Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;7(2):172–198. doi: 10.1111/j.1527-3458.2001.tb00194.x

Gacyclidine: A New Neuroprotective Agent Acting at the N‐Methyl‐D‐Aspartate Receptor

Hélène Hirbec 1, Manuel Gaviria 2, Jacques Vignon 1,
PMCID: PMC6741685  PMID: 11474423

ABSTRACT

Gacyclidine is a new phencyclidine derivative with neuroprotective properties. Tritiated gacyclidine and its enantiomers bind to NMDA receptors with binding parameters similar to those of other non‐competitive NMDA receptor antagonists. The (‐)enantiomer, (‐)GK11, exhibits an affinity (2.5 nM) similar to that of dizocilpine (MK‐801), while the (+)enantiomer, (+)GK11, has a 10 times lower affinity. When its interaction with NMDA receptors is prevented, gacyclidine binds also to “non‐NMDA” binding sites which are mainly located in the molecular layer of the cerebellum on the dendritic tree of Purkinje cells. These binding sites do not appear to be related to any known neuro transmitters.

In primary cortical cultures, gacyclidine and its enantiomers, at 0.1 to 5.0 μ, prevent glutamate‐induced neuronal death. In rats, in vivo neurotoxicity of gacyclidine is far low than that of MK‐801. No necrotic neurons were detected in animals sacrificed at 18 or 96 h after treatment with gacyclidine (1, 5, 10 or 20 mg/kg i.v.). At the highest (20 mg/kg) but not the lower doses (1–100 mg/kg) electron microscopy revealed the presence of few cytoplasmic or intramitochondrial vacuoles. In soman‐treated monkeys gacyclidine enhanced neuroprotective activity of “three drugs cocktail” (atropine + di‐azepam + pralidoxime). Moreover, in rats, gacyclidine exerts a dose‐ and time‐dependent neuroprotection in three models of spinal cord lesion. Beneficial effects of gacyclidine include reduction of lesion size and improvement of functional parameters after injury. In traumatic brain injury models gacyclidine improves also behavioral parameters and neuronal survival. Optimal protection is obtained when gacyclidine is administered at 0 to 30 min after injury. It is, therefore, concluded that gacyclidine exhibits neuroprotective effects similar to those of other NMDA receptor antagonists, with the advantage of being substantially less neurotoxic maybe due to its interaction with “non‐NMDA” binding sites.

Keywords: Gacyclidine–Gacyclidine enantiomers–GK11, NMDA‐resceptor antagonist, Neuroprotection, Neurotoxicity, Neurotrauma, Organophosphorous poisoning, Non‐NMDA binding sites

Full Text

The Full Text of this article is available as a PDF (476.4 KB).

References

  • 1. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. A preliminary study. JAMA 1911;57:878–880. [Google Scholar]
  • 2. Allen HL, Iversen LL. Phencyclidine, dizocilpine, and cerebrocortical neurons. Science 1990;247:221. [DOI] [PubMed] [Google Scholar]
  • 3. Baker AJ, Moulton RJ, MacMillan VH, Shedden PM. Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg 1993;79:369–372. [DOI] [PubMed] [Google Scholar]
  • 4. Baudy RB. Agents for the treatment of neurodegenerative diseases: July‐December 1997. Exp Opin Ther Patents 1998;8:395–438. [Google Scholar]
  • 5. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984;43:1369–1374. [DOI] [PubMed] [Google Scholar]
  • 6. Bissonnette JM, Hohimer AR, Knopp SJ. Non‐NMDA receptors modulate respiratory drive in fetal sheep. J Physiol (Lond) 1997;501:415–423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Black P, Markowitz RS, Damjanov I, et al. Models of spinal cord injury. Part 3. Dynamic load technique. Neurosurgery 1988;22:51–60. [DOI] [PubMed] [Google Scholar]
  • 8. Bresnahan JC, King JS, Martin GF, Yashon D. A neuroanatomical analysis of spinal cord injury in the rhesus monkey (Macaca mulatta). J Neurol Sci 1976;28:521–542. [DOI] [PubMed] [Google Scholar]
  • 9. Cameron T, Prado R, Watson BD, Gonzalez‐Carvajal M, Holets VR. Photochemically induced cystic lesion in the rat spinal cord, I. Behavioral and morphological analysis. Exp Neurol 1990;109:214–223. [DOI] [PubMed] [Google Scholar]
  • 10. Cazaux JB, Dafniet M, Kamenka JM, Manginot E. Dérivés du thiénylcyclohexane, des procédés pour leur préparations et leur utilisation en tant que produit cyclohéxylés. FR27516 5L, 1998.
  • 11. Chaudieu I, Vignon J, Chicheportiche M, Kamenka JM, Trouiller G, Chicheportiche R. Role of the aromatic group in the inhibition of phencyclidine binding and dopamine uptake by PCP analogs. Pharmacol Biochem Behav 1989;32:699–705. [DOI] [PubMed] [Google Scholar]
  • 12. Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists. J Neurosci 1988;8:185–196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Conley EC. N‐Methyl‐D‐Aspartate (NMDA) selective glutamate receptor channels In: Conley EC, ed. The Ion Channel, Facts Book. London : Acad. Press, 1996. [Google Scholar]
  • 14. Corsellis J, Meldrum B. Epilepsy In: Blackwood W, Corsellis J, Eds. Greenfield's Neuropathology. London : Edward Arnold, 1976:771–795. [Google Scholar]
  • 15. D'Arbigny P, Tadié M, Vigue B, Mathé JF, Chabrier PE, Carli P. Protec: A dose effect study of gacyclidine in patients with severe brain injury. Soc Neurosci Abstr 1999;25(Part 1): 1090. [Google Scholar]
  • 16. Doble A. Excitatory amino acid receptors and neurodegeneration. Therapie 1995;50:319–337. [PubMed] [Google Scholar]
  • 17. Drian MJ, Kamenka JM, Pirat JL, Privat A. Non‐competitive antagonists of N‐methyl‐D‐aspartate prevent spontaneous neuronal death in primary cultures of embryonic rat cortex. J Neurosci Res 1991;29:133–138. [DOI] [PubMed] [Google Scholar]
  • 18. Drian MJ, Kamenka JM, Privat A. In vitro neuroprotection against glutamate toxicity provided by novel non‐competitive N‐methyl‐D‐aspartate antagonists. J Neurosci Res 1999;57:927–934. [DOI] [PubMed] [Google Scholar]
  • 19. Ellison G. Competitive and non‐competitive NMDA antagonists induce similar limbic degeneration. Neuro-report 1994;5:2688–2692. [DOI] [PubMed] [Google Scholar]
  • 20. Espanol MT, Xu Y, Litt L, et al. Modulation of edema by dizocilpine, kynurenate, and NBQX in respiring brain slices after exposure to glutamate. Acta Neurochir Suppl (Wien) 1994;60:58–61. [DOI] [PubMed] [Google Scholar]
  • 21. Estienne MJ, Harter‐Dennis JM, Barb CR, Hartsock TG, Campbell RM, Armstrong JD. N‐methyl‐D, L‐as‐partate‐induced growth hormone secretion in barrows: Possible mechanisms of action. J Anim Sci 1996;74:597–602. [DOI] [PubMed] [Google Scholar]
  • 22. Faden AI, Demediuk P, Panter SS, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989;244:798–800. [DOI] [PubMed] [Google Scholar]
  • 23. Faden AI, Simon RP. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 1988;23:623–626. [DOI] [PubMed] [Google Scholar]
  • 24. Farooque M, Hillered L, Holtz A, Olsson Y. Changes of extracellular levels of amino acids after graded compression trauma to the spinal cord: An experimental study in the rat using microdialysis. J Neurotrauma 1996;13:537–548. [DOI] [PubMed] [Google Scholar]
  • 25. Feldblum S. Method for screening factors on a paralysis model and method for obtaining this model. US Patent 5724995, 1994.
  • 26. Feldblum S, Arnaud S, Simon M, Rabin O, D'Arbigny P. Efficacy of a new neuroprotective agent, gacyclidine, in a model of rat spinal cord injury. J Neurotrauma 2000;17:1079–1093. [DOI] [PubMed] [Google Scholar]
  • 27. Fix AS, Horn JW, Wightman KA, et al. Neuronal vacuolization and necrosis induced by the noncompetitive N‐methyl‐D‐aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): A light and electron microscopic evaluation of the rat retrosplenial cortex. Exp Neurol 1993;123:204–215. [DOI] [PubMed] [Google Scholar]
  • 28. Foutz AS, Champagnat J, Denavit‐Saubie M. Involvement of N‐methyl‐D‐aspartate (NMDA) receptors in respiratory rhythmogenesis. Brain Res 1989;500:199–208. [DOI] [PubMed] [Google Scholar]
  • 29. Gale K, Kerasidis H, Wrathall JR. Spinal cord contusion in the rat: Behavioral analysis of functional neuro‐logic impairment. Exp Neurol 1985;88:123–134. [DOI] [PubMed] [Google Scholar]
  • 30. Gaviria M, Privat A, D'Arbigny P, Kamenka J, Haton H, Ohanna F. Neuroprotective effects of a novel NMDA antagonist, gacyclidine, after experimental contusive spinal cord injury in adult rats. Brain Res 2000;874:200–209. [DOI] [PubMed] [Google Scholar]
  • 31. Gaviria M, Privat A, D'Arbigny P, Kamenka JM, Haton H, Ohanna F. Neuroprotective effects of gacyclidine after experimental photochemical spinal cord lesion in adult rats: Dose‐window and time‐window effects. J Neurotrauma 2000;17:19–30. [DOI] [PubMed] [Google Scholar]
  • 32. Geneste P, Kamenka JM, Ung SN, Herrmann P, Goudal R, Trouiller G. Détermination conformationnelle de dérivés de la phencyclidine en vue d'une corrélation structure‐activité. Eur J Med Chem 1979;14:301–308. [Google Scholar]
  • 33. Gimenez y Ribotta M, Privat A. Biological interventions for spinal cord injury. Curr Opin Neurol 1998;11:647–654. [DOI] [PubMed] [Google Scholar]
  • 34. Greenamyre JT, Young AB, Penney JB. Quantitative autoradiography of L‐[3H]glutamate binding to rat brain. Neurosci Lett 1983;37:155–160. [DOI] [PubMed] [Google Scholar]
  • 35. Halpain S, Wieczorek CM, Rainbow TC. Localization of L‐glutamate receptors in rat brain by quantitative autoradiography. J Neurosci 1984;4:2247–2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Hamon J, Espaze F, Vignon J, Kamenka JM. The search for TCP analogs binding to the low affinity PCP receptor sites in the rat cerebellum. Eur J Med Chem 1999;34:125–135. [DOI] [PubMed] [Google Scholar]
  • 37. Hebel R, Stromberg MW. Anatomy and embryology of the laboratory rat. Wörthsee : Biomed. Verlag, 1986. [Google Scholar]
  • 38. Hirbec H, Kamenka JM, Privat A, Vignon J. Binding properties of [3H]gacyclidine in the rat central nervous system. Eur J Pharmacol 2000;388:235–239. [DOI] [PubMed] [Google Scholar]
  • 39. Hirbec H, Kamenka JM, Privat A, Vignon J. Characterisation of “non‐NMDA” binding sites for gacyclidine in the rat cerebellar and telencephalic structures. J Neurochem 2001;77:190–201. [DOI] [PubMed] [Google Scholar]
  • 40. Hirbec H, Kamenka JM, Privat A, Vignon J. Interaction of [3H]gacyclidine enantiomers with “non‐NMDA” receptors in the rat central nervous system. Brain Res 2001;894:189–192. [DOI] [PubMed] [Google Scholar]
  • 41. Hirbec H, Teilhac JR, Kamenka JM, Privat A, Vignon J. Binding properties of [3H]gacyclidine (cis(pip_me)‐1‐[1‐(2‐thienyl)‐2‐methylcyclohexylpiperidine] enantiomers in the rat central nervous system. Brain Res 2000;859:177–192. [DOI] [PubMed] [Google Scholar]
  • 42. Hoffman SW, Fulop Z, Stein DG. Bilateral frontal cortical contusion in rats: Behavioral and anatomic consequences. J Neurotrauma 1994;11:417–431. [DOI] [PubMed] [Google Scholar]
  • 43. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994;17:31–108. [DOI] [PubMed] [Google Scholar]
  • 44. Jenkins LW, Lyeth BG, Lewelt W, et al. Combined pretrauma scopolamine and phencyclidine attenuate posttraumatic increased sensitivity to delayed secondary ischemia. J Neurotrauma 1988;5:275–287. [DOI] [PubMed] [Google Scholar]
  • 45. Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 1990;73:889–900. [DOI] [PubMed] [Google Scholar]
  • 46. Kito S, Miyoshi R, Nomoto T. Influence of age on NMDA receptor complex in rat brain studied by in vitro autoradiography. J Histochem Cytochem 1990;38:1725–1731. [DOI] [PubMed] [Google Scholar]
  • 47. Kuhn PL, Wrathall JR. A mouse model of graded contusive spinal cord injury. J Neurotrauma 1998;15:125–140. [DOI] [PubMed] [Google Scholar]
  • 48. Kuroda Y, Fujisawa H, Strebel S, Graham DI, Bullock R. Effect of neuroprotective N‐methyl‐D‐aspartate antagonists on increased intracranial pressure: Studies in the rat acute subdural hematoma model. Neurosurgery 1994;35:106–112. [DOI] [PubMed] [Google Scholar]
  • 49. Lallement G, Baubichon D, Clarencon D, Galonnier M, Peoc'h M, Carpentier P. Review of the value of gacyclidine (GK‐11) as adjuvant medication to conventional treatments of organophosphate poisoning: Primate experiments mimicking various scenarios of military or terrorist attack by soman. Neurotoxicology 1999;20:675–684. [PubMed] [Google Scholar]
  • 50. Lallement G, Carpentier P, Collet A, Pernot‐Marino I, Baubichon D, Blanchet G. Effects of soman‐induced seizures on different extracellular amino acid levels and on glutamate uptake in rat hippocampus. Brain Res 1991;563:234–240. [DOI] [PubMed] [Google Scholar]
  • 51. Lallement G, Carpentier P, Pernot‐Marino I, Baubichon D, Collet A, Blanchet G. Involvement of the different rat hippocampal glutamatergic receptors in development of seizures induced by soman: An autoradiographic study. Neurotoxicology 1991;12:655–664. [PubMed] [Google Scholar]
  • 52. Lallement G, Clarencon D, Galonnier M, Baubichon D, Burckhart MF, Peoc'h M. Acute soman poisoning in primates neither pretreated nor receiving immediate therapy: Value of gacyclidine (GK‐11) in delayed medical support. Arch Toxicol 1999;73:115–122. [DOI] [PubMed] [Google Scholar]
  • 53. Lallement G, Clarencon D, Masqueliez C, et al. Nerve agent poisoning in primates: Antilethal, anti‐epileptic and neuroprotective effects of GK‐11. Arch Toxicol 1998;72:84–92. [DOI] [PubMed] [Google Scholar]
  • 54. Lallement G, Delamanche IS, Pernot‐Marino I, et al. Neuroprotective activity of glutamate receptor antagonists against soman‐induced hippocampal damage: Quantification with an omega 3 site ligand. Brain Res 1993;618:227–237. [DOI] [PubMed] [Google Scholar]
  • 55. Lallement G, Mestries JC, Privat A, et al. GK 11: Promising additional neuroprotective therapy for organophosphate poisoning. Neurotoxicology 1997;18:851–856. [PubMed] [Google Scholar]
  • 56. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature 1999;399:A7–A14. [DOI] [PubMed] [Google Scholar]
  • 57. Levallois C, Calvet MC, Petite D, Kamenka JM. Neuroprotective effect of N‐methyl‐D‐aspartate non‐competitive antagonists (arylcyclohexylamine derivatives) on human cultured spinal cord cells. Int J Dev Neurosci 1994;12:547–555. [DOI] [PubMed] [Google Scholar]
  • 58. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 1994;330:613–622. [DOI] [PubMed] [Google Scholar]
  • 59. Lu X, Sinha AK, Weiss HR. Effects of excitatory amino acids on cerebral oxygen consumption and blood flow in rat. Neurochem Res 1997;22:705–711. [DOI] [PubMed] [Google Scholar]
  • 60. Lucas D, Newhouse J. The toxic effect of sodium‐Lglutamate on inner layers of retina. AMA Arch Ophtal-mol 1957;58:193–201. [DOI] [PubMed] [Google Scholar]
  • 61. Maione S, Pallotta M, Leyva J, Palazzo E, Rossi F. Effects of diethylenetriamine on NMDA‐induced increase of blood pressure in rats. Pharmacol Biochem Behav 1998;59:233–237. [DOI] [PubMed] [Google Scholar]
  • 62. Maragos WF, Penney JB, Young AB. Anatomic correlation of NMD A and 3H‐TCP‐labeled receptors in rat brain. J Neurosci 1988;8:493–501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Martin D, Schoenen J, Delree P, et al. Experimental acute traumatic injury of the adult rat spinal cord by a subdural inflatable balloon: Methodology, behavioral analysis, and histopathology. J Neurosci Res 1992;32:539–550. [DOI] [PubMed] [Google Scholar]
  • 64. Mattson AJ, Levin HS. Frontal lobe dysfunction following closed head injury. A review of the literature. J Nerv Ment Dis 1990;178:282–291. [DOI] [PubMed] [Google Scholar]
  • 65. McIntosh TK. Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: A review. J Neurotrauma 1993;10:215–261. [DOI] [PubMed] [Google Scholar]
  • 66. McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 1998;15:731–769. [DOI] [PubMed] [Google Scholar]
  • 67. McIntosh TK, Vink R, Soares H, Hayes R, Simon R. Effect of noncompetitive blockade of N‐methyl‐D‐aspartate receptors on the neurochemical sequelae of experimental brain injury. J Neurochem 1990;55:1170–1179. [DOI] [PubMed] [Google Scholar]
  • 68. Meldrum BS. Excitatory amino acid receptors and disease. Curr Opin Neurol Neurosurg 1992;5:508–513. [PubMed] [Google Scholar]
  • 69. Michaud M, Warren H, Drian MJ, et al. Homochiral structures derived from 1‐[1‐(2‐thienyl)cyclohexyl]piperidine (TCP) are non‐competitive antagonists of glutamate at NMDA receptor sites. Eur J Med Chem 1994;29:869–876. [Google Scholar]
  • 70. Miller RH, Abney ER, David S, et al. Is reactive gliosis a property of a distinct subpopulation of astrocytes J Neurosci 1986;6:22–29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Mishina M, Mori H, Araki K, et al. Molecular and functional diversity of the NMDA receptor channel. Ann NY Acad Sci 1993;707:136–152. [DOI] [PubMed] [Google Scholar]
  • 72. Mody I, MacDonald JF. NMDA receptor‐dependent excitotoxicity: The role of intracellular Ca2+ release. Trends Pharmacol Sci 1995;16:356–359. [DOI] [PubMed] [Google Scholar]
  • 73. Molander C, Xu Q, Grant G. The cytoarchitectonic organization of the spinal cord in the rat, I. The lower thoracic and lumbosacral cord. J Comp Neurol 1984;230:133–141. [DOI] [PubMed] [Google Scholar]
  • 74. Monaghan DT, Cotman CW. Distribution of N‐methyl‐D‐aspartate‐sensitive L‐[3H]glutamate‐binding sites in rat brain. J Neurosci 1985;5:2909–2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Mori H, Mishina M. Structure and function of the NMDA receptor channel. Neuropharmacology 1995;34:1219–1237. [DOI] [PubMed] [Google Scholar]
  • 76. Morin‐Richaud C, Feldblum S, Privat A. Astrocytes and oligodendrocytes reactions after a total section of the rat spinal cord. Brain Res 1998;783:85–101. [DOI] [PubMed] [Google Scholar]
  • 77. Muir KW, Lees KR. Clinical experience with excitatory amino acid antagonist drugs. Stroke 1995;26:503–513. [DOI] [PubMed] [Google Scholar]
  • 78. Muzet M, D'Arbigny P, Luthringer R, et al. Effects of gacyclidine, a noncompetitive NMDA receptor antagonist, in human healthy volunteers. Soc Neurosci Abstr 1999;1(Part 1): 1090. [Google Scholar]
  • 79. Nilsson P, Hillered L, Ponten U, Ungerstedt U. Changes in cortical extracellular levels of energy‐related metabolites andamino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 1990;10:631–637. [DOI] [PubMed] [Google Scholar]
  • 80. Noble LJ, Wrathall JR. Spinal cord contusion in the rat: Morphometric analyses of alterations in the spinal cord. Exp Neurol 1985;88:135–149. [DOI] [PubMed] [Google Scholar]
  • 81. Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 1969;164:719–721. [DOI] [PubMed] [Google Scholar]
  • 82. Olney JW. Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 1990;30:47–71. [DOI] [PubMed] [Google Scholar]
  • 83. Olney JW. Neurotoxicity of NMDA receptor antagonists: An overview. Psychopharmacol Bull 1994;30:533–540. [PubMed] [Google Scholar]
  • 84. Olney JW, Ho OL, Rhee V. Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 1971;14:61–76. [DOI] [PubMed] [Google Scholar]
  • 85. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 1989;244:1360–1362. [DOI] [PubMed] [Google Scholar]
  • 86. Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA. NMDA antagonist neurotoxicity: Mechanism and prevention. Science 1991;254:1515–1518. [DOI] [PubMed] [Google Scholar]
  • 87. Ozawa S. Permeation of calcium through glutamate receptor channels. Semin Neurosci 1996;8:261–269. [Google Scholar]
  • 88. Palmer AM, Marion DW, Botscheller ML, Bowen DM, DeKosky ST. Increased transmitter amino acid concentration in human ventricular CSF after brain trauma. Neuroreport 1994;6:153–156. [DOI] [PubMed] [Google Scholar]
  • 89. Pencalet P, Ohanna F, Poulat P, Kamenka JM, Privat A. Thienylphencyclidine protection for the spinal cord of adult rats against extension of lesions secondary to a photochemical injury. J Neurosurg 1993;78:603–609. [DOI] [PubMed] [Google Scholar]
  • 90. Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd EC, Remis RS. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 1990;322:1775–1780. [DOI] [PubMed] [Google Scholar]
  • 91. Petralia RS, Wang YX, Wenthold RJ. The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J Neurosci 1994;14:6102–6120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Petralia RS, Yokotani N, Wenthold RJ. Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti‐peptide antibody. J Neurosci 1994;14:667–696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Pinilla L, Tena‐Sempere M, Gonzalez D, Aguilar E. Positive role of non‐N‐methyl‐D‐aspartate receptors in the control of growth hormone secretion in male rats. J Endocrinol Invest 1996;19:353–358. [DOI] [PubMed] [Google Scholar]
  • 94. Prado R, Dietrich WD, Watson BD, Ginsberg MD, Green BA. Photochemically induced graded spinal cord infarction. Behavioral, electrophysiological, and morphological correlates. J Neurosurg 1987;67:745–753. [DOI] [PubMed] [Google Scholar]
  • 95. Privat A, Drian MJ, Pirat JL, Rondouin G, Kamenka JM. Protection neurale par les phencyclidines: Étude sur des modèles in vitro. Actual Chim Ther 1990;17:187–200. [Google Scholar]
  • 96. Raines A, Dretchen KL, Marx K, Wrathall JR. Spinal cord contusion in the rat: Somatosensory evoked potentials as a function of graded injury. J Neurotrauma 1988;5:151–160. [DOI] [PubMed] [Google Scholar]
  • 97. Regan RF, Choi DW. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 1991;43:585–591. [DOI] [PubMed] [Google Scholar]
  • 98. Reier PJ, Stensas LJ, Guth L. The astrocytic scar has an impediment to regeneration in the central nervous system In: Kao CC, Bunge RP, Reier PJ, Eds. Spinal Cord Reconstruction. New York : Raven Press, 1983:163–196. [Google Scholar]
  • 99. Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 1977;47:577–581. [DOI] [PubMed] [Google Scholar]
  • 100. Rondouin G, Drian MJ, Chicheportiche R, Kamenka JM, Privat A. Non‐competitive antagonists of N‐methyl‐D‐aspartate receptors protect cortical and hippocampal cell cultures against glutamate neurotoxicity. Neurosci Lett 1988;91:199–203. [DOI] [PubMed] [Google Scholar]
  • 101. Scatton B. Excitatory amino acid receptor antagonists: A novel treatment for ischemic cerebrovascular diseases. Life Sci 1994;55:2115–2124. [DOI] [PubMed] [Google Scholar]
  • 102. Smith DH, Okiyama K, Gennarelli TA, McIntosh TK. Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury. Neurosci Lett 1993;157:211–214. [DOI] [PubMed] [Google Scholar]
  • 103. Smith JS, Fulop L, Levinsohn SA, Darrell RS, Stein G. Effects of the novel NMDA antagonist gacyclidine on recovery from medial frontal cortex contusion injury in rats. Neural Plast 2000;7:73–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Sparenborg S, Brennecke LH, Jaax NK, Braitman DJ. Dizocilpine (MK‐801) arrests status epilepticus and prevents brain damage induced by soman. Neuropharmacology 1992;31:357–368. [DOI] [PubMed] [Google Scholar]
  • 105. Subramaniam S, McGonigle P. Quantitative autoradiographic characterization of the binding of (+)‐5–me‐thyl‐10,11‐dihydro‐5H‐dibenzo[a.d]cyclohepten‐5,10‐imine ([3H]MK‐801) in rat brain: Regional effects of polyamines. J Pharmacol Exp Ther 1991;256:811–819. [PubMed] [Google Scholar]
  • 106. Tadie M, D'Arbigny P, Mathé JF, et al. Acute spinal cord injury: Early care and treatment in a multicenter study with gacyclidine. Soc Neurosci Abstr 1999;25(Part 1): 1090. [Google Scholar]
  • 107. Tarlov I. Spinal cord compression studies. III. Time limits for recovery after gradual compression in dogs. Arch Neurol 1954;71:588–597. [PubMed] [Google Scholar]
  • 108. Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991;75:15–26. [DOI] [PubMed] [Google Scholar]
  • 109. Thomas RJ. Excitatory amino acids in health and disease. J Am Geriatr Soc 1995;43:1279–1289. [DOI] [PubMed] [Google Scholar]
  • 110. Vignon J, Lazdunski M. Structure‐function relationships in the inhibition of synaptosomal dopamine uptake by phencyclidine and analogues: Potential correlation with a binding site identified with [3H]phencyclidine. Biochem Pharmacol 1984;33:700–702. [DOI] [PubMed] [Google Scholar]
  • 111. Vignon J, Privat A, Chaudieu I, Thierry A, Kamenka JM, Chicheportiche R. [3H]Thienyl‐phencyclidine ([3H]TCP) binds to two different sites in rat brain. Localization by autoradiographic and biochemical techniques. Brain Res 1986;378:133–141. [DOI] [PubMed] [Google Scholar]
  • 112. Vincent JP, Cavey D, Kamenka JM, Geneste P, Lazdunski M. Interaction of phencyclidines with the muscarinic and opiate receptors in the central nervous system. Brain Res 1978;152:176–182. [DOI] [PubMed] [Google Scholar]
  • 113. Vincent JP, Kartalovski B, Geneste P, Kamenka JM, Lazdunski M. Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes. Proc Natl Acad Sci USA 1979;76:4678–4682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Watanabe M, Inoue Y, Sakimura K, Mishina M. Distinct spatio‐temporal distributions of the NMDA receptor channel subunit mRNAs in the brain. Ann NY Acad Sci 1993;707:463–466. [DOI] [PubMed] [Google Scholar]
  • 115. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 1985;17:497–504. [DOI] [PubMed] [Google Scholar]
  • 116. Watson BD, Prado R, Dietrich WD, Ginsberg MD, Green BA. Photochemically induced spinal cord injury in the rat. Brain Res 1986;367:296–300. [DOI] [PubMed] [Google Scholar]
  • 117. Wrathall JR, Pettegrew RK, Harvey F. Spinal cord contusion in the rat: Production of graded, reproducible, injury groups. Exp Neurol 1985;88:108–122. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES