Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;7(2):131–145. doi: 10.1111/j.1527-3458.2001.tb00192.x

HU 210: A Potent Tool for Investigations of the Cannabinoid System

Alessandra Ottani 1, Daniela Giuliani 1,
PMCID: PMC6741702  PMID: 11474421

ABSTRACT

The synthetic compound HU 210 displays a multiplicity of biochemical, pharmacological, and behavioral effects, most of which have been demonstrated to be dependent on a selective agonistic activity at CB1 and CB2 cannabinoid receptors and to involve the main neurotransmitter systems. Results obtained in various studies suggest a potential clinical application of this highly potent drug (e.g., as antipyretic, antiinflammatory, analgesic, antiemetic, and antipsychotic agent) as well as its usefulness in research aimed to develop a better understanding of the involvement of the endogenous cannabinoid system in a number of physiopathological functions.

Keywords: HU 210, Cannabinoids, Humans, Animals

Full Text

The Full Text of this article is available as a PDF (147.9 KB).

References

  • 1. Abel EL. Effects of marihuana on the solution of anagrams, memory and appetite. Nature 1971;231:260–261. [DOI] [PubMed] [Google Scholar]
  • 2. Addicks K, Bloch W, Feelisch M. Nitric oxide modulates sympathetic neurotransmission at the prejunctional level. Microsc Res Tech 1994;29:161–168. [DOI] [PubMed] [Google Scholar]
  • 3. Ameri A. The effects of cannabinoids on the brain. Prog Neurobiol 1999;58:315–348. [DOI] [PubMed] [Google Scholar]
  • 4. Beal JE, Olson R, Laubenstein L, et al. Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J Pain Symptom Manage 1995;10:89–97. [DOI] [PubMed] [Google Scholar]
  • 5. Bloch E, Thysen B, Morrill GA, Gardner E, Fujimoto G. Effects of cannabinoids on reproduction and development. Vitam Horm 1978;36:203–258. [DOI] [PubMed] [Google Scholar]
  • 6. Blokland A. Acetylcholine, a neurotransmitter for learning and memory Brain Res Rev 1996;21:285–300. [DOI] [PubMed] [Google Scholar]
  • 7. Bonhaus DW, Chang LK, Kwan J, Martin GR. Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists. J Pharmacol Exp Ther 1998;287:884–888. [PubMed] [Google Scholar]
  • 8. Bouaboula M, Poinot‐Chazel C, Bourrie B, et al. Activation of mitogen‐activated protein kinases by stimulation of the central cannabinoid receptor CB1 . Biochem J 1995;312:637–641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Bouaboula M, Poinot‐Chazel C, Marchand J, et al. Signalling pathway associated with stimulation of the CB2 peripheral cannabinoid receptor. Involvement of both mitogen‐activated protein kinase and induction of Krox‐24 expression. Eur J Biochem 1996;237:704–711. [DOI] [PubMed] [Google Scholar]
  • 10. Braud S, Bon C, Touqui L, Mounier C. Activation of rabbit platelets by anandamide through its cleavage into arachidonic acid. FEBS Lett 2000;471:12–16. [DOI] [PubMed] [Google Scholar]
  • 11. Brodkin J, Moerschbaecher M. SR 141716A antagonizes the disruptive effects of cannabinoid ligand on learning in rats. J Pharmacol Exp Ther 1997;282:1526–1532. [PubMed] [Google Scholar]
  • 12. Burkey TH, Quock RM, Consroe P, et al. Relative efficacies of cannabinoid CB1 receptor agonists in the mouse brain. Eur J Pharmacol 1997;336:295–298. [DOI] [PubMed] [Google Scholar]
  • 13. Burnette‐Curley D, Cabral GA. Differential inhibition of RAW264.7 macrophage tumoricidal activity by Δ9‐tetrahydrocannabinol. Exp Biol Med 1995;210:64–76. [DOI] [PubMed] [Google Scholar]
  • 14. Cabral GA, Toney DM, Fischer‐Stenger K, Harrison MP, Marciano‐Cabral F. Anandamide inhibits macrophage‐mediated killing of tumor necrosis factor‐sensitive cells. Life Sci 1995;56:2065–2072. [DOI] [PubMed] [Google Scholar]
  • 15. Chataigneau T, Feletou M, Thollon C, et al. Cannabinoid CB1 and endothelium‐dependent hyperpolarization in guinea‐pig carotid, rat mesenteric and porcine coronary arteries. Br J Pharmacol 1998;123:968–974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Cheer JF, Cadogan AK, Marsden CA, Fone KC, Kendall DA. Modification of 5‐HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors. Neuropharmacology 1999;38:533–541. [DOI] [PubMed] [Google Scholar]
  • 17. Collins DR, Pertwee RG, Davies SN. Prevention by the cannabinoid antagonist, SR 141716A, of cannabinoid‐mediated blockade of long‐term potentiation in the hippocampal slice. Br J Pharmacol 1995;115:869–870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Compton DR, Johnson MR, Melvin LS, Martin B. Pharmacological profile of a series of bicyclic cannabinoid analogs: Classification as cannabimimetic agents. J Pharmacol Exp Ther 1992;260:201–209. [PubMed] [Google Scholar]
  • 19. Compton DR, Harris LS, Lichtman AH, Martin BR. Marihuana In: Handbook of Experimental Pharmacology: Pharmacological Aspects of Drug Dependence. Schuster CR, Kuhar MJ, Eds. Springer, 1996;83–158. [Google Scholar]
  • 20. Cook SA, Lowe JA, Martin BR. CB1receptor antagonist precipitates withdrawal in mice exposed to Δ9‐tetrahydrocannabinol. J Pharmacol Exp Ther 1998;285:1150–1156. [PubMed] [Google Scholar]
  • 21. Crawley JN, Corwin RL, Robinson JK, Felder CC, Devane WA, Axelrod J. Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypotermia in vivo in rodents. Pharmacol Biochem Behav 1993;46:967–972. [DOI] [PubMed] [Google Scholar]
  • 22. Dalterio S, Bartke A. Perinatal exposure to cannabinoids alters male reproductive function in mice. Science 1979;205:1420–1422. [DOI] [PubMed] [Google Scholar]
  • 23. De Petrocellis L, Melck D, Palmisano A, et al. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc Natl Acad Sci USA 1998;95:8375–8380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Del Arco I, Munoz R, Rodriguez De Fonseca F, et al. Maternal exposure to the synthetic cannabinoid HU 210: Effects on the endocrine and immune systems of the adult male offspring. Neuroimmunomodulation 2000;7:16–26. [DOI] [PubMed] [Google Scholar]
  • 25. Derocq JM, Segui M, Marchand J, Le Fur G, Casellas P. Cannabinoids enhance human B‐cell growth at low nanomolar concentrations. FEBS Lett 1995;369:177–182. [DOI] [PubMed] [Google Scholar]
  • 26. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988;34:605–613. [PubMed] [Google Scholar]
  • 27. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992;258:1946–1949. [DOI] [PubMed] [Google Scholar]
  • 28. Dewey WL, Peng TC, Harris LS. The effect of 1‐trans delta 9THC on the hypothalamo‐hypophyseal‐adrenal axis of rats. Eur J Pharmacol 1970;12:382–384. [DOI] [PubMed] [Google Scholar]
  • 29. Dewey WL. Cannabinoid pharmacology. Pharmacol Rev 1986;38:151–178. [PubMed] [Google Scholar]
  • 30. Di Marzo V, Bisogno T, De Petrocellis L, et al. Biosynthesis and inactivation of the endocannabinoid 2‐arachidonoylglycerol in circulating and tumor macrophages. Eur J Biochem 1999;264:258–267. [DOI] [PubMed] [Google Scholar]
  • 31. Dunn AJ, File SE. Corticotropin‐releasing factor has an anxiogenic action on the social interaction test. Horm Behav 1987;21:193–202. [DOI] [PubMed] [Google Scholar]
  • 32. Evans R, Alexander P. Mechanisms of extracellular killing of nucleated mammalian cells by macrophages In: Nelson DS, ed. Immunobiology of the Macrophage. New York : Academic Press, 1976;535–536. [Google Scholar]
  • 33. Facci L, Dal Toso R, Romanello S, Buriani A, Skaper SD, Leon A. Mast cells express a peripheral cannabi‐noid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA 1995;92:3376–3380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Felder CC, Joyce KE, Briley EM, et al. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 1995;48:443–450. [PubMed] [Google Scholar]
  • 35. Ferrari F, Ottani A, Giuliani D. Cannabinoid activity in rats and pigeons of HU 210, a potent anti‐emetic drug. Pharmacol Biochem Behav 1999;62:75–80. [DOI] [PubMed] [Google Scholar]
  • 36. Ferrari F, Ottani A, Giuliani D. Influence of the cannabinoid agonist HU 210 on cocaine and CQP 201 403 induced behavioural effects in rat. Life Sci 1999;65:823–831. [DOI] [PubMed] [Google Scholar]
  • 37. Ferrari F, Ottani A, Vivoli R, Giuliani D. Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water maze task. Pharmacol Biochem Behav 1999;64:555–561. [DOI] [PubMed] [Google Scholar]
  • 38. Ferrari F, Ottani A, Giuliani D. Inhibitory effects of the cannabinoid agonist HU 210 on rat sexual behaviour. Physiol Behav 2000;69:547–554. [DOI] [PubMed] [Google Scholar]
  • 39. Fischer‐Stenger K, Cabral GA, Marciano‐Cabral F. The interaction of Naegleria fowleri amoebae with murine macrophage cell lines. J Protozool 1990;37:168–173. [DOI] [PubMed] [Google Scholar]
  • 40. Fishman MV, Rosenbaum JF, Yabusaki DI, Carr DB. Marijuana related anxiety: A questionnaire based pilot study of normal and psychiatric populations. Res Comm Subst Abuse 1988;9:219–226. [Google Scholar]
  • 41. Foltin RW, Fischman MW, Byrne MF. Effects of smoked marijuana on food intake and body weight of humans living residential laboratory. Appetite 1988;11:1–14. [DOI] [PubMed] [Google Scholar]
  • 42. Frischknecht HR. Effects of cannabis drugs on social behaviour of laboratory rodents. Prog Neurobiol 1984;22:39–58. [DOI] [PubMed] [Google Scholar]
  • 43. Fuder H, Schwarz P. Desensitization of inhibitory prejunctional α2‐adrenoceptors and putative imidazoline receptors on rabbit heart sympathic nerves. Naunyn Schmiededeberg's Arch Pharmacol 1993;348:127–133. [DOI] [PubMed] [Google Scholar]
  • 44. Galiegue S, Mary S, Marchand J, et al. Expression of central and peripheral cannabinoid receptors in human immune tissue and leukocytes subpopulations. Eur J Biochem 1995;232:54–61. [DOI] [PubMed] [Google Scholar]
  • 45. Gaoni Y, Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964;86:1646–1647. [Google Scholar]
  • 46. Gardner EL, Lowinson JH. Marijuana's interaction with brain reward systems: Update 1991. Pharmacol Biochem Behav 1991;40:571–580. [DOI] [PubMed] [Google Scholar]
  • 47. Gatley SJ, Gifford AN, Volkow ND, Lan R, Makriyannis A. 123I‐labeled AM251: A radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors. Eur J Pharmacol 1996;307:331–338. [DOI] [PubMed] [Google Scholar]
  • 48. Gessa GL, Casu MA, Carta G, Mascia MS. Cannabinoids decrease acetylcholine release in the medial‐prefrontal cortex and hippocampus, reversal by SR 141716A. Eur J Pharmacol 1998;355:119–124. [DOI] [PubMed] [Google Scholar]
  • 49. Gessa GL, Melis M, Muntoni A, Diana M. Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol 1998;341:39–44. [DOI] [PubMed] [Google Scholar]
  • 50. Gifford AN, Ashby CR. Electrically evoked acetylcholine release from hippocampal slices is inhibited by the cannabinoid receptor agonist, WIN 55,212–2, and is potentiated by the cannabinoid antagonist, SR 141716A. J Pharmacol Exp Ther 1996;277:14331–14336. [PubMed] [Google Scholar]
  • 51. Gifford AN, Samiian L, Gatley SJ, Ashby CR. Examination of the effect of the cannabinoid receptor agonist, CP 55,940, on electrically evoked transmitter release from rat brain slices. Eur J Pharmacol 1997;324:187–192. [DOI] [PubMed] [Google Scholar]
  • 52. Gispen WH, Wiegant HM, Greven HM, De Wied D. The induction of the excessive grooming in the rat by intraventricular application of peptides derived from ACTH structure activity studies. Life Sci 1975;17:645–650. [DOI] [PubMed] [Google Scholar]
  • 53. Giuliani D, Ferrari F, Ottani A. The cannabinoid agonist HU 210 modifies rat behavioural responses to novelty and stress. Pharmacol Res 2000;41:47–53. [DOI] [PubMed] [Google Scholar]
  • 54. Giuliani D, Ottani A, Ferrari F. Effects of the cannabinoid receptor agonist, HU 210, on ingestive behaviour and body weight of rats. Eur J Pharmacol 2000;391:275–279. [DOI] [PubMed] [Google Scholar]
  • 55. Glass M, Northup JK. Agonist selective regulation of G proteins by cannabinoid CB1 and CB2 receptors. Mol Pharmacol 1999;56:1362–1369. [DOI] [PubMed] [Google Scholar]
  • 56. Glick SD, Milloy S. Increased and decreased eating following Δ9‐tetrahydrocannabinol administration. Psychonom Sci 1972;29:6–11. [Google Scholar]
  • 57. Gothert M, Molderings GJ. Involvement of presynaptic imidazoline receptors in the α2‐adrenoceptor‐independent inhibition of noradrenaline release by imidazoline derivatives. Naunyn Schmiededeberg's Arch Pharmacol 1991;343:271–282. [DOI] [PubMed] [Google Scholar]
  • 58. Graceffo TJ, Robinson JK. Δ9‐tetrahydrocannabinol (THC) fails to stimulate consumption of a highly palatable food in the rat. Life Sci 1998;62:85–88. [DOI] [PubMed] [Google Scholar]
  • 59. Greenberg I, Kuehnle J, Mendelson JH, Bernstein JG. Effects of marihuana use on body weight and caloric intake in humans. Psychopharmacology 1976;49:79–84. [DOI] [PubMed] [Google Scholar]
  • 60. Henriksson BG, Jarbe TUC. Cannabis induced vocalization in the rat. J Pharm Pharmacol 1971;23:456–458. [DOI] [PubMed] [Google Scholar]
  • 61. Herkenham M, Lynn AB, Johnson MR, Melvin LS, De Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. J Neurosci 1991;11:563–583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Hillard CJ, Muthian S, Kearn CS. Effects of CB1 cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett 1999;459:277–281. [DOI] [PubMed] [Google Scholar]
  • 63. Holland M, Challiss RAJ, Standen NB, Boyle JP. Cannabinoid CB1 receptors fail to cause relaxation, but couple via Gi/Go to the inhibition of adenylyl cyclase in carotid artery smooth muscle. Br J Pharmacol 1999;128:597–604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Howie S, McBride WH. Cellular interactions and thymus‐dependent antibody responses. Immunol Today 1982;3:273–278. [DOI] [PubMed] [Google Scholar]
  • 65. Howlett AC, Champion TM, Wilken GH, Mechoulam R. Stereochemical effects of 11‐OH‐Δ8‐tetrahydrocannabinol‐dymethylheptyl to inhibit adenylate cyclase and bind to the cannabinoid receptor. Neuropharmacology 1990;29:161–165. [DOI] [PubMed] [Google Scholar]
  • 66. Hughes CL, Everett JW, Tyrey L. Delta‐9‐tetrahydrocannabinol suppression of prolactin secretion in the rat: Lack of direct pituitary effect. Endocrinology 1981;109:876–880. [DOI] [PubMed] [Google Scholar]
  • 67. Jarai Z, Wagner JA, Varga K, et al. Cannabinoid‐induced mesenteric vasodilatation through an endothelial site distinct from CB1 or CB2 receptors. PNAS 1999;96:14136–14141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Johnson MR, Melvin LS. The discovery of non classical cannabinoid analgetics In: Mechoulam R, ed. Cannainoids as Therapeutic Agents. Boca Raton , Florida : CRC Press, 1986;121–145. [Google Scholar]
  • 69. Kaminski NE, Abood ME, Kessler FK, Martin BR, Schatz AR. Identification of a functionally relevant cannabinoid receptor on mouse spleen cells that is involved in cannabinoid‐mediated immune modulation. Mol Pharmacol 1992;42:736–742. [PMC free article] [PubMed] [Google Scholar]
  • 70. Kaminski NE. Immune regulation by cannabinnoid compounds through the inhibition of the cyclic AMP signaling cascade and altered gene expression. Biochem Pharmacol 1996;53:1133–1140. [DOI] [PubMed] [Google Scholar]
  • 71. Klein TW, Newton C, Friedman H. Cannabinoid receptors and the cytokine network. Adv Exp Med Biol 1998;437:215–222. [DOI] [PubMed] [Google Scholar]
  • 72. Kramer J, Ben‐David M. Prolactin suppression by (‐)‐delta‐9‐tetrahydrocannabinol (Δ9‐THC): Involvement of serotoninergic and dopaminergic pathways. Endocrinology 1978;103:452–457. [DOI] [PubMed] [Google Scholar]
  • 73. Kubena RK, Perhach JL, Barry H. Corticosterone elevation mediated centrally by Δ1‐tetrahydrocannabinol in rats. Eur J Pharmacol 1971;14:89–92. [DOI] [PubMed] [Google Scholar]
  • 74. Kuster JE, Stevenson JI, Ward SJ, D'Ambra TE, Haycock DA. Aminoalkylindole binding in rat cerebellum: Selective displacement by natural and synthetic cannabinoids. J Pharmacol Exp Ther 1993;264:1352–1363. [PubMed] [Google Scholar]
  • 75. Lake KD, Compton DR, Varga K, Martin BR, Kunos G. Cannabinoid‐induced hypotension and bradycardia in rats mediated by CB1‐like cannabinoid receptors. J Pharmacol Exp Ther 1997;281:1030–1037. [PubMed] [Google Scholar]
  • 76. Ledent C, Valverde O, Cossu G, et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 1999;283:401–404. [DOI] [PubMed] [Google Scholar]
  • 77. Lee M, Jang KH, Kaminski NE. Effects of putative cannabinoid receptor ligands, anandamide and 2‐arachidonyl‐glycerol, on immune function in B6C3F1 mouse splenocytes. J Pharmacol Exp Ther 1995;275:529–536. [PubMed] [Google Scholar]
  • 78. Lichtman AH, Peart J, Poklis JL, et al. Pharmacological evaluation of aerosolized cannabinoids in mice. Eur J Pharmacol 2000;399:141–149. [DOI] [PubMed] [Google Scholar]
  • 79. Lindamood C III, Colasanti BK. Effects of delta‐9‐THC and cannabidiol on Na+‐dependent, high affinity choline uptake in the rat hippocampus. J Pharmacol Exp Ther 1980;213:216–221. [PubMed] [Google Scholar]
  • 80. Little PJ, Compton DR, Mechoulam R, Martin BR. Stereochemical effects of 11‐OH‐Δ8‐THC‐dimethylheptyl in mice and dogs. Pharmacol Biochem Behav 1989;32:661–666. [DOI] [PubMed] [Google Scholar]
  • 81. Liu J, Gao B, Mirshahi F, et al. Functional CB1 cannabinoid receptor in human vascular endothelial cells. Biochem J 2000;346:835–840. [PMC free article] [PubMed] [Google Scholar]
  • 82. Lyketsos CG, Garrett E, Liang KY, Anthony JC. Cannabis use and cognitive decline in persons under 65 years of age. Am J Epidemiol 1999;149:794–800. [DOI] [PubMed] [Google Scholar]
  • 83. Mailleux P, Vanderhaeghen JJ. Distribution of neuronal cannabinoid receptor in the adult rat brain: A comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 1992;48:655–668. [DOI] [PubMed] [Google Scholar]
  • 84. Maneuf YP, Nash JE, Crossman AR, Brotchie JM. Activation of the cannabinoid receptors by Δ9‐tetrahydrocannabinol reduces γ‐aminobutyric acid uptake in the globus pallidus. Eur J Pharmacol 1996;308:161–164. [DOI] [PubMed] [Google Scholar]
  • 85. Mansbach RS, Rovetti CC, Winston EN, Lowe JA. III Effects of the cannabinoid CB1 receptor antagonist SR 141716A on behaviour of pigeons and rats. Psychopharmacology 1996;124:315–322. [DOI] [PubMed] [Google Scholar]
  • 86. Mao J, Price DD, Lu J, Kenoiston L, Mayer DJ. Two distinctive antinociceptive systems in rats with pathological pain. Neurosci Lett 2000;280:13–16. [DOI] [PubMed] [Google Scholar]
  • 87. Martin WJ, Tsou K, Walker JM. Cannabinoid receptor‐mediated inhibition of the rat tail‐flick reflex after microinjection into the rostral ventromedial medulla. Neurosci Lett 1998;242:33–36. [DOI] [PubMed] [Google Scholar]
  • 88. Martin‐Calderon JL, Munoz RM, Villanua MA, et al. Characterization of acute endocrine actions of (‐)‐11–hydroxy‐Δ8‐tetrahydrocannabinol‐dimethylheptyl (HU 210), a potent synthetic cannabinoid in rats. Eur J Pharmacol 1998;344:77–86. [DOI] [PubMed] [Google Scholar]
  • 89. Matsuda LA, Lolait SJ, Brownstain MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561–564. [DOI] [PubMed] [Google Scholar]
  • 90. Mattes RD, Engelman K, Shaw LM, Elsohly MA. Cannabinoids and appetite stimulation. Pharmacol Biochem Behav 1994;49:187–195. [DOI] [PubMed] [Google Scholar]
  • 91. Mechoulam R, Lander N, Srebnik M, et al. Stereochemical requirements for cannabimimetic activity. NIDA Res Mono Ser 1987;79:15–30. [PubMed] [Google Scholar]
  • 92. Mechoulam R, Feigenbaum JJ, Lander N, et al. Enantiomeric cannabinoids: Stereospecificity of psychotropic activity. Experientia 1988;44:762–764. [DOI] [PubMed] [Google Scholar]
  • 93. Mechoulam R, Fride E, Di Marzo V. Endocannabinoids. Eur J Pharmacol 1998;359:1–18. [DOI] [PubMed] [Google Scholar]
  • 94. Melck D, De Petrocellis L, Orlando P, et al. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology 2000;141:118–126. [DOI] [PubMed] [Google Scholar]
  • 95. Melis MR, Argiolas A. Dopamine and sexual behaviour. Neurosci Biobehav Rev 1995;19:19–28. [DOI] [PubMed] [Google Scholar]
  • 96. Melis MR, Muntoni AL, Diana M, Gessa GL. The cannabinoid receptor agonist WIN 55,212–2 potently stimulates dopaminergic neuronal activity in the mesolimbic system. Behav Pharmacol 1996;7:68–69. [Google Scholar]
  • 97. Merari A, Barak A, Plaves M. Effects of 1(2)‐tetrahydrocannabinol on copulation in the male rat. Psychopharmacologia 1973;28:243–246. [DOI] [PubMed] [Google Scholar]
  • 98. Meyer RE. Behavioural pharmacology of marijuana In: Psychopharmacology. A Generation of Progress. Lipton MA, Di Mascio A, Killam KF, Eds. New York : Raven Press, 1978;1639–1652. [Google Scholar]
  • 99. Molderings GJ, Likungu J, Gothert M. Presynaptic cannabinoid and imidazoline receptors in the human heart and their potential relationship. Naunyn Schmiededeberg's Arch Pharmacol 1999;360:157–164. [DOI] [PubMed] [Google Scholar]
  • 100. Morley JE, Levine AS. Corticotropin releasing factor, grooming and ingestive behaviour. Life Sci 1982;31:1459–1464. [DOI] [PubMed] [Google Scholar]
  • 101. Munro S, Thomas KL, Abu‐Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993;365:61–65. [DOI] [PubMed] [Google Scholar]
  • 102. Murphy LL, Gher J, Steger RW, Bartke A. Effects of Δ9‐tetrahydrocannabinol on copulatory behaviour and neuroendocrine responses of male rats to female conspecifics. Pharmacol Biochem Behav 1994;48:1011–1017. [DOI] [PubMed] [Google Scholar]
  • 103. Musty RE, Reggio P, Consroe P. A review of recent advance in cannabinoid research and the 1994 International Symposium on Cannabis and the Cannabinoids. Life Sci 1995;56:1933–1940. [DOI] [PubMed] [Google Scholar]
  • 104. Nakazi M, Bauer U, Nickel T, Kathmann M, Schlicker E. Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn Schmiededeberg's Arch Pharmacol 2000;361:19–24. [DOI] [PubMed] [Google Scholar]
  • 105. Navarro M, Chowen J, Rocio A, et al. CB1 cannabinoid receptor antagonist‐induced opiate withdrawal in morphine‐dependent rats. Neuroreport 1998;26:3397–3402. [DOI] [PubMed] [Google Scholar]
  • 106. Netzeband JG, Conroy SM, Parsons KL, Gruol DL. Cannabinoids enhance NMDA‐elicited Ca2+ signals in cerebellar granule neurons in culture. J Neurosci 1999;19:8765–8777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Niederhoffer N, Szabo B. Effect of the cannabinoid receptor agonist WIN 55,212–2 on sympathetic cardiovascular regulation. Br J Pharmacol 1999;126:457–66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. O'Connell ME, Morrill GA, Fujimoto GI, Kostellow AB. Factors affecting the response of the female rat reproductive system to cannabinoids. Toxicol Appl Pharmacol 1987;88:411–417. [DOI] [PubMed] [Google Scholar]
  • 109. Onaivi ES, Green MR, Martin BR. Pharmacological characterization of cannabinoids in the elevated plus maze. J Pharmac Exp Ther 1990;253:1002–1009. [PubMed] [Google Scholar]
  • 110. Ottani A, Giuliani D, Ferrari F. Rat cognitive functions during and after treatment with the cannabinoid agonist, HU 210. Pharm Pharmacol Commun 2000;6:243–246. [Google Scholar]
  • 111. Ovadia H, Wohlman A, Mechoulam R, Weidenfeld J. Characterization of the hypothermic effect of the synthetic cannabinoid HU 210 in the rat. Relation to the adrenergic system and endogenous pyrogens. Neuro-pharmacology 1995;34:175–180. [DOI] [PubMed] [Google Scholar]
  • 112. Pan X, Ikeda S, Lewis DL. Rat brain cannabinoid receptor modulates N‐type Ca2+ channels in a neuronal expression system. Mol Pharmacol 1996;49:707–714. [PubMed] [Google Scholar]
  • 113. Petrwee RG, Greentree SG, Swift PA. Drugs which stimulate or facilitate central GABAergic transmission interact synergistically with Δ9‐tetrahydrocannabinol to produce marked catalepsy in mice. Neuropharmacology 1988;27:1265–1270. [DOI] [PubMed] [Google Scholar]
  • 114. Plane F, Holland M, Waldron GJ, Garland CJ, Boyle JP. Evidence that anandamide and EDHF act via different mechanism in rat isolated mesenteric arteries. Br J Pharmacol 1997;121:1509–1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. Pop E. Cannabinoids, endogenous ligands and synthetic analogs. Curr Opin Chem Biol 1999;3:418–425. [DOI] [PubMed] [Google Scholar]
  • 116. Randall MD, Kendall DA. Endocannabinoids: A new class of vasoactive substances. Trends Pharmacol Sci 1998;19:55–58. [DOI] [PubMed] [Google Scholar]
  • 117. Regelson W, Butler JR, Schulz J, et al. Delta 9‐tetrahydrocannabinol as an effective antidepressant and appetite‐stimulating agent in advanced cancer patients In: Braude MC, Szara S, Eds. Pharmacology of Mari‐huana. New York : Raven Press, 1976;763–776. [Google Scholar]
  • 118. Rettori V, Wenger T, Snyder G, Dalterio S, McCann SM. Hypothalamic action of delta‐9‐tetrahydrocanna‐binol to inhibit the release of prolactin and growth hormone in the rat. Neuroendocrinology 1988;47:498–503. [DOI] [PubMed] [Google Scholar]
  • 119. Richardson JD, Aanonsen L, Hargreaves KM. SR 141716A, a cannabinoid receptor antagonist, produces hyperalgesia in untreated mice. Eur J Pharmacol 1997;319:R3–R4. [DOI] [PubMed] [Google Scholar]
  • 120. Rinaldi‐Carmona M, Barth F, Heaulme M, et al. SR 141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 1994;350:240–244. [DOI] [PubMed] [Google Scholar]
  • 121. Rodriguez De Fonseca F, Hernandez ML, de Miguel R, Fernandez‐Ruiz JJ, Ramos JA. Early changes in the development of dopaminergic neurotransmission after maternal exposure to cannabinoids. Pharmacol Biochem Behav 1992;41:469–474. [DOI] [PubMed] [Google Scholar]
  • 122. Rodriguez De Fonseca F, Martin‐Calderon JL, Mechoulam R, Navarro M. Repeated stimulation of D1 dopamine receptors enhances (‐)‐11‐hydroxy‐Δ8‐tetrahydrocannabinol‐dimethylheptil‐induced catalepsy in male rats. Neuroreport 1994;5:761–765. [DOI] [PubMed] [Google Scholar]
  • 123. Rodriguez De Fonseca F, Rubio P, Menzaghi F, et al. Corticotropin‐releasing factor (CRF) antagonist [D‐Phe12, Nle21,38, CαMeLeu37]CRF attenuates the acute actions of the highly potent cannabinoid receptor agonist HU‐210 on defensive‐withdrawal behavior in rats. J Pharmacol Exp Ther 1996;276:56–64. [PubMed] [Google Scholar]
  • 124. Rodriguez De Fonseca F, Carrera MRA, Navarro M, Koob GF, Weiss F. Activation of corticotropin‐releasing factor in the limbic system during cannabinoid withdrawal. Science 1997;276:2050–2054. [DOI] [PubMed] [Google Scholar]
  • 125. Romero J, Garcia L, Cebeira M, Zadrozny D, Fernandez‐Ruiz JJ, Ramos JA. The endogenous cannabinoid receptor ligand, anandamide, inhibits the motor behavior: Role of nigrostriatal dopaminergic neurons. Life Sci 1995;56:2033–2040. [DOI] [PubMed] [Google Scholar]
  • 126. Romero J, de Miguel R, Ramos JA, Fernandez‐Ruiz JJ. The activation of cannabinoid receptors in striato‐nigral GABAergic neurons inhibited GABA uptake. Life Sci 1998;62:351–363. [DOI] [PubMed] [Google Scholar]
  • 127. Rubio P, Rodriguez De Fonseca F, Munoz RM, Ariznavarreta C, Martin‐Calderon JL, Navarro M. Long‐term behavioural effects of perinatal exposure to Δ9‐tetrahydrocannabinol in rats: Possible role of pituitary‐adrenal axis. Life Sci 1995;56:2169–2176. [DOI] [PubMed] [Google Scholar]
  • 128. Sakurai Yamashita Y, Kataoka Y, Fujiwara M, Mine K, Ueki S. Delta 9‐tetrahydrocannabinol facilitates striatal dopaminergic transmission. Pharmacol Biochem Behav 1989;33:397–400. [DOI] [PubMed] [Google Scholar]
  • 129. Sanchez C, Velasco G, Guzman M. Metabolic stimulation of mouse spleen lymphocytes by low doses of Δ9‐tetrahydrocannabinol. Life Sci 1997;60:1709–1717. [DOI] [PubMed] [Google Scholar]
  • 130. Sanchez C, Galve‐Roperh IG, Rueda V, Guzman M. Involvement of sphingomyelin hydrolysis and the mi‐togen‐activated protein kinase cascade in the Δ9‐tetrahydrocannabinol‐induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol 1998;54:834–843. [DOI] [PubMed] [Google Scholar]
  • 131. Schatz AR, Lee M, Condie RB, Pulaski JT, Kaminski NE. Cannabinoid receptors CB1and CB2: A characterization of expression and adenylate cyclase modulation within the immune system. Toxicol Appl Pharmacol 1997;142:278–287. [DOI] [PubMed] [Google Scholar]
  • 132. Schlicker E, Timm J, Zentner J, Gothert M. Cannabinoid CB1receptor‐mediated inhibition of noradrenaline release in the human and guinea‐pig hippocampus. Naunyn Schmiededeberg's Arch Pharmacol 1997;356:583–589. [DOI] [PubMed] [Google Scholar]
  • 133. Schwarz P, Diem R, Dun NJ, Forstermann U. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circ Res 1995;77:841–848. [DOI] [PubMed] [Google Scholar]
  • 134. Slipetz DM, O'Neill GP, Favreau L, et al. Activation of the human peripheral cannabinoid receptor results in inhibition of adenylyl cyclase. Mol Pharmacol 1995;48:352–361. [PubMed] [Google Scholar]
  • 135. Smith SR, Terminelli C, Denhardt G. Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti‐inflammatory interleukin‐10 in endotoxemic mice. J Pharmacol Exp Ther 2000;293:136–150. [PubMed] [Google Scholar]
  • 136. Song ZH, Bonner TI. A lysine residue of the cannabinoid receptor is critical for receptor recognition by several agonists but not WIN 55,212–2. Mol Pharmacol 1996;49:891–896. [PubMed] [Google Scholar]
  • 137. Steger RW, De Paolo LV, Asch RH, Silverman AY. Interactions of delta‐9‐tetrahydrocannabinol with hypothalamic neurotransmitters controlling luteinizing hormone and prolactin release. Neuroendocrinology 1983;37:361–370. [DOI] [PubMed] [Google Scholar]
  • 138. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long‐term potentiation. Nature 1997;388:773–778. [DOI] [PubMed] [Google Scholar]
  • 139. Sugiura T, Kondo S, Sukagawa A, et al. 2‐Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Comm 1995;215:89–97. [DOI] [PubMed] [Google Scholar]
  • 140. Terranova JP, Michaud JC, Le Fur G, Soubrie P. Inhibition of long‐term potentiation in rat hippocampal slices by anandamide and WIN 55,212–2: Reversal by SR 141716A, a selective antagonist of CB 1 cannabinoid receptors. Naunyn Schmiededeberg's Arch Pharmacol 1995;352:576–579. [DOI] [PubMed] [Google Scholar]
  • 141. Terranova JP, Storme JP, Lafon N, et al. Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist, SR 141716A. Psychopharmacology 1996;126:165–172. [DOI] [PubMed] [Google Scholar]
  • 142. Teyler TJ, DiScenna P. Long‐term potentiation. Annu Rev Neurosci 1987;10:131–161. [DOI] [PubMed] [Google Scholar]
  • 143. Titishov N, Mechoulam R, Zimmerman AM. Stereospecific effects of (‐)‐ and (+)‐7‐hydroxy‐delta‐6‐tetra‐hydrocannabinol‐dimethylheptyl on the immune system of mice. Pharmacology 1989;39:337–349. [DOI] [PubMed] [Google Scholar]
  • 144. Tius MA, Hill WA, Zou XL, et al. Classical/non‐classical cannabinoid hybrids: Stereochemical requirements for the southern hydroxyalkyl chain. Life Sci 1995;56:2007–2012. [DOI] [PubMed] [Google Scholar]
  • 145. Trojniar W, Wise RA. Facilitory effect of Δ9‐tetrahydrocannabinol on hypothalamically induced feeding. Psychopharmacology 1991;103:172–176. [DOI] [PubMed] [Google Scholar]
  • 146. Twitchell W, Brown S, Mackie K. Cannabinoids inhibit N‐ and P/Q‐type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 1997;78:43–50. [DOI] [PubMed] [Google Scholar]
  • 147. Unanue ER. The regulatory role of macrophages in antigenic stimulation. II. Symbiotic relationship between lymphocytes and macrophages. Adv Immunol 1981;31:1–136. [DOI] [PubMed] [Google Scholar]
  • 148. Varga K, Lake K, Martin BR, Kunos G. Novel antagonist implicates the CB1 cannabinoid receptor in the hypotensive action of anandamide. Eur J Pharmacol 1995;278:279–283. [DOI] [PubMed] [Google Scholar]
  • 149. Vela G, Fuentes JA, Bonnin A, Fernandez‐Ruiz JJ, Ruiz‐Gayo M. Perinatal exposure to Δ9‐tetrahydrocannabinol (Δ9‐THC) leads to changes in opioid‐related behavioral pattern in rats. Brain Res 1995;680:142–147. [DOI] [PubMed] [Google Scholar]
  • 150. Vela G, Martin S, Garcia‐Gil L, et al. Maternal exposure to Δ9‐tetrahydrocannabinol facilitates morphine self‐administration behavior and changes regional binding to central μ opioid receptors in adult offspring female rats. Brain Res 1998;807:101–109. [DOI] [PubMed] [Google Scholar]
  • 151. Vidrio H, Sanchez Salvatori MA, Medina M. Cardiovascular effects of (‐)11‐hydroxy Δ8‐tetrahydrocannabinol‐dimethylheptyl. J Cardiovasc Pharmacol 1996;28:332–336. [DOI] [PubMed] [Google Scholar]
  • 152. Volicer L, Stelly M, Morris J, McLaughlin J, Volicer BJ. Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer's disease. Int J Geriatr Psychiatry 1997;12:913–919. [PubMed] [Google Scholar]
  • 153. Walters DE, Carr LA. Perinatal exposure to cannabinoids alters neurochemical development in the rat brain. Pharmacol Biochem Behav 1988;29:213–216. [DOI] [PubMed] [Google Scholar]
  • 154. Wiley JL, Barrett RL, Lowe J, Balster RL, Martin BR. Discriminative stimulus effects of CP 55,940 and structurally dissimilar cannabinoids in rats. Neuropharmacology 1995;34:669–676. [DOI] [PubMed] [Google Scholar]
  • 155. Williams CM, Rogers PJ, Kirkham TC. Hyperphagia in pre‐fed rats following oral Δ9‐tetrahydrocannabinol. Physiol Behav 1998;65:343–346. [DOI] [PubMed] [Google Scholar]
  • 156. Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 1999;96:5780–5785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157. Zuardi AW, Shiarakawa I, Finkelford E, Karniol IG. Action of cannabinol on the anxiety and other effects produced by Δ9 THC in normal subjects. Psychopharmacology 1982;76:245–250. [DOI] [PubMed] [Google Scholar]
  • 158. Zygmunt PM, Hogestatt ED, Waldeck K, Edwards G, Kirkup A, Weston AH. Studies on the effects of anandamide in rat hepatic artery. Br J Pharmacol 1997;122:1679–1686. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES