Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;8(4):405–426. doi: 10.1111/j.1527-3458.2002.tb00237.x

Nicotinic Cholinergic Modulation: Galantamine as a Prototype

Diana S Woodruff‐Pak 1,, Cynthia Lander 2, Hugo Geerts 3
PMCID: PMC6741680  PMID: 12481195

ABSTRACT

Nicotinic acetylcholine receptor pharmacology is becoming increasingly important in the clinical symptomatology of neurodegenerative diseases in general and of cognitive and behavioral aspects in particular. In addition, the concept of allosteric modulation of nicotinic acetylcholine receptors has become a research focus for the development of therapeutic agents. In this review the scientific evidence for changes in nicotinic acetylcholine receptors in Alzheimer's disease is described. Within this context, the pharmacology of galantamine, a recently approved drug for cognition enhancement in Alzheimer's disease, is reviewed along with preclinical studies of its efficacy on learning and memory. Galantamine modestly inhibits acetylcholinesterase and has an allosteric potentiating ligand effect at nicotinic receptors. The data collected in this review suggest that the unique combination of acetylcholinesterase inhibition and nicotinic acetylcholine receptor modulation offers potentially significant benefits over acetylcholinesterase inhibition alone in facilitating acetylcholine neurotransmission.

Keywords: Acetylcholine, Alzheimer's disease, Dementia, Nicotinic acetylcholine receptors (nAChRs)

Full Text

The Full Text of this article is available as a PDF (198.7 KB).

References

  • 1. Auld DS, Kar S, Quirion R. Beta‐amyloid peptides as direct cholinergic neuromodulators. A missing link TINS 1998;21:43–49. [DOI] [PubMed] [Google Scholar]
  • 2. Barnes CA, Meltzer J, Houston F, Orr G, McGann K, Wenk GL. Chronic treatment of old rats with donepezil or galantamine: Effects on memory, hippocampal plasticity and nicotinic receptors. Neuroscience 2000;99:17–23. [DOI] [PubMed] [Google Scholar]
  • 3. Bartolucci C, Perola E, Pilger C, Fels G, Lamba D. Three‐dimensional structure of a complex of galantha‐mine (Nivalin) with acetylcholinesterase from Torpedo californica: Implications for the design of new anti‐Alzheimer drugs. Proteins 2001;42 (2): 182–191. [DOI] [PubMed] [Google Scholar]
  • 4. Berger TW, Berry SD, Thompson RF. Role of the hippocampus in classical conditioning of aversive and appetitive behaviors In: Isaacson RL, Pribram KH, Eds. The hippocampus. New York : Plenum Press, 1986:203–239. [Google Scholar]
  • 5. Berger TW, Thompson RF. Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response: I. The hippocampus. Brain Res 1978;145:323–346. [DOI] [PubMed] [Google Scholar]
  • 6. Bores GM, Huger FP, Petko W, et al. Pharmacological evaluation of novel Alzheimer's disease therapeutics: Acetylcholinesterase inhibitors related to galantamine. J Pharmacol Exp Ther 1996;277 (2): 728–738. [PubMed] [Google Scholar]
  • 7. Christopoulos A. Allosteric binding sites on cell surface receptors: Novel targets for drug discovery. Nature Rev Drug Disc 2002;1:198–211. [DOI] [PubMed] [Google Scholar]
  • 8. Conroy WG, Vernallis AB, Berg DK. The a5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron 1992;9:679–691. [DOI] [PubMed] [Google Scholar]
  • 9. Cooper E, Couturier S, Ballivet M. Pentameric structure and subunit stoichiometry of a neuronal acetylcholine receptor. Nature 1991;350:235–238. [DOI] [PubMed] [Google Scholar]
  • 10. Court JA, Perry EK. Distribution of nicotinic receptors in the CNS In: Stone TW, Ed. CNS neurotransmitters and neuromodulators. London : CRC Press, 1995:85–104. [Google Scholar]
  • 11. Couturier S, Bertrand D, Matter JM, et al. A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo‐oligomeric channel blocked by α‐BTX. Neuron 1990;5:847–856. [DOI] [PubMed] [Google Scholar]
  • 12. Coyle JT, Price DL, DeLong MR. Alzheimer's disease: A disorder of cortical cholinergic innervation. Science 1983;219:1184–1190. [DOI] [PubMed] [Google Scholar]
  • 13. Dineley KT, Westerman M, Bui D, Beli K, Ashe KH, Sweatt JD. Beta‐amyloid activates the mitogen‐activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J Neuroscience 2001;21:4125–4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Fabian‐Fine R, Skehel P, Errington ML, et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 2001;21:7993–8003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Fishkin RJ, Ince ES, Carlezon WA Jr, Dunn RW. D‐cycloserine attenuates scopolamine‐induced learning and memory deficits in rats. Behav Neural Biol 1993;59 (2): 150–157. [DOI] [PubMed] [Google Scholar]
  • 16. Frazier CJ, Buhler AV, Weiner JL, Dunwiddie TV. Synaptic potentials mediated via α‐bungarotoxin‐sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci 1998;18:8228–8235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Geerts H, Spiros A, Finkel L, Carr R. Nicotinic receptor modulation: Advantages in successful Alzheimer therapy. J Neural Transm 2002;62:201–214. [DOI] [PubMed] [Google Scholar]
  • 18. Gould TJ, Collins AC, Wehner JM. Nicotine enhances latent inhibition and ameliorates ethanol‐induced deficits in latent inhibition. Nicotine Tobacco Res 2001;3:17–24. [DOI] [PubMed] [Google Scholar]
  • 19. Gould TJ, Wehner JM. Nicotine enhancement of contextual fear conditioning. Behav Brain Res 1999;102:31–39. [DOI] [PubMed] [Google Scholar]
  • 20. Greenblatt HM, Kryger G, Lewis T, Silman I, Sussman JL. Structure of acetylcholinesterase complexed with (–)‐galantamine at 2.3 Aresolution. FEBS Lett 1999;463 (3): 321–326. [DOI] [PubMed] [Google Scholar]
  • 21. Harvey A. The pharmacology of galantamine and its analogues. Pharmac Ther 1995;68:113–128. [DOI] [PubMed] [Google Scholar]
  • 22. Harvey AL, Rowan EG. Actions of THA, 3, 4‐diaminopyrimidine, physostigmine and galantamine on neuronal K+ currents at a cholinergic nerve terminal In: Giacobini E, Becker R, Eds. Current research in Alzheimer therapy. New York : Taylor and Francis, 1988:191–197. [Google Scholar]
  • 23. Hellstrom‐Lindahl E, Moore H, Nordberg A. Increased levels of tau protein in SH‐SY5Y cells after treatment with cholinesterase inhibitors and nicotinic agonists. J Neurochem 2000;74:777–789. [DOI] [PubMed] [Google Scholar]
  • 24. Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D. Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenillin‐1 mutations: Lack of association with amyloid deposits. Behav Gen 1999;29:177–185. [DOI] [PubMed] [Google Scholar]
  • 25. Holliday MW, Dart M. J, Lynch JK. Neuronal nicotinic acetylcholine receptors as targets for drug discovery. J Med Chem 1997;40:4169–4194. [DOI] [PubMed] [Google Scholar]
  • 26. Iliev A, Traykov V, Prodanov D, et al. Effect of the acetylcholinesterase inhibitor galantamine on learning and memory in prolonged alcohol intake rat model of acetylcholine deficit. Meth Find Exp Clin Pharmacol 1999;21 (4): 297–301. [DOI] [PubMed] [Google Scholar]
  • 27. Irwin RL, Smith HJ. Cholinesterase inhibition by galantamine and lycoramine. Biochem Pharmacol 1960;3:147–155. [DOI] [PubMed] [Google Scholar]
  • 28. Kem WR, Abbott BC, Coates RM. Isolation and structure of a hoplonemertine toxin. Toxicon 1971;9:15–22. [DOI] [PubMed] [Google Scholar]
  • 29. Kihara T, Shimohama S, Sawada H, et al. Nicotinic receptor stimulation protects neurons against β‐amyloid toxicity. Ann Neurol 1997;42:159–163. [DOI] [PubMed] [Google Scholar]
  • 30. Kihara T, Shimohama S, Urushitani M, et al. Stimulation of alpha4 beta2 nicotinic acetylcholine receptors inhibits beta‐amyloid toxicity. Brain Res 1998;792:331–334. [DOI] [PubMed] [Google Scholar]
  • 31. Koster A. Hemmung der Cholinesterasen in verscheidenen Organen durch Eserin, Galantamine und Tacrin; Konzentration's‐Wirkung's‐Beziehungen, Bedeutung für die therapeutische Anwendung. Dissertation. Medizinische Fakultaet der Humboldt Univ. zu Berlin, 1994. [Google Scholar]
  • 32. Lee VM‐Y, Balin BJ, Otvos L, Jr , Trojanowski JQ. A68: A major subunit of paired helical filaments and derivatized forms of normal tau. Science 1991;251:675–678. [DOI] [PubMed] [Google Scholar]
  • 33. Levin ED. Nicotinic systems and cognitive function. Psychopharmacology 1992;108:417–431. [DOI] [PubMed] [Google Scholar]
  • 34. Lilienfeld S. Galantamine — A novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. CNS Drug Rev 2002;8:159–176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Lindstrom J. Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 1997;15:193–222. [DOI] [PubMed] [Google Scholar]
  • 36. Lindstrom J, Anand R, Peng X, Gerzanich V, Wang F, Li Y. Neuronal nicotinic receptor subtypes. Ann NY Acad Sci 1995;757:100–116. [DOI] [PubMed] [Google Scholar]
  • 37. Lindstrom J, Schoepfer R, Conroy W, et al. The nicotinic acetylcholine receptor gene family: Structure of nicotinic receptors from muscle and neurons and neuronal α‐bungarotoxin‐binding proteins. Adv Exp Med Biol 1991;287:255–278. [DOI] [PubMed] [Google Scholar]
  • 38. Liu Q‐S, Kawai H, Berg DK. β‐Amyloid peptide blocks the response of α7‐containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci USA 2001;98:4734–4739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Maelicke A, Albuquerque EX. New approach to drug therapy of Alzheimer's dementia. Drug Disc Today 1996;1:53–59. [Google Scholar]
  • 40. Maelicke A, Schrattenholz A, Schröder H. Modulatory control by non‐competitive agonists of nicotinic cholinergic neurotransmission in the central nervous system. Sem Neurosci 1995;7:103–114. [Google Scholar]
  • 41. Maelicke A, Schrattenholz A, Samochocki M, Radina M, Albuquerque EX. Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer's disease. Behav Brain Res 2000;113:199–206. [DOI] [PubMed] [Google Scholar]
  • 42. Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab Disp 2002;30:553–563. [DOI] [PubMed] [Google Scholar]
  • 43. Marrannes R, de Prins E. Electrophysiology of Reminyl at the α4β2 nAchR. In: World Congress of Neurology 2001. London .
  • 44. Marutle A, Warpman U, Bognanovic N, Lannfelt L, Nordberg A. Neuronal nicotinic receptor deficits in Alzheimer patients with the Swedish amyloid precursor 670/671 mutation. J Neurochem 1999;72:1161–1169. [DOI] [PubMed] [Google Scholar]
  • 45. Matsui K, Mishima M, Nagai Y, Yuzuriha T, Yoshimura T. Absorption, distribution, metabolism and excretion of donepezil after a single oral administration to Rat. Drug Metab Disp 1999;27:1406–1414. [PubMed] [Google Scholar]
  • 46. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995;269:1692–1696. [DOI] [PubMed] [Google Scholar]
  • 47. McGehee DS, Role LW. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Ann Rev Physiol 1995;57:521–546. [DOI] [PubMed] [Google Scholar]
  • 48. Menschik ED, Finkel L. Neuromodulatory control of hippocampal function: Towards a model of Alzheimer's disease. Artif Intell Med 1998;13:99–121. [DOI] [PubMed] [Google Scholar]
  • 49. Moechars D, Dewachter I, Lorent K, et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 1999;274:6483–6492. [DOI] [PubMed] [Google Scholar]
  • 50. Mullan J, Crawford F, Axelman K, et al. A pathogenic mutation for probably Alzheimer's disease in the APP gene at the N‐terminus of β‐amyloid. Nat Genet 1992;1:345–347. [DOI] [PubMed] [Google Scholar]
  • 51. Newhouse PA, Kelton M. Clinical aspects of nicotinic agents: Therapeutic application in central nervous system disorders In: Clementi F, Fornasari D, Gotti C, Eds. Neuronal nicotinic receptors: Experimental pharmacology. Berlin : Springer, 2000;14:779–812. [Google Scholar]
  • 52. Newhouse PA, Potter A, Kelton M, Corwin J. Nicotinic treatment of Alzheimer's disease. Biol Psychiatry 2001;49:268–278. [DOI] [PubMed] [Google Scholar]
  • 53. Pereira EFR, Alkondon M, Reinhardt S, et al. Physostigmine and galantamine: Probes for a novel binding site on the α4β2 subtype of neuronal nicotinic acetylcholine receptors stably expressed in fibroblast cells. J Pharmacol Exp Ther 1994;270:768–778. [PubMed] [Google Scholar]
  • 54. Pereira EFR, Reinhardt‐Maelicke S, Schrattenholz A, Maelicke A, Albuquerque EX. Identification and functional characterization of a new agonist site on nicotinic acetylcholine receptors of cultured hippocampal neurons. J Pharmacol Exp Ther 1993;265:1474–1491. [PubMed] [Google Scholar]
  • 55. Pettit DL, Shao Z, Yakel JL. β‐amyloid1–42 peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci 2001;21:1–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Pilger C, Bartolucci C, Lamba D, Tropsha A, Fels G. Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking. J Mol Graph Model 2001;19 (3–4): 288–29 6, 374–378. [DOI] [PubMed] [Google Scholar]
  • 57. Proskurnina, Yakovleva . As quoted by Harvey A. Pharmac Ther 1995;68:113–128. [Google Scholar]
  • 58. Pugh PC, Berg DK. Neuronal acetylcholine receptors that bind α‐bungarotoxin mediate neurite retraction in a calcium‐dependent manner. J Neurosci 1994;14:889–896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Sahakian BJ, Coull JT. Nicotine and tetrahydroaminoacradine: Evidence for improved attention in patients with dementia of the Alzheimer type. Drug Dev Res 1994;31:80–88. [Google Scholar]
  • 60. Samochocki M, Zerlin M, Jostock R, et al. Galantamine is an allosterically potentiating ligand of the human alpha4/beta2 nAChR. Acta Neurol Scand 2000;176:68–73. [DOI] [PubMed] [Google Scholar]
  • 61. Santos M, Alkondon M, Pereira E, et al. The Nicotinic allosteric potentiating ligand galantamine facilitates synaptic transmission in the mammalian central nervous system. Mol Pharmacol 2002;61:1222–1234. [DOI] [PubMed] [Google Scholar]
  • 62. Schoepfer R, Conroy W, Whiting P, Gore M, Lindstrom J. Brain α‐bungarotoxin binding protein cDNAs and mAbs reveal subtypes of this branch of the ligand‐gated ion channel gene superfamily. Neuron 1990;5:35–48. [DOI] [PubMed] [Google Scholar]
  • 63. Schrattenholz A, Pereira EF, Roth U, Weber KH, Albuquerque EX, Maelicke A. Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol Pharmacol 1996;49:1–6. [PubMed] [Google Scholar]
  • 64. Schroder B, Reinhardt S, Schrattenholz A, et al. Monoclonal antibodies FK1 and WF6 define two neighboring ligand binding sites on Torpedo acetylcholine receptor α‐polypeptide. J Biol Chem 1994;269:10407–10416. [PubMed] [Google Scholar]
  • 65. Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 1999;399:A23–A31. [DOI] [PubMed] [Google Scholar]
  • 66. Shalkovskaya LN, Losev NA. Role of M‐ and N‐cholinergic systems in the recovery of motor functions after ablation of the motor zones of the cat cerebral cortex. Neurosci Behav Physiol 1987;17 (2): 102–106. [DOI] [PubMed] [Google Scholar]
  • 67. Shimohama S, Kihara T. Nicotinic receptor‐mediated protection against beta‐amyloid neurotoxicity. Biol Psychiatry 2001;49:233–239. [DOI] [PubMed] [Google Scholar]
  • 68. Solomon PR, Levine E, Bein T, Pendlebury WW. Disruption of classical conditioning in patients with Alzheimer's disease. Neurobiol Aging 1991;12:283–287. [DOI] [PubMed] [Google Scholar]
  • 69. Spiros A, Finkel L, Carr R, Geerts H. The virtual synaptic cleft towards understanding the importance of Reminyl's dual mode of action. Soc Neurosci Abs 2001;27. [Google Scholar]
  • 70. Storch A, Schrattenholz A, Cooper JC, et al. Physostigmine, galantamine and codeine act as non‐competitive nicotinic agonists on clonal rat pheochromocytoma cells. Eur J Pharmacol 1995;290:207–219. [DOI] [PubMed] [Google Scholar]
  • 71. Svensson A‐L, Nordberg A. Tacrine interacts with an allosteric activator site on α4β2 nAChRs in M10 cells. Neuro Report 1996;7:2201–2205. [DOI] [PubMed] [Google Scholar]
  • 72. Svensson A‐L, Nordberg A. In: Iqbal K, Winblad B, Nishimura T, Taked M, Wisniewski HM, Eds. Alzheimer 's disease: Biology, diagnosis and therapeutics. New York : John Wiley & Sons, 1997:753–758. [Google Scholar]
  • 73. Sweeney JE, Bachman ES, Coyle JT. Effects of different doses of galantamine, a long‐acting acetylcholinesterase inhibitor, on memory in mice. Psychopharmacology (Berl) 1990;102 (2): 191–200. [DOI] [PubMed] [Google Scholar]
  • 74. Sweeney JE, Puttfarcken PS, Coyle JT. Galantamine, an acetylcholinesterase inhibitor: A time course of the effects on performance and neurochemical parameters in mice. Pharmacol Biochem Behav 1989;34 (1): 129–137. [DOI] [PubMed] [Google Scholar]
  • 75. Sweeney JE, Hohmann CF, Moran TH, Coyle JT. A long‐acting cholinesterase inhibitor reverses spatial memory deficits in mice. Pharmacol Biochem Behav 1988;31 (1): 141–147. [DOI] [PubMed] [Google Scholar]
  • 76. Thompson RF. The neurobiology of learning and memory. Science 1986;233:941–947. [DOI] [PubMed] [Google Scholar]
  • 77. Thomsen T, Kaden B, Fischer JP, et al. Inhibition of acetylcholinesterase activity in human brain tissue and erythrocytes by galantamine, physostigmine and tacrine. Eur J Clin Chem Clin Biochem 1991;29 (8): 487–492. [DOI] [PubMed] [Google Scholar]
  • 78. Thomsen T, Kewitz H. Selective inhibition of human acetylcholinesterase by galantamine in vitro and in vivo. Life Sci 1990;46 (21): 1553–1558. [DOI] [PubMed] [Google Scholar]
  • 79. Vijayaraghavan S, Huang B, Blumenthal EM, Berg DK. Arachidonic acid as a possible negative feedback inhibitor of nicotinic acetylcholine receptors in neurons. J Neurosci 1995;15:3679–3687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Vincent GP. The effects of galantamine, an acetylcholinesterase inhibitor on learning and memory in mice and monkeys. Soc Neurosci Abs 1988;14(2): 58. [Google Scholar]
  • 81. Wang HY, Lee DH, Davis CB, Shank RP. Amyloid peptide A beta (1–42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 2000;75:1155–1161. [DOI] [PubMed] [Google Scholar]
  • 82. Weiland S, Bertrand D, Leonard S. Neuronal nicotinic acetylcholine receptors: From gene to disease. Behav Brain Res 2000;113:43–56. [DOI] [PubMed] [Google Scholar]
  • 83. West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal aging and Alzheimer's disease. Lancet 1994;344:769–772. [DOI] [PubMed] [Google Scholar]
  • 84. Wevers A, Burghaus L, Moser N, et al. Expression of nicotinic acetylcholine receptors in Alzheimer's disease: Postmortem investigations and experimental approaches. Behav Brain Res 2000;113:207–215. [DOI] [PubMed] [Google Scholar]
  • 85. Woodruff‐Pak DS. Evaluation of cognition‐enhancing drugs: Utility of the model system of eyeblink classical conditioning. CNSD rug Rev 1995;1:107–128. [Google Scholar]
  • 86. Woodruff‐Pak DS, Finkbiner RG, Sasse DK. Eyeblink conditioning discriminates Alzheimer's patients from non‐demented aged. Neuro Report 1990;1:45–48. [DOI] [PubMed] [Google Scholar]
  • 87. Woodruff‐Pak DS, Papka M, Romano S, Li Y‐T. Eyeblink classical conditioning in Alzheimer's disease and cerebrovascular dementia. Neurobiol Aging 1996;17:505–512. [PubMed] [Google Scholar]
  • 88. Woodruff‐Pak DS, Santos I. Nicotinic modulation in an animal model of a form of associative learning impaired in Alzheimer's disease. Behav Brain Res 2000;113:11–19. [DOI] [PubMed] [Google Scholar]
  • 89. Woodruff‐Pak DS, Vogel RW III, Wenk GL. Galantamine: Effect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning. Proc Natl Acad Sci USA 2001;98:2089–2094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Yanker BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid beta protein: Reversal by tachykinin neuropeptides. Science 1990;250:279–282. [DOI] [PubMed] [Google Scholar]
  • 91. Yonkov DI, Georgiev VP. Cholinergic influence on memory facilitation induced by angiotensin II in rats. Neuropeptides 1990;16 (3): 157–162. [DOI] [PubMed] [Google Scholar]
  • 92. Zhao X, Kuryatov A, Lindstrom JM, Yeh JZ, Narahashi T. Nootropic drug modulation of neuronal nicotinic acetylcholine receptors in rat cortical neurons. Mol Pharmacol 2001;59:674–683. [DOI] [PubMed] [Google Scholar]
  • 93. Zhong LT, Kane DJ, Bredesen DE. BCL‐2 blocks glutamate toxicity in neural cell lines. Mol Brain Res 1993;19:353–355. [DOI] [PubMed] [Google Scholar]
  • 94. Zuo Y, Aistrup GL, Marszalec W, et al. Dual action of n‐alcohols on neuronal nicotinic acetylcholine receptors. Mol Pharmacol 2001;60:700–711. [PubMed] [Google Scholar]
  • 95. Zwart R, Vijverberg HPM. Potentiation and inhibition of neuronal nicotinic receptors by atropine: Competitive and noncompetitive effects. Mol Pharmacol 1997;52:886–895. [DOI] [PubMed] [Google Scholar]
  • 96. Zwart R, van Kleef RG, Gotti C, Smulders CJ, Vijverberg HP. Competitive potentiation of acetylcholine effects on neuronal nicotinic receptors by acetylcholinesterase‐inhibiting drugs. J Neurochem 2000;75 (6): 2492–2500. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES