizophrenia. Washington : American Psychiatric Press, 1996;57–87. [Google Scholar]
  • 57. Lapierre YD, Angus C, Awad AG, et al. The treatment of negative symptoms: A clinical and methodological study. Int Clin Psychopharmacol 1999;14:101–112. [DOI] [PubMed] [Google Scholar]
  • 58. Lapierre YD, Nair NP, Chouinard G, et al. A controlled dose‐ranging study of remoxipride and haloperidol in schizophrenia‐ a Canadian multicentre study. Acta Psychiatr Scand 1990;82 (Suppl 358): 72–77. [DOI] [PubMed] [Google Scholar]
  • 59. Largent BL, Wikström H, Snowman AM, Snyder SH. Novel antipsychotic drugs share high affinity for X receptors. Eur J Pharmacol 1988;155:345–347. [DOI] [PubMed] [Google Scholar]
  • 60. Laux G, Klieser E, Schroder HG, et al. A double‐bind multicentre study comparing remoxipride, two and three times daily, with haloperidol in schizophrenia. Acta Psychiatr Scand 1990;82 (Suppl 358): 125–129. [DOI] [PubMed] [Google Scholar]
  • 61. Le Moal M. Mesocorticolimbic dopaminergic neurons. Functional and regulatory roles In: Bloom FE, Kupfer DJ, Eds. Psychopharmacology. The fourth generation of progress. New York : Raven Press, 1995;283–294. [Google Scholar]
  • 62. Leysen JE, Gommeren W, Mertens J, et al. Comparison of in vitro binding properties of a series of dopamine antagonists and agonists for cloned human dopamine D2S and D2L receptors and for D2 receptors in rat striatal and mesolimbic tissues, using [125I]2′‐iodospiperone. Psychopharmacology 1993;110:27–36. [DOI] [PubMed] [Google Scholar]
  • 63. Lidow MS, Elsworth JD, Goldman‐Rakic PS. Down‐regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex by chronic treatment with antipsychotic drugs. J Pharmacol Exp Ther 1997;281:597–603. [PubMed] [Google Scholar]
  • 64. Lidow MS, Goldman‐Rakic PS. A common action of clozapine, haloperidol, and remoxipride on D1‐ and D2‐dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad Sci USA 1994;91:4353–4356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Lidow MS, Goldman‐Rakic PS. Differential regulation of D2 and D4 dopamine receptor mRNAs in the primate cerebral cortex vs. neostriatum: Effects of chronic treatment with typical and atypical antipsychotic drugs. J Pharmacol Exp Ther 1997;283:939–946. [PubMed] [Google Scholar]
  • 66. Lin SK, Chang WH, Chien CP, Lam YWF, Jann MW. Disposition of remoxipride in Chinese schizophrenic patients. Int J Clin Pharmacol Ther 1996;34:17–20. [PubMed] [Google Scholar]
  • 67. Lindstrom LH, Wieselgren IM, Struwe G., et al. A double‐bind comparative multicentre study of remoxipride and haloperidol in schizophrenia. Acta Psychiatr Scand 1990;82 (Suppl 358): 130–135. [DOI] [PubMed] [Google Scholar]
  • 68. Lipska BK, Weinberger DR. To model a psychiatric disorder in animals: Schizophrenia as a reality test. Neuropsychopharmacology 2000;23:223–239. [DOI] [PubMed] [Google Scholar]
  • 69. Logan J, Finley P. Risperidone: Refining tools to treat schizophrenia. CNS Drug Rev 1999;5:249–264. [Google Scholar]
  • 70. Magnusson O, Fowler CJ, Köhler C, Ögren S‐O. Dopamine D2 receptors and dopamine metabolism. Relationship between biochemical and behavioural effects of substituted benzamide drugs. Neuropharmacology 1986;25:187–197. [DOI] [PubMed] [Google Scholar]
  • 71. Magnusson O, Mohringe B, Thorell G, Lake‐Bakaar DM. Effects of the dopamine D2 selective receptor antagonist remoxipride on dopamine turnover in the rat brain after acute and repeated administration. Pharmacol Toxicol 1987;60:368–373. [DOI] [PubMed] [Google Scholar]
  • 72. Main DCJ, Waterman AE, Kilpatrick IC. Behavioural analysis of changes in nociceptive thresholds produced by remoxipride in sheep and rats. Eur J Pharmacol 1995;287:221–231. [DOI] [PubMed] [Google Scholar]
  • 73. Main DCJ, Waterman AE, Kilpatrick IC. Investigation into the antinociceptive potential of remoxipride administered intrathecally in sheep. Naunyn-Schmiedeberg's Arch Pharmacol 1997;355:524–530. [DOI] [PubMed] [Google Scholar]
  • 74. Malhotra AK, Pinsky DA, Breier A. Future antipsychotic agents: Clinical implications In: Breier A, ed. The new pharmacotherapy of schizophrenia. Washington : American Psychiatric Press, 1996;41–56. [Google Scholar]
  • 75. Malmberg A, Jackson DM, Eriksson A, Mohell N. Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3receptors. Mol Pharmacol 1993;43:749–754. [PubMed] [Google Scholar]
  • 76. McCreadie RG, Todd N, Livingston M, et al. A double‐bind comparative study of remoxipride and thioridazine in the acute phase of schizophrenia. Acta Psychiatr Scand 1988;78:49–56. [DOI] [PubMed] [Google Scholar]
  • 77. Mendlewicz J, de Bleeker E, Cosyns P, et al. A double‐bind comparative study of remoxipride and haloperidol in schizophrenic and schizophreniform disorders. Acta Psychiatr Scand 1990;82 (Suppl 358): 138–141. [DOI] [PubMed] [Google Scholar]
  • 78. Mohell N, Sällemark M, Rosqvist S, Malmberg A, Högberg T, Jackson DM. Binding characteristics of remoxipride and its metabolites to dopamine D2 and D3 receptors. Eur J Pharmacol 1993;238:121–125. [DOI] [PubMed] [Google Scholar]
  • 79. Moser PC, Hitchcock JM, Lister S, Moran PM. The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 2000;33:275–307. [DOI] [PubMed] [Google Scholar]
  • 80. Movin‐Osswald G, Boelaert J, Hammarlund‐Udenaes M, Nilsson LB. The pharmacokinetics of remoxipride and metabolites in patients with various degrees of renal function. Br J Clin Pharmacol 1993;35:615–622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Movin‐Osswald G, Hammarlund‐Udenaes M. Remoxipride: Pharmacokinetics and effect on plasma prolactin. Br J Clin Pharmacol 1991;32:355–360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Movin‐Osswald G, Hammarlund‐Udenaes M, von Bahr C, Eneroth P, Walton‐Bowen K. Influence of the dosing interval on prolactin release after remoxipride. Br J Clin Pharmacol 1995;39:503–510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Nadal R, Prat G, Pallarés M, Hernández‐Torres M, Ferré N. Effects of bromocriptine on self‐administration of sweetened ethanol solutions in rats. Psychopharmacology 1996;128:45–53. [DOI] [PubMed] [Google Scholar]
  • 84. Ögren SO, Archer T. Effects of typical and atypical antipsychotic drugs on two‐way active avoidance: Relationship to DA receptor blocking profile. Psychopharmacology 1994;114:383–391. [DOI] [PubMed] [Google Scholar]
  • 85. Ögren SO, Florvall L, Hall H, Magnusson O, Ängeby‐Möller K. Neuropharmacological and behavioural properties of remoxipride in the rat. Acta Psychiatr Scand 1990;82 (Suppl 358): 21–26. [DOI] [PubMed] [Google Scholar]
  • 86. Ögren SO, Goldstein M. Phencyclidine‐ and dizocilpine‐induced hyperlocomotion are differentially mediated. Neuropsychopharmacology 1994;11:167–177. [DOI] [PubMed] [Google Scholar]
  • 87. Ögren SO, Hall H, Köhler C, et al. Remoxipride, a new potential antipsychotic compound with selective antidopaminergic actions in the rat brain. Eur J Pharmacol 1984;102:459–474. [DOI] [PubMed] [Google Scholar]
  • 88. Ögren SO, Lundstrom J, Nilsson LB. Concentrations of remoxipride and its phenolic metabolites in rat brain and plasma. Relationship to extrapyramidal side effects and atypical antipsychotic profile. J Neural Transm 1993;94:199–216. [DOI] [PubMed] [Google Scholar]
  • 89. Ögren SO, Lundstrom J, Nilsson LB. Widman M. Dopamine D blocking activity and plasma concentrations of remoxipride and its main metabolites in the rat. J Neural Transm 1993;93:187–203. [DOI] [PubMed] [Google Scholar]
  • 90. Ögren SO, Rosén L, Fuxe K. The dopamine D2 antagonist remoxipride acts in vivo on a subpopulation of D2 dopamine receptors. Neuroscience 1994;61:269–283. [DOI] [PubMed] [Google Scholar]
  • 91. Owens DG. Adverse effects of antipsychotic agents. Do newer agents offer advantages Drugs 1996;51:895–930. [DOI] [PubMed] [Google Scholar]
  • 92. Parent A, Côté P‐Y, Lavoie B. Chemical anatomy of primate basal ganglia. Progr Neurobiol 1995;46:131–197. [PubMed] [Google Scholar]
  • 93. Patris M, Agussol P, Alby JM, et al. A double‐bind multicentre comparison of remoxipride, at two dose levels, and haloperidol. Acta Psychiatr Scand 1990;82 (Suppl 358): 78–82. [DOI] [PubMed] [Google Scholar]
  • 94. Pennartz CMA, Groenewegen HJ, Lopes Da Silva FH. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological and anatomical data. Progr Neurobiol 1994;42:719–761. [DOI] [PubMed] [Google Scholar]
  • 95. Perrault GH, Depoortere R, Morel E, Sanger DJ, Scatton B. Psychopharmacological profile of amisulpride: An antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J Pharmacol Exp Ther 1997;280:73–82. [PubMed] [Google Scholar]
  • 96. Phanjoo AL, Link C. Remoxipride vs. thioridazine in ederly psychotic patients. Acta Psychiatr Scand 1990;82 (Suppl 358): 181–185. [DOI] [PubMed] [Google Scholar]
  • 97. Pflug B, Bartels M, Bauer H, et al. A double‐bind multicentre study comparing remoxipride, controlled release formulation, with haloperidol in schizophrenia. Acta Psychiatr Scand 1990;82 (Suppl 358): 142–146. [DOI] [PubMed] [Google Scholar]
  • 98. Porter JH, Varvel SA, Vann RE, Philibin SD, Wise LE. Clozapine discrimination with a low training dose distinguishes atypical from typical antipsychotic drugs in rats. Psychopharmacology 2000;149:189–193. [DOI] [PubMed] [Google Scholar]
  • 99. Remington GJ. Dopaminergic and serotonergic mechanisms in the action of standard and atypical neuroleptics In: Shriqui CL, Nasrallah HA, Eds. Contemporary issues in the treatment of schizoprenia. Washington : American Psychiatric Press, 1995;295–328. [Google Scholar]
  • 100. Riegel AC, French ED. Acute toluene induced biphasic changes in rat spontaneous locomotor activity which are blocked by remoxipride. Pharmacol Biochem Behav 1999;62:399–402. [DOI] [PubMed] [Google Scholar]
  • 101. Rinken A, Finnman U‐B, Fuxe K. Pharmacological characterization of dopamine‐stimulated [35S]‐guanosine 5′‐(‐thiotriphosphate) ([35S]GTP S) binding in rat striatal membranes. Biochem Pharmacol 1999;57:155–162. [DOI] [PubMed] [Google Scholar]
  • 102. Robertson GS, Matsumura H, Fibiger HC. Induction patterns of fos‐like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 1994;271:1058–1066. [PubMed] [Google Scholar]
  • 103. Sanger DJ, Perrault G. Effects of typical and atypical antipsychotic drugs on response decrement patterns in rats. J Pharmacol Exp Ther 1995:272:708–713. [PubMed] [Google Scholar]
  • 104. Schilcker E, Marr I. The moderate affinity of clozapine at H3 receptors is not shared by its two major metabolites and by structurally related and unrelated atypical neuroleptics. Naunyn-Schmiedeberg's Arch Pharmacol 1996;353:290–294. [DOI] [PubMed] [Google Scholar]
  • 105. Seeman P. Atypical neuroleptics: Role of multiple receptors, endogenous dopamine, and receptor linkage. Acta Psychiatr Scand 1990;82 (Suppl 358): 14–20. [DOI] [PubMed] [Google Scholar]
  • 106. Seeman P, Corbett R, Van Tol HHM. Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacoly 1997;16:93–110. [DOI] [PubMed] [Google Scholar]
  • 107. Seeman P, Nam D, Ulpian C, Liu ISC, Tallerico T. New dopamine receptor, D2longer, with unique TG splice site, in human brain. Mol Brain Res 2000;76:132–141. [DOI] [PubMed] [Google Scholar]
  • 108. Seeman P, Ulpian C. Neuroleptics have identical potencies in human brain limbic and putamen regions. Eur J Pharmacol 1983;94:145–148. [DOI] [PubMed] [Google Scholar]
  • 109. Seeman P, Van Tol HHM. Dopamine receptor pharmacology. Trends Pharmacol Sci 1994;15:264–270. [DOI] [PubMed] [Google Scholar]
  • 110. Skarsfeldt T. Comparison of the effect of substituted benzamides on midbrain dopamine neurons after treatment of rats for 21 days. Eur J Pharmacol 1993;240:269–275. [DOI] [PubMed] [Google Scholar]
  • 111. Skuza G, Rogoz Z, Wieczorek A. Neuropsychopharmacological profile of remoxipride in comparison with clozapine. Pol J Pharmacol 1997;49:5–15. [PubMed] [Google Scholar]
  • 112. Smith HP, Nichols DE, Mailman RB, Lawler CP. Locomotor inhibition, yawning and vacuous chewing induced by novel dopamine D2 post‐synaptic receptor agonist. Eur J Pharmacol 1997;323:27–36. [DOI] [PubMed] [Google Scholar]
  • 113. Sokoloff P, Schwartz J‐C. Novel dopamine receptors half a decade later. Trends Pharmacol Sci 1995;16:270–275. [DOI] [PubMed] [Google Scholar]
  • 114. Stockmeier CA, DiCarlo JJ, Zhang Y, Thompson P, Meltzer HY. Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors J Pharmacol Exp Ther 1993;266:1374–1384. [PubMed] [Google Scholar]
  • 115. Swerdlow NR, Gever MA. Using an animal model of deficient sensoriomotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 1998;24:285–301. [DOI] [PubMed] [Google Scholar]
  • 116. Tallman JF. Development of novel antipsychotic drugs. Brain Res Rev 2000;31:385–390. [DOI] [PubMed] [Google Scholar]
  • 117. . The Merck Index. Whitehouse station , NJ : Merck Research Laboratories, 1996. [Google Scholar]
  • 118. Tollefson GD, Taylor CC. Olanzapine: Preclinical and clinical profiles of a novel antipsychotic agent. CNS Drug Rev 2000;6:303–363. [Google Scholar]
  • 119. . Trends in pharmacological sciences. Receptor ion channel nomenclature. Suppl 1999. Elsevier Sciences. [Google Scholar]
  • 120. Trimble KM, Bell R, King DJ. Enhancement of latent inhibition in the rat by the atypical antipsychotic agent remoxipride. Pharmacol Biochem Behav 1997;56:809–816. [DOI] [PubMed] [Google Scholar]
  • 121. Vartiainen H, Leinonen E, Putkonen A, Lang S, Hagert U, Tolvanen U. A long‐term study of remoxipride in chronic schizophrenic patients. Acta Psychiatr Scand 1993;87:114–117. [DOI] [PubMed] [Google Scholar]
  • 122. von Bahr C, Movin G, Yisak W‐A, Jostell K‐G, Widman M. Clinical pharmacokinetics of remoxipride. Acta Psychiatr Scand 1990;82 (Suppl 358): 41–44. [DOI] [PubMed] [Google Scholar]
  • 123. Wadworth AN, Heel RC. Remoxipride. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in schizophrenia. Drugs 1990;40:863–879. [DOI] [PubMed] [Google Scholar]
  • 124. Westerink BHC. The effects of drugs on dopamine biosynthesis and metabolism in the brain In: Horn AS, Korf J, Westerink BHC, Eds. The neurobiology of dopamine. London : Academic Press, 1979;255–291. [Google Scholar]
  • 125. Westlind‐Danielsson A, Gustafsson K, Andersson I. Remoxipride shows low propensity to block functional striatal dopamine D2 receptors in vitro. Eur J Pharmacol 1994;288:89–95. [DOI] [PubMed] [Google Scholar]
  • 126. Wettstein JG, Host M, Hitchcock JM. Selectivity of action of typical and atypical anti‐psychotic drugs as antagonists of the behavioral effects of 1‐[2,5‐dimethoxy‐4‐iodophenyl]‐2‐aminopropane (DOI). Prog Neuropsychopharmacol Biol Psychiatry 1999;23:533–544. [DOI] [PubMed] [Google Scholar]
  • 127. White FJ. Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 1996;19:405–436. [DOI] [PubMed] [Google Scholar]
  • 128. Widerlöv E, Andersson U, von Bahr C, Nilsson M‐I. Pharmacokinetics and effects of prolactin of remoxipride in patients with tardive dyskinesia. Psychopharmacology 1991;103:46–49. [DOI] [PubMed] [Google Scholar]
  • 129. Widerlöv E, Termander B, Nilsson M‐I. Effect of urinary pH on the plasma and urinary kinetics of remoxipride in man. Eur J Clin Pharmacol 1989;37:359–363. [DOI] [PubMed] [Google Scholar]
  • 130. Widman M, Nilsson LB, Bryske B, Lundström J. Disposition of remoxipride in different species: Species differences in metabolism. Arzneim Forsch Drug Res 1993;43:287–297. [PubMed] [Google Scholar]
  • 131. Wilson JM, Sanyal S, van Tol HHM. Dopamine D2 and D4 receptor ligands: Relation to antipsychotic action. Eur J Pharmacol 1998;351:273–286. [DOI] [PubMed] [Google Scholar]
  • 132. Yisak W, von Bahr C, Farde L, Grind M, Mattila M, Ogenstad S. Drug interaction studies with remoxipride. Acta Psychiatr Scand 1990;82 (Suppl 358): 58–62. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES