Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;11(4):353–368. doi: 10.1111/j.1527-3458.2005.tb00053.x

NAP: Research and Development of a Peptide Derived from Activity‐Dependent Neuroprotective Protein (ADNP)

Illana Gozes 1,2,, Bruce H Morimoto 2, Jacqueline Tiong 2, Anthony Fox 2,3, Karole Sutherland 2, David Dangoor 1, Miriam Holser‐Cochav 1, Karin Vered 1, Paul Newton 4, Paul S Aisen 5, Yasuji Matsuoka 5, Christopher H van Dyck 6, Leon Thal 7
PMCID: PMC6741706  PMID: 16614735

ABSTRACT

Activity‐dependent neuroprotective protein (ADNP) is essential for brain formation. Peptide activity scanning identified NAP (NAPVSIPQ) as a small active fragment of ADNP that provides neuroprotection at very low concentrations. In cell culture, NAP has demonstrated protection against toxicity associated with the beta‐amyloid peptide, N‐methyl‐D‐aspartate, electrical blockade, the envelope protein of the AIDS virus, dopamine, H2O2, nutrient starvation and zinc overload. NAP has also provided neuroprotection in animal models of apolipoprotein E deficiency, cholinergic toxicity, closed head injury, stroke, middle aged anxiety and cognitive dysfunction. NAP binds to tubulin and facilitates microtubule assembly leading to enhanced cellular survival that is associated with fundamental cytoskeletal elements. A liquid‐chromatography, mass spectrometry assay demonstrated that NAP reaches the brain after either intravenous or intranasal administration. In a battery of toxicological tests including repeated dose toxicity in rats and dogs, cardiopulmonary tests in dogs, and functional behavioral assays in rats, no adverse side effects were observed with NAP concentrations that were ˜500‐fold higher than the biologically active dose. A Phase Ia clinical trial in the US assessed the tolerability and pharmacokinetics of intranasal administration of NAP in sequential ascending doses. The results supported the safety and tolerability of a single dose of NAP administered at up to 15 mg intranasally. Furthermore, dosing was recently completed for a second Phase I clinical trial in healthy adults and elderly volunteers with an intravenous formulation of NAP. NAP is poised for further clinical development targeting several indications, including Alzheimer's disease.

Keywords: ADNP, Alzheimer's disease, Animal models, Glial cells, Head injury NAP, Neuropeptides, Neuroprotection, Stroke

Full Text

The Full Text of this article is available as a PDF (136.4 KB).

References

  • 1. Alcalay RN, Giladi E, Pick CG, Gozes I. Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety‐like behavior in aging mice in the elevated plus maze. Neurosci Lett 2004;361:128–131. [DOI] [PubMed] [Google Scholar]
  • 2. Ashur‐Fabian O, Giladi E, Brenneman DE, Gozes I. Identification of VIP/PACAP receptors on rat astrocytes using antisense oligodeoxynucleotides. J Mol Neurosci 1997;9:211–222. [DOI] [PubMed] [Google Scholar]
  • 3. Ashur‐Fabian O, Giladi E, Furman S, et al. Vasoactive intestinal peptide and related molecules induce nitrite accumulation in the extracellular milieu of rat cerebral cortical cultures. Neurosci Lett 2001;307:167–170. [DOI] [PubMed] [Google Scholar]
  • 4. Ashur‐Fabian O, Segal‐Ruder Y, Skutelsky E, et al. The neuroprotective peptide NAP inhibits the aggregation of the beta‐amyloid peptide. Peptides 2003;24:1413–1423. [DOI] [PubMed] [Google Scholar]
  • 5. Bassan M, Zamostiano R, Davidson A, et al. Complete sequence of a novel protein containing a femtomolar‐activity‐dependent neuroprotective peptide. J Neurochem 1999;72:1283–1293. [DOI] [PubMed] [Google Scholar]
  • 6. Beni‐Adani L, Gozes I, Cohen Y, et al. A peptide derived from activity‐dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice. J Pharmacol Exp Ther 2001;296:57–63. [PubMed] [Google Scholar]
  • 7. Blondel O, Collin C, McCarran B, et al. A glial‐derived Signal Regulating Neuronal Differentiation. J Neurosci 2000;20:8012–8020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Born J, Lange T, Kern W, McGregor GP, Bickel U Fehm HL. Sniffing neuropeptides: A transnasal approach to the human brain. Nat Neurosci 2002;5:514–516. [DOI] [PubMed] [Google Scholar]
  • 9. Brenneman DE, Eiden LE. Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc Natl Acad Sci USA 1986;83:1159–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Brenneman, DE Gozes I. A femtomolar‐acting neuroprotective peptide. J Clin Invest 1996;97:2299–307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Brenneman DE, Hauser J, Neale E, et al. Activity‐dependent neurotrophic factor: Structure‐activity relationships of femtomolar‐acting peptides. J Pharmacol Exp Ther 1998;285:619–27. [PubMed] [Google Scholar]
  • 12. Bruno MA, Clarke PB, Seltzer A, et al. Long‐lasting rescue of age‐associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA. J Neurosci 2004;24:8009–8018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Busciglio J, Lorenzo A, Yeh J, Yankner BA. Beta‐amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 1995;14:879–888. [DOI] [PubMed] [Google Scholar]
  • 14. Busciglio J, Relsman A, Helguera P, et al. NAP and ADNF‐9 protect normal and Down's syndrome cortical neurons from oxidative damage and apoptosis. Curr Pharm Des 2005; In press. [DOI] [PubMed] [Google Scholar]
  • 15. Divinski I, Mittelman L, Gozes I. A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J Biol Chem 2004;279:28531–28538. [DOI] [PubMed] [Google Scholar]
  • 16. Fisher A, Brandeis R, Pittel Z, et al. (±)‐cis‐2‐methyl‐spiro(l,3‐oxathiolane‐5,3′) quinuclidine (AF102B): A new M1 agonist attenuates cognitive dysfunctions in AF64A‐treated rats. Neurosci Lett 1989;102:325–331. [DOI] [PubMed] [Google Scholar]
  • 17. Frey WH. II Intranasal delivery: Bypassing the blood brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Delivery Technol 2002;2:46–49. [Google Scholar]
  • 18. Furman S, Hill JM, Vulih I, et al. Sexual dimorphism of activity‐dependent neuroprotective protein in the mouse arcuate nucleus. Neurosci Lett 2005;373:73–78. [DOI] [PubMed] [Google Scholar]
  • 19. Furman S, Steingart RA, Mandel S, Hauser JM, Brenneman DE. Subcellular localization and secretion of activity‐dependent neuroprotective protein in astrocytes. Neuron Glia Biol 2004;1:193–199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Gozes I. Neuroprotective peptide drug delivery and development: potential new therapeutics. Trends Neurosci 2001;24:700–705. [DOI] [PubMed] [Google Scholar]
  • 21. Gozes I, Alcalay R, Giladi E, Pinhasov A, Furman S, Brenneman DE. NAP accelerates the performance of normal rats in the water maze. J Mol Neurosci 2002;19:167–170. [DOI] [PubMed] [Google Scholar]
  • 22. Gozes I, Bachar M, Bardea A, et al. Protection against developmental retardation in apolipoprotein E‐deficient mice by a fatty neuropeptide: Implications for early treatment of Alzheimer's disease. J Neurobiol 1997;33:329–342. [DOI] [PubMed] [Google Scholar]
  • 23. Gozes I, Bardea A, Reshef A, et al. Neuroprotective strategy for Alzheimer disease: Intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci USA 1996;93:427–432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Gozes I, Brenneman DEVIP:Molecular biology and neurobiological function. Mol Neurobiol 1989;3:201–236. [DOI] [PubMed] [Google Scholar]
  • 25. Gozes I, Brenneman DE. Activity‐dependent neurotrophic factor (ADNF): An extracellular neuroprotective chaperonin J Mol Neuro sci 1996;7:235–244. [DOI] [PubMed] [Google Scholar]
  • 26. Gozes I, Brenneman DE. Anew concept in neuroprotection. J Mol Neurosci 2000;14:61–68. [DOI] [PubMed] [Google Scholar]
  • 27. Gozes I, Davidson A, Gozes Y, et al. Antiserum to activity‐dependent neurotrophic factor produces neuronal cell death in CNS cultures: Immunological and biological specificity. Brain Res Dev Brain Res 1997;99:167–175. [DOI] [PubMed] [Google Scholar]
  • 28. Gozes I, Divinski I, The femtomolar‐acting NAP interacts with microtubules: Novel aspects of astrocyte protection. J Alzheimer's Dis 2004;6:S37–S41. [DOI] [PubMed] [Google Scholar]
  • 29. Gozes I, Divinski I, Holtser‐Cochav M. Neuroprotective drug candidate (AL‐108 = NAP) and related compounds interact with tubulin through a taxol‐associated site Program No. 339.4.2005 Abstract Viewer/Itinerary Planner. Washington , DC : Society for Neuroscience, 2005. Online. [Google Scholar]
  • 30. Gozes I, Divinsky I, Pilzera I, Fridkin M, Brenneman DE, Spier AD. From vasoactive intestinal peptide (VIP) through activity‐dependent neuroprotective protein (ADNP) to NAP: A view of neuroprotection and cell division. J Mol Neurosci 2003;20:315–322. [DOI] [PubMed] [Google Scholar]
  • 31. Gozes I, Fridkin M, Hill JM, Brenneman DE. Pharmaceutical VIP: prospects and problems. Curr Med Chem 1999;6:1019–1034. [PubMed] [Google Scholar]
  • 32. Gozes I, Furman S. VIP and drug design. Curr Pharm Des 2003;9:483–494. [DOI] [PubMed] [Google Scholar]
  • 33. Gozes I, Giladi E, Pinhasov A, Bardea A, Brenneman DE. Activity‐dependent neurotrophic factor: Intranasal administration of femtomolar‐acting peptides improve performance in a water maze. J Pharmacol Exp Ther 2000;293:1091–1098. [PubMed] [Google Scholar]
  • 34. Gozes I, Perl O, Giladi E, et al. Mapping the active site in vasoactive intestinal peptide to a core of four amino acids: Neuroprotective drug design. Proc Natl Acad Sci USA 1999;96:4143–4148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Gozes I, Steingart RA, Spier AD. NAP mechanisms of neuroprotection. J Mol Neurosci 2004;24:67–72. [DOI] [PubMed] [Google Scholar]
  • 36. Gozes I, Zaltzman R, Giladi E, et al. Treatment of experimental encephalomyelitis by intranasal application of ADNP peptide, NAP. 2003 Program No. 952.1 Abstract Viewer/Itinerary Planner Washington , DC : Society for Neuroscience. [Google Scholar]
  • 37. Gozes I, Zaltzman R, Hauser J, Brenneman DE, Shohami E, Hill JM. The expression of activity‐dependent neuroprotective protein (ADNP) is regulated by brain damage and treatment of mice with the ADNP derived peptide, NAP, reduces the severity of traumatic head injury. Curr Alzheimer's Res 2005;2:149–153. [DOI] [PubMed] [Google Scholar]
  • 38. Guo Q, Sebastian L, Sopher BL, et al. Neurotrophic factors (activity‐dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)) interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc Natl Acad Sci USA 1999;96:4125–4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Hashimoto Y, Kaneko Y, Tsukamoto E, et al. Molecular characterization of neurohybrid cell death induced by Alzheimer's amyloid‐beta peptides via p75NTR/PLAIDD. J Neurochem 2004;90:549–558. [DOI] [PubMed] [Google Scholar]
  • 40. Lagreze WA, Pielen A, Steingart R, et al. The Peptides ADNF‐9 and NAP Increase Survival and Neurite Outgrowth of Rat Retinal Ganglion Cells In Vitro. Invest Ophthalmol Vis Sci 2005;46:933–938. [DOI] [PubMed] [Google Scholar]
  • 41. Leker RR, Teichner A, Grigoriadis N, et al. NAP, a femtomolar‐acting peptide, protects the brain against ischemic injury by reducing apoptotic death. Stroke 2002;33:1085–1092. [DOI] [PubMed] [Google Scholar]
  • 42. Massa SM, Xie Y, Longo, FM. Alzheimer's therapeutics: Neurotrophin domain small molecule mimetics. J Mol Neurosci 2003;20:323–326. [DOI] [PubMed] [Google Scholar]
  • 43. Michaelis ML, Chen Y, Hill S, et al. Amyloid peptide toxicity and microtubule‐stabilizing drugs. J Mol Neurosci 2002;19:101–105. [DOI] [PubMed] [Google Scholar]
  • 44. Oddo S, Caccamo A, Shepherd JD, et al. Triple‐transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron 2003;39:409–421. [DOI] [PubMed] [Google Scholar]
  • 45. Offen D, Sherki Y, Melamed E, Fridkin M, Brenneman DE, Gozes I. Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: Relevance to neuroprotection in Parkinson's disease. Brain Res 2000;854:257–262. [DOI] [PubMed] [Google Scholar]
  • 46. Pelsman A, Fernandez G, Gozes I, Brenneman D, Busciglio J. Activity‐dependent neurotrophic factor pep‐tides prevent degeneration of Down's syndrome neurons grown in culture. J Neurochem 1998;72:S54. [Google Scholar]
  • 47. Perras B, Schultes B, Behn B, Dodt C, Born J, Fehm HL. Intranasal atrial natriuretic peptide acts as central nervous inhibitor of the hypothalamo‐pituitary‐adrenal stress system in humans. J Clin Endocrinol Metab 2004;89:4642–4648. [DOI] [PubMed] [Google Scholar]
  • 48. Pinhasov A, Mandel S, Torchinsky A, et al. Activity‐dependent neuroprotective protein: A novel gene essential for brain formation. Brain Res Dev Brain Res 2003;144:83–90. [DOI] [PubMed] [Google Scholar]
  • 49. Reger MA, Watson GS, Frey WH II, et al. Effects of intranasal insulin of cognition in Alzheimer's disease: Modulation by ApoE genotype. 2004; Program No. 1012.12., Society for Neuroscience. [Google Scholar]
  • 50. Romano J, Beni‐Adani L, Nissenbaum OL, Brenneman DE, Shohami E, Gozes I. A single administration of the peptide NAP induces long‐term protective changes against the consequences of head injury: Gene Atlas array analysis. J Mol Neurosci 2002;18:37–45. [DOI] [PubMed] [Google Scholar]
  • 51. Smith‐Swintosky VL, Gozes I, Brenneman DE, D'Andrea MR, Plata‐Salaman CR. Activity‐dependent neurotrophic factor‐9 and NAP promote neurite outgrowth in rat hippocampal and cortical cultures. J Mol Neurosci 2005;25:225–238. [DOI] [PubMed] [Google Scholar]
  • 52. Spong CY, Abebe DT, Gozes I, Brenneman DE, Hill JM. Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome. J Pharmacol Exp Ther 2001;297:774–779. [PubMed] [Google Scholar]
  • 53. Steingart RA, Solomon B, Brenneman DE, Fridkin M, Gozes I. VIP and peptides related to activity‐dependent neurotrophic factor protect PC 12 cells against oxidative stress. J Mol Neurosci 2000;15:137–145. [DOI] [PubMed] [Google Scholar]
  • 54. Takahashi RH, Almeida CG, Kearney PF, et al. Oligomerization of Alzheimer's beta‐amyloid within processes and synapses of cultured neurons and brain. J Neurosci 2004;24:3592–3599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Tuszynski MH, Thal L, Pay M. et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005;11:551–555. [DOI] [PubMed] [Google Scholar]
  • 56. Visochek L, Steingart RA, Vulih‐Shultzman I, et al. PolyADP‐ribosylation mediates neurotrophic effects. J Neurosci 2005;25:7420–7428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Wilkemeyer MF, Chen SY, Menkari CE, Brenneman DE, Sulik KK, Charness ME. Differential effects of ethanol antagonism and neuroprotection in peptide fragment NAPVSIPQ prevention of ethanol‐induced de‐velopmental toxicity. Proc Natl Acad Sci USA 2003;100:8543–8548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Wilkemeyer MF, Menkari CE, Spong CY, Charness ME. Peptide antagonists of ethanol inhibition of 11‐mediated cell‐cell adhesion. J Pharmacol Exp Ther 2002;303:110–116. [DOI] [PubMed] [Google Scholar]
  • 59. Zaltzman R, Alexandrovich A, Beni SM, Trembovler V, Shohami E, Gozes I. Brain injury‐dependent expression of activity‐dependent neuroprotective protein. J Mol Neurosci 2004;24:181–187. [DOI] [PubMed] [Google Scholar]
  • 60. Zaltzman R, Alexandrovich A, Trembolver V, Shohami E, Gozes I. The influence of the peptide NAP on Mac‐1‐deficient mice following closed head injury. Peptides 2005;26:1520–7. [DOI] [PubMed] [Google Scholar]
  • 61. Zaltzman R, Beni SM, Giladi E, et al. Injections of the neuroprotective peptide NAP to newborn mice attenuate head‐injury‐related dysfunction in adults. Neuroreport 2003;14:481–484. [DOI] [PubMed] [Google Scholar]
  • 62. Zamotiano R, Pinhasov A, Gelber E, et al. Cloning and characterization of the human activity‐dependent neuroprotective protein. J Biol Chem 2001;276:708–714. [DOI] [PubMed] [Google Scholar]
  • 63. Zemlyak I, Furman S, Brenneman DE, Gozes I. A novel peptide prevents death in enriched neuronal cultures. Regul Pept 2000;96:39–43. [DOI] [PubMed] [Google Scholar]
  • 64. Zhang B, Maiti A, Shively S, et al. Microtubule‐binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 2005;102:227–231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Zusev M, Gozes I. Differential regulation of activity‐dependent neuroprotective protein in rat astrocytes by VIP and PACAP. Regul Pept 2004;123:33–41. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES