Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;8(3):255–282. doi: 10.1111/j.1527-3458.2002.tb00228.x

LY404187: A Novel Positive Allosteric Modulator of AMPA Receptors

Jennifer C Quirk 1, Eric S Nisenbaum 1,
PMCID: PMC6741690  PMID: 12353058

ABSTRACT

LY404187 is a selective, potent and centrally active positive allosteric modulator of AMPA receptors. LY404187 preferentially acts at recombinant human homomeric GluR2 and GluR4 versus GluR1 and GluR3 AMPA receptors. In addition, LY404187 potentiates the flip splice variant of these AMPA receptors to a greater degree than the flop splice variant. In both recombinant and native AMPA receptors, potentiation by LY404187 displays a unique time‐dependent growth that appears to involve a suppression of the desensitization process of these ion channels. LY404187 has been shown to enhance glutamatergic synaptic transmission both in vitro and in vivo. This augmentation of synaptic activity is due to the direct potentiation of AMPA receptor function, as well as an indirect recruitment of voltage‐dependent NMDA receptor activity. Enhanced calcium influx through NMDA receptors is known to be a critical step in initiating long‐term modifications in synaptic function (e.g., long‐term potentiation, LTP). These modifications in synaptic function may be substrates for certain forms of memory encoding. Consistent with a recruitment of NMDA receptor activity, LY404187 has been shown to enhance performance in animal models of cognitive function requiring different mnemonic processes. These data suggest that AMPA receptor potentiators may be therapeutically beneficial for treating cognitive deficits in a variety of disorders, particularly those that are associated with reduced glutamatergic signaling such as schizophrenia. In addition, LY404187 has been demonstrated to be efficacious in animal models of behavioral despair that possess considerable predictive validity for antidepressant activity. Although the therapeutic efficacy of AMPA receptor potentiators in these and other diseases will ultimately be determined in the clinic, evidence suggests that the benefit of these compounds will be mediated by multiple mechanisms of action. These mechanisms include direct enhancement of AMPA receptor function, secondary mobilization of intracellular signaling cascades, and prolonged modulation of gene expression.

Keywords: Aniracetam, Antidepressant, Cyclothiazide, Glutamate receptors, Nootropic, Piracetam, LY404187

Full Text

The Full Text of this article is available as a PDF (352.5 KB).

References

  • 1. Abi‐Saab W, D'Souza C, Madonick S, Krystal J. Targeting the Glutamate System In: Breier A, Tran P, Herrera J, Tollefson G, Bymaster F, Eds. Current issues in the psychopharmacology of schizophrenia. Philadelphia : Lippincott Williams and Wilkins; 2001;304–332. [Google Scholar]
  • 2. Amen D, Carmichael B. High‐resolution brain SPECT imaging in ADHD. Ann Clin Psych 1997;9:81–86. [DOI] [PubMed] [Google Scholar]
  • 3. Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N‐methyl‐aspartate. Br J Pharmacol 1983;79 (2): 565–575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Arai A, Lynch G. Factors regulating the magnitude of long‐term potentiation induced by theta pattern stimulation. Brain Res 1992;598:173–184. [DOI] [PubMed] [Google Scholar]
  • 5. Armstrong DM, Ikonomovic MD, Sheffield R, Wenthold RJ. AMPA‐selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non‐demented elderly and patients with Alzheimer's disease. Brain Res 1994;639 (2): 207–216. [DOI] [PubMed] [Google Scholar]
  • 6. Armstrong N, Sun Y, Chen GQ, Gouaux E. Structure of a glutamate‐receptor ligand‐binding core in complex with kainate. Nature 1998;395 (6705): 913–917. [DOI] [PubMed] [Google Scholar]
  • 7. Armstrong N, Gouaux E. Mechanisms for activation and antagonism of an AMPA‐sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 2000;28:165–181. [DOI] [PubMed] [Google Scholar]
  • 8. Baddeley A. Working memory. Science 1992;255:556–559. [DOI] [PubMed] [Google Scholar]
  • 9. Barkley R, Grodzinsky G, DuPaul G. Frontal lobe functions in attention deficity disorder with and without hyperactivity: A review and research report. J Abnorm Child Psychol 1992;20:163–188. [DOI] [PubMed] [Google Scholar]
  • 10. Baumbarger PJ, Muhlhauser M, Zhai J, Yang CR, Nisenbaum ES. Positive modulation of alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionic acid (AMPA) receptors in prefrontal cortical pyramidal neurons by a novel allosteric potentiator. J Pharmacol Exp Ther 2001;298 (1): 86–102. [PubMed] [Google Scholar]
  • 11. Benson D. The role of frontal dysfunction in attention deficit hyperactivity disorder. J Child Neurol 1991;6 (Suppl): S9–S12. [DOI] [PubMed] [Google Scholar]
  • 12. Bhattacharya SK, Sen AP, Upadhyay SN, Jaiswal AK. Anxiolytic activity of piracetam, a nootropic agent, following subchronic administration in rodents. Indian J Exp Biol 1993;31 (11): 902–907. [PubMed] [Google Scholar]
  • 13. Bleakman D, Gates MR, Ogden A, et al. Novel AMPA receptor potentiators LY392098 and LY404187: Effects on recombinant human and rat neuronal AMPA receptors. Soc Neurosci Abstr 2000;30:173. [Google Scholar]
  • 14. Bradley J, Golden C. Biological contributions to the presentation and understanding of attention‐deficit/hyperactivity disorder: A review. Clin Psychol Rev 2001;21 (6): 907–929. [DOI] [PubMed] [Google Scholar]
  • 15. Brown TH, Chapman PF, Kairiss EW, Keenan CL. Long‐term synaptic potentiation. Science 1988;242 (4879): 724–728. [DOI] [PubMed] [Google Scholar]
  • 16. Carlsson A, Waters N, Holm‐Waters S, Tedroff J, Nilsson M, Carlsson ML. Interactions between monoamines, glutamate, and GABA in schizophrenia: New evidence. Annu Rev Pharmacol Toxicol 2001;41:237–260. [DOI] [PubMed] [Google Scholar]
  • 17. Carlsson ML. On the role of cortical glutamate in obsessive‐compulsive disorder and attention‐deficit hyperactivity disorder, two phenomenologically antithetical conditions. Acta Psych Scand 2001;102 (6): 401–413. [DOI] [PubMed] [Google Scholar]
  • 18. Chen Q, Flores‐Hernandez JF, Jiao Y, Reiner A, Surmeier DJ. Physiological and molecular properties of AMPA/kainate receptors expressed by striatal medium spiny neurons. Dev Neurosci 1998;20:242–252. [DOI] [PubMed] [Google Scholar]
  • 19. Coyle JT. The glutamatergic dysfunction hypothesis for schizophrenia. Harvard Rev Psych 1996;3 (5): 241–253. [DOI] [PubMed] [Google Scholar]
  • 20. Dimond SJ, Scammell RE, Pryce IG, Huws D, Gray C. Some effects of piracetam (UCB 6215 Nootropil) on chronic schizophernia. psychopharmacology 1979;3 (5): 241–253. [DOI] [PubMed] [Google Scholar]
  • 21. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51 (1): 7–61. [PubMed] [Google Scholar]
  • 22. Dudkin KN, Kruchinin VK, Chueva IV. Synchronization processes in the mechanisms of short‐term memory in monkeys: The involvement of cholinergic and glutaminergic cortical structures. Neurosci Behav Physiol 1997;27:303–308. [DOI] [PubMed] [Google Scholar]
  • 23. Eastwood SL, McDonald B, Burnet PW, Beckwith JP, Kerwin RW, Harrison PJ. Decreased expression of mRNAs encoding non‐NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Brain Res Mol Brain Res 1995;29 (2): 211–223. [DOI] [PubMed] [Google Scholar]
  • 24. Eastwood SL, Burnet PW, Harrison PJ. GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: A reverse transcriptase‐polymerase chain reaction (RT‐PCR) study. Brain Res Mol Brain Res 1997;44 (1): 92–98. [DOI] [PubMed] [Google Scholar]
  • 25. Eastwood SL, Kerwin RW, Harrison PJ. Immunoautoradiographic evidence for a loss of alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionate‐preferring non‐N‐methyl‐D‐aspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biol Psych 1997;41 (6): 636–643. [DOI] [PubMed] [Google Scholar]
  • 26. File SE, Hyde JR, Odling‐Smee FJ. Piracetam impairs the overshadowing of background stimuli by an informative CS. Physiol Behav 1979;23 (5): 827–830. [DOI] [PubMed] [Google Scholar]
  • 27. Franciosi S. AMPA receptors: potential implications in development and disease. Cell Mol Life Sci 2001;58 (7): 921–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Frith C, Dolan R. The role of the prefrontal cortex in higher cognitive functions. Cogn Brain Res 1996;5:175–181. [DOI] [PubMed] [Google Scholar]
  • 29. Gainetdinov RR, Mohn AR, Bohn LM, Caron MG. Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter. Proc Natl Acad Sci USA 2001;98 (20): 11047–11054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Gates MR, Ogden A, Bleakman D. Pharmacological effects of AMPA receptor potentiators LY392098 and LY404187 on rat neuronal AMPA receptors in vitro. Neuropharmacology 2001;40 (8): 948–991. [DOI] [PubMed] [Google Scholar]
  • 31. Geiger JR, Melcher T, Koh DS, et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 1995;15 (1): 193–204. [DOI] [PubMed] [Google Scholar]
  • 32. Goff DC, Leahy L, Berman I, et al. A placebo‐controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 2001;21 (5): 484–487. [DOI] [PubMed] [Google Scholar]
  • 33. Goldman‐Rakic PS. Working memory dysfunction in schizophrenia. J Neuropsych Clin Neurosci 1994;6:348–357. [DOI] [PubMed] [Google Scholar]
  • 34. Granger R, Deadwyler S, Davis M, et al. Facilitation of glutamate receptors reverses an age‐associated memory impairment in rats. Synapse 1996;22:332–337. [DOI] [PubMed] [Google Scholar]
  • 35. Hampson RE, Rogers G, Lynch G, Deadwyler SA. Facilitative effects of the ampakine CX516 on short‐term memory in rats: Enhancement of delayed‐nonmatch‐to‐sample performance. J Neurosci 1998;18 (7): 2740–2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Hayashi T, Umemori H, Mishina M, Yamamoto T. The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 1999;397 (6714): 72–76. [DOI] [PubMed] [Google Scholar]
  • 37. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994;17:31–108. [DOI] [PubMed] [Google Scholar]
  • 38. Hume RI, Dingledine R, Heinemann SF. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 1991;253 (5023): 1028–1031. [DOI] [PubMed] [Google Scholar]
  • 39. Ikonomovic MD, Mizukami K, Davies P, Hamilton R, Sheffield R, Armstrong DM. The loss of GluR2(3) immunoreactivity precedes neurofibrillary tangle formation in the entorhinal cortex and hippocampus of Alzheimer brains. J Neuropathol Exp Neurol 1997;56 (9): 1018–1027. [DOI] [PubMed] [Google Scholar]
  • 40. Ikonomovic MD, Nocera R, Mizukami K, Armstrong DM. Age‐related loss of the AMPA receptor subunits GluR2/3 in the human nucleus basalis of Meynert. Exp Neurol 2000;166 (2): 363–375. [DOI] [PubMed] [Google Scholar]
  • 41. Ingvar M, Ambros‐Ingerson J, Davis M, et al. Enhancement by an ampakine of memory encoding in humans. Exp Neurol 1997;146 (2): 553–559. [DOI] [PubMed] [Google Scholar]
  • 42. Ito I, Tanabe S, Kohda A, Sugiyama H. Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J Physiol 1990;424:533–543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991;48:1301–1308. [DOI] [PubMed] [Google Scholar]
  • 44. Jay TM, Witter MP. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris‐leucoagglutinin. J Compar Neurol 1991;313:574–586. [DOI] [PubMed] [Google Scholar]
  • 45. Jay TM, Thierry A‐M, Wiklund L, Glowinski J. Excitatory amino acid pathway from the hippocampus to the prefrontal cortex. Contribution of AMPA receptors in hippocampal‐prefrontal cortex transmission. Eur J Neurosci 1992;4:1285–1295. [DOI] [PubMed] [Google Scholar]
  • 46. Johansen TH, Chaudhary A, Verdoorn TA. Interactions among GYKI‐52466, cyclothiazide, and aniracetam at recombinant AMPA and kainate receptors. Mol Pharmacol 1995;48 (5): 946–955. [PubMed] [Google Scholar]
  • 47. Johnson SA, Luu NT, Herbst TA, et al. Synergistic interactions between ampakines and antipsychotic drugs. J Pharmacol Exp Ther 1999;289 (1): 392–397. [PubMed] [Google Scholar]
  • 48. Keinanen K, Wisden W, Sommer B, et al. A family of AMPA‐selective glutamate receptors. Science 1990;249:556–560. [DOI] [PubMed] [Google Scholar]
  • 49. Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psych 1994;51:199–214. [DOI] [PubMed] [Google Scholar]
  • 50. Krystal JH, D'Souza DC, Karper LP, et al. Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacologia 1999;145 (2): 193–204. [DOI] [PubMed] [Google Scholar]
  • 51. Krystal JH, D'Souza DC, Petrakis IL, et al. NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harvard Rev Psych 1999;7 (3): 125–143. [PubMed] [Google Scholar]
  • 52. Lambolez B, Ropert N, Perrais D, Rossier J, Hestrin S. Correlation between kinetics and RNA splicing of alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid receptors in neocortical neurons. Proc Natl Acad Sci USA 1996;93 (5): 1797–1802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Lee CR, Benfield P. Aniracetam. An overview of its pharmacodynamic and pharmacokinetic properties, and a review of its therapeutic potential in senile cognitive disorders. Drugs Aging 1994;4:257–273. [DOI] [PubMed] [Google Scholar]
  • 54. Legutko B, Li X, Skolnick P. Regulation of BDNF expression in primary neuron culture by LY392098, a novel AMPA receptor potentiator. Neuropharmacology 2001;40 (8): 1019–1027. [DOI] [PubMed] [Google Scholar]
  • 55. Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P. Antidepressant‐like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 2001;40 (8): 1028–1033. [DOI] [PubMed] [Google Scholar]
  • 56. Liddle PF. Syndromes of schizophrenia on factor analysis. Br J Psychiatry 1992;161:861. [DOI] [PubMed] [Google Scholar]
  • 57. Linden A‐M, Yu H, Zarrinmayeh H, Wheeler WJ, Skolnick P. Binding of an AMPA receptor potentiator ([3H]LY395153) to native and recombinant AMPA receptors. Neuropharmacology 2001;40:1010–1018. [DOI] [PubMed] [Google Scholar]
  • 58. Lodge D, Vandergriff J. LY392098 and LY404187 potentiate responses of rat hippocampal neurones to AMPA in vivo. Soc Neurosci Abstr 2000;30:173. [Google Scholar]
  • 59. Lomeli H, Mosbacher J, Melcher T, et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 1994;266 (5191): 1709–1713. [DOI] [PubMed] [Google Scholar]
  • 60. Lou H, Henriksen L, Bruhn P, Borner H, Nielsen J. Striatal dysfunction in attention deficit and hyperactivity disorder. Arch Neurol 1989;46:48–52. [DOI] [PubMed] [Google Scholar]
  • 61. Luby E, Cohen B, Rosenbaum G, Gottlieb J, Kelley R. Study of a new schizophrenomimetic drug — Sernyl. Am Med Ass Arch Neurol Psych 1959;81:363–369. [DOI] [PubMed] [Google Scholar]
  • 62. Lynch G, Granger R, Ambros‐Ingerson J, Davis CM, Kessler M, Schehr R. Evidence that a positive modu lator of AMPA‐type glutamate receptors improves delayed recall in aged humans. Exp Neurol 1997;145 (1): 89–92. [DOI] [PubMed] [Google Scholar]
  • 63. Magnusson KR, Cotman CW. Age‐related changes in excitatory amino acid receptors in two mouse strains. Neurobiol Aging 1993;14 (3): 197–206. [DOI] [PubMed] [Google Scholar]
  • 64. Martin LJ, Blackstone CD, Levey AI, Huganir RL, Price DL. AMPA glutamate subunits are differentially distributed in rat brain. Neuroscience 1993;53 (2): 327–358. [DOI] [PubMed] [Google Scholar]
  • 65. Mayer M, Vyklicky L. Jr. Concanavalin A selectively reduces desensitization of mammalian neuronal quisqualate receptors. Proc Natl Acad Sci USA 1989;86:1411–1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Mayer ML, Westbrook GL, Guthrie PB. Voltage‐dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984;309:261–263. [DOI] [PubMed] [Google Scholar]
  • 67. Meador‐Woodruff JH, Healy DJ. Glutamate Receptor Expression in Schizophrenic Brain. Brain Res Rev 2000;31:288–294. [DOI] [PubMed] [Google Scholar]
  • 68. Miu P, Jarvie K, Radhakrishnan V, et al. Novel AMPA receptor potentiators LY392098 and LY404187: Effects on recombinant human AMPA receptors in vitro. Neuropharmacology 2001;40 (8): 976–983. [DOI] [PubMed] [Google Scholar]
  • 69. Monyer H, Seeburg PH, Wisden W. Glutamate‐operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 1991;6 (5): 799–810. [DOI] [PubMed] [Google Scholar]
  • 70. Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 1994;266 (5187): 1059–1062. [DOI] [PubMed] [Google Scholar]
  • 71. Nakamura K, Tanaka Y. Antidepressant‐like effects of aniracetam in aged rats and its mode of action. Psychopharmacology 2001;158 (2): 205–212. [DOI] [PubMed] [Google Scholar]
  • 72. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electro‐convulsive seizure and antidepressant drug treatments. J Neurosci 1995;15 (11): 7539–7547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Nicoll RA, Malenka RC. Expression mechanisms underlying NMDA receptor‐dependent long‐term potentiation. Ann NY Acad Sci 1999;868:515–525. [DOI] [PubMed] [Google Scholar]
  • 74. Niedermeyer E, Naidu S. Rett Syndrome, EEG, and the motor cortex as a model for better understanding of attention deficit hyperactivity disorder (ADHD). Eur Child Adolesc Psych 1998;7:69–72. [DOI] [PubMed] [Google Scholar]
  • 75. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate‐activated channels in mouse central neurons. Nature 1984;307:462–465. [DOI] [PubMed] [Google Scholar]
  • 76. Oepen G, Eisele K, Thoden U, Birg W. Piracetam improves visuomotor and cognitive deficits in early Parkisonism — a pilot study. Pharmacopsychiatry 1985;18:343–346. [DOI] [PubMed] [Google Scholar]
  • 77. Ornstein PL, Zimmerman DM, Arnold MB, et al. Biarylpropylsulfonamides as novel, potent potentiators of 2‐amino‐3‐(5‐methyl‐3‐hydroxyisoxazol‐4‐yl)‐propanoic acid (AMPA) receptors. J Med Chem 2000;43 (23): 4354–4358. [DOI] [PubMed] [Google Scholar]
  • 78. Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Progr Neurobiol 1998;54:581–618. [DOI] [PubMed] [Google Scholar]
  • 79. Partin KM, Patneau DK, Mayer ML. Cyclothiazide differentially modulates desensitization of alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor splice variants. Mol Pharmacol 1994;46 (1): 129–138. [PubMed] [Google Scholar]
  • 80. Partin KM, Fleck MW, Mayer ML. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J Neurosci 1996;16 (21): 6634–6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Pontecorvo MJ, Evans HL. Effects of aniracetam on delayed matching‐to‐sample performance of monkeys and pigeons. Pharmacol Biochem Behav 1985;22:745–752. [DOI] [PubMed] [Google Scholar]
  • 82. Raman IM, Trussell LO. The mechanism of alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionate receptor desensitization after removal of glutamate. Biophys J 1995;68:137–146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Rogan MT, Staubli UV, LeDoux JE. AMPA receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired. J Neurosci 1997;17 (15): 5928–5935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Romanides AJ, Duffy P, Kalivas PW. Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Neuroscience 1999;92:97–106. [DOI] [PubMed] [Google Scholar]
  • 85. Russo‐Neustadt A, Ha T, Ramirez R, Kesslak JP. Physical activity‐antidepressant treatment combination: Impact on brain‐derived neurotrophic factor and behavior in an animal model. Behav Brain Res 2001;120 (1): 87–95. [DOI] [PubMed] [Google Scholar]
  • 86. Salimov R, Salimova N, Shvets L, Shvets N. Effect of chronic piracetam on age‐related changes of cross‐maze exploration in mice. Pharmacol Biochem Behav 1995;52:637–640. [DOI] [PubMed] [Google Scholar]
  • 87. Scheuer K, Rostock A, Bartsch R, Muller WE. Piracetam improves cognitive performance by restoring neurochemical deficits of the aged rat brain. Pharmacopsychiatry 1999;32:10–16. [DOI] [PubMed] [Google Scholar]
  • 88. Sieg K, Gaffney G, Preston D, Hellings J. SPECT brain imaging abnormalitites in attention deficit hyperactivity disorder. Clin Nucl Med 1995;20:55–60. [DOI] [PubMed] [Google Scholar]
  • 89. Silberstein R, Farrow M, Levy F, Pipingas A, Hay D, Jarman F. Functional brain electrical activity mapping in boys with attention‐deficit/hyperactivity disorder. Arch Gen Psychiatry 1998;33:1105–1112. [DOI] [PubMed] [Google Scholar]
  • 90. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant‐like effect of brain‐derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997;56 (1): 131–137. [DOI] [PubMed] [Google Scholar]
  • 91. Sokolov BP. Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic‐free” schizophrenics: Evidence on reversible up‐regulation by typical neuroleptics. J Neurochem 1998;71 (6): 2454–2464. [DOI] [PubMed] [Google Scholar]
  • 92. Sommer B, Keinanen K, Verdoorn TA, et al. Flip and flop: A cell‐specific functional switch in glutamate‐operated channels of the CNS. Science 1990;249 (4976): 1580–1585. [DOI] [PubMed] [Google Scholar]
  • 93. Staubli U, Perez Y, Xu F, et al. Centrally active modulators of glutamate receptors facilitate the induction of long‐term potentiation in vivo. Proc Natl Acad Sci USA 1994;91:777–781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Staubli U, Rogers G, Lynch G. Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci USA 1994;91:777–781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Tamminga CA. Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 1998;12 (1–2): 21–36. [DOI] [PubMed] [Google Scholar]
  • 96. Tsuzuki K, Lambolez B, Rossier J, Ozawa S. Absolute quantification of AMPA receptor subunit mRNAs in single hippocampal neurons. J Neurochem 2001;77 (6): 1650–1659. [DOI] [PubMed] [Google Scholar]
  • 97. Vaidya VA, Duman RS. Depression — emerging insights from neurobiology. Br Med Bull 2001;57:61–79. [DOI] [PubMed] [Google Scholar]
  • 98. Van der Meere J, Sergeant J. Acquisition of attention skill in pervasively hyperactive children. J Child Psychol Psychiatry 1988;29:301–310. [DOI] [PubMed] [Google Scholar]
  • 99. Vandergriff J, Huff K, Bond A, Lodge D. Potentiation of responses to AMPA on central neurones by LY392098 and LY404187 in vivo. Neuropharmacology 2001;40 (8): 1003–1009. [DOI] [PubMed] [Google Scholar]
  • 100. Verloes R, Scotto AM, Gobert J, Wülfert E. Effects of nootropic drugs in a scopolamine‐induced amnesia model in mice. Psychopharmacology 1988;95 (2): 226–230. [DOI] [PubMed] [Google Scholar]
  • 101. Washburn MS, Numberger M, Zhang S, Dingledine R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J Neurosci 1997;17 (24): 9393–9406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Weinberger D, Berman KF. Prefrontal function in schizophrenia: confounds and controversies. Phil Trans R Soc Lond B Biol Sci 1996;351:1495–1503. [DOI] [PubMed] [Google Scholar]
  • 103. Yamada KA, Tang CM. Benzothiadiazines inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J Neurosci 1993;13:3904–3915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Yamada KA. Modulating excitatory synaptic neurotransmission: Potential treatment for neurological disease Neurobiol Dis 1998;5:67–80. [DOI] [PubMed] [Google Scholar]
  • 105. Yamada KA. Therapeutic potential of positive AMPA receptor modulators in the treatment of neurological disease. Exp Opin Invest Drugs 2000;9 (4): 765–778. [DOI] [PubMed] [Google Scholar]
  • 106. Zametkin A, Nordahl T, Gross M, et al. Cerebral glucose metabolism in addults with hyperactivity of childhood onset. N Engl J Med 1990;323:1361–1366. [DOI] [PubMed] [Google Scholar]
  • 107. Zarrinmayeh H, Bleakman D, Gates MR, et al. [3H]N‐2‐(4‐(N‐benzamido)phenyl)propyl‐2‐propanesulfonamide: A novel AMPA receptor potentiator and radioligand. J Med Chem 2001;44 (3): 302–304. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES