Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;11(4):369–378. doi: 10.1111/j.1527-3458.2005.tb00054.x

TAT‐GDNF in Neurodegeneration and Ischemic Stroke

Ertugrul Kilic 1, Ülkan Kilic 1,, Dirk M Hermann 1
PMCID: PMC6741709  PMID: 16614736

ABSTRACT

The delivery of proteins across the blood‐brain barrier is severely limited by their size and biochemical properties. Numerous peptides have been characterized in recent years that prevent neuronal death in vitro, but cannot be used therapeutically, since they do not cross cell membrane barriers. It has been shown in the 1990s that the HIV TAT protein is able to cross cell membranes even when coupled with larger peptides. It appears, therefore, that TAT fusion proteins may enter the brain, even when used systemically. Indeed, the systemic delivery of a TAT protein linked with glial‐derived neurotrophic factor (GDNF) successfully transduced central nervous system (CNS) neurons in mice. When administered after optic nerve transection and focal cerebral ischemia, TAT‐GDNF protected retinal ganglion cells and brain neurons from cell death, elevated tissue Bcl‐XL levels and attenuated the activity of the executioner caspase‐3. These findings demonstrate the in vivo efficacy of fusion proteins in clinically relevant disease models, raising hopes that neuroprotection may become eventually feasible in human patients.

Keywords: Bcl‐XL, Cerebral ischemia, GDNF, HIV TAT protein, Neurodegeneration, Neuroprotection

Full Text

The Full Text of this article is available as a PDF (112.8 KB).

References

  • 1. Althausen S, Mengesdorf T, Mies G, et al. Changes in the phosphorylation of initiation factor eIF‐2alpha, elongation factor eEF‐2 and p70 S6 kinase after transient focal cerebral ischaemia in mice. J Neurochem 2001;78:779–787. [DOI] [PubMed] [Google Scholar]
  • 2. Asoh S, Ohsawa I, Mori T, et al. Protection against ischemic brain injury by protein therapeutics. Proc Natl Acad Sci USA 2002;99:17107–17112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Begley DJ. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol Ther 2004;104:29–45. [DOI] [PubMed] [Google Scholar]
  • 4. Benn SC, Woolf CJ. Adult neuron survival strategies – slamming on the brakes. Nat Rev Neurosci 2004;5:686–700. [DOI] [PubMed] [Google Scholar]
  • 5. Blomer U, Ganser A, Scherr M. Invasive drug delivery. Adv Exp Med Biol 2002;513:431–451. [DOI] [PubMed] [Google Scholar]
  • 6. Borsello T, Clarke PG, Hirt L, et al. A peptide inhibitor of c‐Jun N‐terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 2003;9:1180–1186. [DOI] [PubMed] [Google Scholar]
  • 7. Byrnes AP, MacLaren RE, Charlton HM. Immunological instability of persistent adenovirus vectors in the brain: Peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination. J Neurosci 1996;16:3045–3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Cao G, Pei W, Ge H, et al. In vivo delivery of a Bcl‐XL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J Neurosci 2002;22:5423–5431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Cipolla MJ, Crete R, Vitullo L, Rix RD. Transcellular transport as a mechanism of blood‐brain barrier disruption during stroke. Front Biosci 2004;9:777–785. [DOI] [PubMed] [Google Scholar]
  • 10. Corradin S, Ransijn A, Corradin G, et al. Novel peptide inhibitors of Leishmania gp63 based on the cleavage site of MARCKS (myristoylated alanine‐rich C kinase substrate)‐related protein. Biochem J 2002;367:761–769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Dietz GP, Kilic E, Bähr M. Inhibition of neuronal apoptosis in vitro and in vivo using TAT‐mediated protein transduction. Mol Cell Neurosci 2002;21:29–37. [DOI] [PubMed] [Google Scholar]
  • 12. Dietz GP, Bähr M. Delivery of bioactive molecules into the cell: The Trojan horse approach. Mol Cell Neurosci 2004;27:85–131. [DOI] [PubMed] [Google Scholar]
  • 13. Eslamboli A, Georgievska B, Ridley RM, et al. Continuous low‐level glial cell line‐derived neurotrophic factor delivery using recombinant adeno‐associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson's disease. J Neurosci 2005;25:769–777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Falnes PO, Wesche J, Olsnes S. Ability of the Tat basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A‐fragment. Biochemistry 2001;40:4349–4358. [DOI] [PubMed] [Google Scholar]
  • 15. Fawell S, Seery J, Daikh Y, et al. Tat‐mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 1994;91:664–668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Fittipaldi A, Ferrari A, Zoppe M, et al. Cell membrane lipid rafts mediate caveolar endocytosis of HIV‐1 Tat fusion proteins. J Biol Chem 2003;278:34141–34149. [DOI] [PubMed] [Google Scholar]
  • 17. Frankel AD, Pabo CO. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 1988;55:1189–1193. [DOI] [PubMed] [Google Scholar]
  • 18. Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans‐activator protein. Cell 1988;55:1179–1188. [DOI] [PubMed] [Google Scholar]
  • 19. Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2000;20:937–946. [DOI] [PubMed] [Google Scholar]
  • 20. Hermann DM, Kilic E, Kügler S, Isenmann S, Bähr M. Adenovirus‐mediated GDNF and CNTF pretreatment protects against striatal injury following transient middle cerebral artery occlusion in mice. Neurobiol Dis 2001;8:655–666. [DOI] [PubMed] [Google Scholar]
  • 21. Hermann DM, Kilic E, Kügler S, Isenmann S, Bähr M. Adenovirus‐mediated glial cell line‐derived neurotrophic factor (GDNF) expression protects against subsequent cortical cold injury in rats. Neurobiol Dis 2001;8:964–973. [DOI] [PubMed] [Google Scholar]
  • 22. Hermann DM, Kilic E, Hata R, Hossmann KA, Mies G. Relationship between metabolic dysfunctions, gene responses and delayed cell death after mild focal cerebral ischemia in mice. Neuroscience 2001;104:947–955. [DOI] [PubMed] [Google Scholar]
  • 23. Ho A, Schwarze SR, Mermelstein SJ, Waksman G, Dowdy SF. Synthetic protein transduction domains: Enhanced transduction potential in vitro and in vivo. Cancer Res 2001;61:474–477. [PubMed] [Google Scholar]
  • 24. Hossmann KA. Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 1993;96:161–177. [DOI] [PubMed] [Google Scholar]
  • 25. Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood‐brain barrier. Trends Neurosci 2001;24:719–725. [DOI] [PubMed] [Google Scholar]
  • 26. Joliot A, Prochiantz A. Transduction peptides: From technology to physiology. Nat Cell Biol 2004;6:189–196. [DOI] [PubMed] [Google Scholar]
  • 27. Kaplan IM, Wadia JS, Dowdy SF. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 2005;102:247–253. [DOI] [PubMed] [Google Scholar]
  • 28. Kilic E, Dietz GP, Hermann DM, Bähr M. Intravenous TAT‐Bcl‐XL is protective after middle cerebral artery occlusion in mice. Ann Neurol 2002;52:617–22. [DOI] [PubMed] [Google Scholar]
  • 29. Kilic E, Hermann DM, Kügler S, et al. Adenovirus‐mediated Bcl‐XL expression using a neuron‐specific synapsin‐1 promoter protects against disseminated neuronal injury and brain infarction following focal cerebral ischemia in mice. Neurobiol Dis 2002;11:275–284. [DOI] [PubMed] [Google Scholar]
  • 30. Kilic E, Kilic Ü, Hermann DM. TAT fusion proteins against ischemic stroke: Current status and future perspectives. Front Biosci 2006;11:1716–1721. [DOI] [PubMed] [Google Scholar]
  • 31. Kilic Ü, Kilic E, Dietz GP, Bähr M. Intravenous TAT‐GDNF is protective after focal cerebral ischemia in mice. Stroke 2003;34:1304–1310. [DOI] [PubMed] [Google Scholar]
  • 32. Kilic Ü, Kilic E, Dietz GP, Bähr M. The TAT protein transduciton domain enhances the neuroprotective effect of glial‐cell line‐derived neurotrophic factor after optic nerve transection. Neurodegenerative Dis 2004;1:44–49. [DOI] [PubMed] [Google Scholar]
  • 33. Kim DW, Eum WS, Jang SH, et al. Transduced Tat‐SOD fusion protein protects against ischemic brain injury. Mol Cells 2005;19:88–96. [PubMed] [Google Scholar]
  • 34. Kitagawa H, Sasaki C, Sakai K, et al. Adenovirus‐mediated gene transfer of glial cell line‐derived neurotrophic factor prevents ischemic brain injury after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 1999;19:1336–1344. [DOI] [PubMed] [Google Scholar]
  • 35. Kochanek S, Schiedner G, Volpers C. High‐capacity “gutless” adenoviral vectors. Curr Opin Mol Ther 2001;3:454–463. [PubMed] [Google Scholar]
  • 36. Kondo T, Kinouchi H, Kawase M, Yoshimoto T. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci Lett 1996;208:101–104. [DOI] [PubMed] [Google Scholar]
  • 37. Krämer SD, Wunderli‐Allenspach H. No entry for TAT(44–57) into liposomes and intact MDCK cells: Novel approach to study membrane permeation of cell‐penetrating peptides. Biochim Biophys Acta 2003;1609:161–169. [DOI] [PubMed] [Google Scholar]
  • 38. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood‐brain barrier disruption in human focal brain ischemia. Ann Neurol 2004;56:468–477. [DOI] [PubMed] [Google Scholar]
  • 39. Lowenstein PR, Castro MG. Inflammation and adaptive immune responses to adenoviral vectors injected into the brain: Peculiarities, mechanisms, and consequences. Gene Ther 2003;10:946–954. [DOI] [PubMed] [Google Scholar]
  • 40. Lum H, Malik AB. Mechanisms of increased endothelial permeability. Can J Physiol Pharmacol 1996;74:787–800. [DOI] [PubMed] [Google Scholar]
  • 41. Nagahara H, Vocero‐Akbani AM, Snyder EL, et al. Transduction of full‐length TAT fusion proteins into mammalian cells: TAT‐p27Kip1 induces cell migration. Nat Med 1998;4:1449–1452. [DOI] [PubMed] [Google Scholar]
  • 42. Prochiantz A. Homeodomain‐derived peptides. In and out of the cells. Ann NY Acad Sci 1999;886:172–179. [DOI] [PubMed] [Google Scholar]
  • 43. Rippe B, Rosengren BI, Carlsson O, Venturoli D. Transendothelial transport: The vesicle controversy. J Vasc Res 2002;39:375–390. [DOI] [PubMed] [Google Scholar]
  • 44. Sandgren S, Cheng F, Belting M. Nuclear targeting of macromolecular polyanions by an HIV‐Tat derived peptide. Role for cell‐surface proteoglycans. J Biol Chem 2002;277:38877–38883. [DOI] [PubMed] [Google Scholar]
  • 45. Schwarze SR, Ho A, Vocero‐Akbani BA, Dowdy SF. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science 1999;285:1569–1572. [DOI] [PubMed] [Google Scholar]
  • 46. Schwarze SR, Hruska KA, Dowdy SF. Protein transduction: Unrestricted delivery into all cells Trends Cell Biol 2000;10:290–295. [DOI] [PubMed] [Google Scholar]
  • 47. Sengoku T, Bondada V, Hassane D, Dubal S, Geddes JW. Tat‐calpastatin fusion proteins transduce primary rat cortical neurons but do not inhibit cellular calpain activity. Exp Neurol 2004;188:161–170. [DOI] [PubMed] [Google Scholar]
  • 48. Stewart PA. Endothelial vesicles in the blood‐brain barrier: Are they related to permeability Cell Mol Neurobiol 2000;20:149–163. [DOI] [PubMed] [Google Scholar]
  • 49. Tsukamoto T, Nigam SK. Tight junction proteins form large complexes and associate with the cytoskeleton in an ATP depletion model for reversible junction assembly. J Biol Chem 1997;272:16133–16139. [DOI] [PubMed] [Google Scholar]
  • 50. Wolburg H, Lippoldt A. Tight junctions of the blood‐brain barrier: Development, composition and regulation. Vasc Pharmacol 2002;38:323–337. [DOI] [PubMed] [Google Scholar]
  • 51. Yamagata K, Tagami M, Nara Y, et al. Faulty induction of blood‐brain barrier functions by astrocytes isolated from stroke‐prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 1997;24:686–691. [DOI] [PubMed] [Google Scholar]
  • 52. Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron 2003;40:401–113. [DOI] [PubMed] [Google Scholar]
  • 53. Zhang WR, Sato K, Iwai M, Nagano I, Manabe Y, Abe K. Therapeutic time window of adenovirus‐mediated GDNF gene transfer after transient middle cerebral artery occlusion in rat. Brain Res 2002;947:140–145. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES