Abstract
Bryostatin‐1 is a powerful protein kinase C (PKC) agonist, activating PKC isozymes at nanomolar concentrations. Pharmacological studies of bryostatin‐1 have mainly been focused on its action in preventing tumor growth. Emerging evidence suggests, however, that bryostatin‐1 exhibits additional important pharmacological activities. In preclinical studies bryostatin‐1 has been shown at appropriate doses to have cognitive restorative and antidepressant effects. The underlying pharmacological mechanisms may involve an activation of PKC isozymes, induction of synthesis of proteins required for long‐term memory, restoration of stress‐evoked inhibition of PKC activity, and reduction of neurotoxic amyloid accumulation and tau protein hyperphosphorylation. The therapeutic potential of bryostatin‐1 as a CNS drug should be further explored.
Keywords: Alzheimer's disease, Antidepressants, Bryostatin‐1, Cognition activation, Depression, Learning and memory, Mood, Protein kinase C
Full Text
The Full Text of this article is available as a PDF (76.2 KB).
REFERENCES
- 1. Akin D, Hal Manier, D , Sanders‐Bush E, Shelton RC. Signal transduction abnormalities in melancholic depression. Int J Neuropsychopharmacol 2005;8: 5–16. [DOI] [PubMed] [Google Scholar]
- 2. Ali S, Aranha O, Li YW, Pettit GR, Sarkar FH, Philip PA. Sensitization of human breast cancer cells to gemcitabine by the protein kinase C modulator bryostatin‐1. Cancer Chemother Pharm 2003;52: 235–246. [DOI] [PubMed] [Google Scholar]
- 3. Al‐Katib AM, Smith MR, Kamanda WS, et al. Bryostatin‐1 down‐regulates mdr1 and potentiates vincristine cytotoxicity in diffuse large cell lymphoma xenografts. Clin Cancer Res 1998;4: 1305–1314. [PubMed] [Google Scholar]
- 4. Alkon DL, Nelson TJ, Zhao WQ, Cavallaro S. Time domains of neuronal Ca2+ signaling and associative memory: Steps through a calexcitin, ryanodine receptor, K+ channel cascade. Trends Neurosci 1998;21: 529–537. [DOI] [PubMed] [Google Scholar]
- 5. Alkon DL, Epstein H, Kuzirian A, Bennett M. C, Nelson TJ. Protein synthesis required for long‐term memory is induced by PKC activation on days before associative learning. Proc Natl Acad Sci USA 2005;102: 16432–16437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Bank B, DeWeer A, Kuzirian AM, Rasmussen H, Alkon DL. Classical conditioning induces long‐term translocation of protein kinase C in rabbit hippocampal CA1 cells. Proc Natl Acad Sci USA 1988;85: 1988–1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Cho JH, Johnson GV. Glycogen synthase kinase 3 beta induces caspase‐cleaved tau aggregation in situ. J Biol Chem 2004;279: 54716–54723. [DOI] [PubMed] [Google Scholar]
- 8. Clamp A, Jayson GC. The clinical development of the bryostatins. Anti-Cancer Drugs 2002;13: 673–683. [DOI] [PubMed] [Google Scholar]
- 9. Clamp AR, Blackhall FH, Vasey P, et al. A phase II trial of bryostatin‐1 administered by weekly 24‐hour infusion in recurrent epithelial ovarian carcinoma. Br J Cancer 2003;89: 1152–1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Cole G, Dobkins KR, Hansen LA, Terry RD, Saitoh T. Decreased levels of protein kinase C in Alzheimer brain. Brain Res 1988;452: 165–174. [DOI] [PubMed] [Google Scholar]
- 11. Curiel RE, Garcia CS, Farooq L, Aguero MF, Espinoza‐Dagado I. Bryostatin‐1 and IL‐2 synergize to induce IFN‐gamma expression in human peripheral blood T cells: Implications for cancer immunotherapy. J Immunol 2001;167: 4828–4837. [DOI] [PubMed] [Google Scholar]
- 12. De Vries D, Herald CL, Pettit HG, Blumberg PM. Demonstration of sub‐nanomolar affinity of bryostatin‐1 for the phorbol ester receptor in rat brain. Biochem Pharmacol 1988;37: 4069–4073. [DOI] [PubMed] [Google Scholar]
- 13. Dowlati A, Lazarus HM, Hartman P, et al. Phase I and correlative study of combination bryostatin‐1 and vincristine in relapsed B‐cell malignancies. Clin Cancer Res 2003;9: 5929–5935. [PubMed] [Google Scholar]
- 14. Etcheberrigaray R, Tan M, Dewachter I, et al. Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice. Proc Natl Acad Sci USA 2004;101: 11141–11146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Fang X, Yu S, Tanyi JL, Lu Y, Woodgett JR, Mills GB. Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor‐mediated phsophorylation and inactivation by lysophosphatidic acid through a protein kinase C‐dependent intracellular pathway. Mol Cell Biol 2002;22: 2099–2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Favit A, Grimaldi M, Nelson TJ, Alkon DL. Alzheimer's‐specific effects of soluble β‐amyloid on protein kinase C‐α and ‐γ degradation in human fibroblasts. Proc Natl Acad Sci USA 1998;10: 5562–5567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Hennings H, Blumberg PM, Pettit GR, Herald CL, Shores R, Yuspa SH. Bryostatin‐1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin. Carcinogenesis 1987;8: 1343–1346. [DOI] [PubMed] [Google Scholar]
- 18. Hickman PF, Kemp GJ, Thompson CH, et al. Bryostatin‐1, a novel antineoplastic agent and protein kinase C activator, induces human myalgia and muscle metabolic defects: A 31P magnetic resonance spectroscopic study. Br J Cancer 1995;72: 998–1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Hofmann, J Protein kinase, C. isozymes as potential targets for anticancer therapy. Curr Cancer Drug Targets 2004;4: 125–146. [DOI] [PubMed] [Google Scholar]
- 20. Jayson GC, Crowther D, Prendiville J, et al. A phase I trial of bryostatin‐1 in patients with advanced malignancy using a 24 hour intravenous infusion. Br J Cancer 1995;72: 461–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Kinouchi T, Sorimachi H, Maruyama K, et al. Conventional protein kinase C (PKC)‐alpha and novel PKC epsilon, but not ‐delta, increase the secretion of an N‐terminal fragment of Alzheimer's disease amyloid precursor protein from PKC cDNA transfected 3Y1 fibroblasts. FEBS Lett 1995;364: 203–206. [DOI] [PubMed] [Google Scholar]
- 22. Kraft AS, Reeves JA, Ashendel CL. Differing modulation of protein kinase C by bryostatin‐1 and phorbol esters in JB6 mouse epidermal cells. J Biol Chem 1988;263: 8437. [PubMed] [Google Scholar]
- 23. Lavoie L, Band CJ, Kong M, Bergeron JJM, Posner BI. Regulation of glycogen synthase in rat hepatocytes. Evidence for multiple signaling pathway. J Biol Chem 1999;274: 28279–28285. [DOI] [PubMed] [Google Scholar]
- 24. Lee W, Boo JH, Jung MW, et al. Amyloid beta peptide directly inhibits PKC activation. Mol Cell Neurosci 2004;26: 222–231. [DOI] [PubMed] [Google Scholar]
- 25. Matthews SA, Pettit GR, Rozengurt E. Bryostatin‐1 induces biphasic activation of protein kinase D in intact cells. J Biol Chem 1997;272: 20245–20250. [DOI] [PubMed] [Google Scholar]
- 26. Mutter R, Wills M. Chemistry and clinical biology of the bryostatins. Bioorg Med Chem 2000;8: 1841–1860. [DOI] [PubMed] [Google Scholar]
- 27. Nezhat F, Wadler S, Muggia F, et al. Phase II trial of the combination of bryostatin‐1 and cisplatin in advanced or recurrent carcinoma of the cervix: A New York Gynecologic Oncology Group Study. Gynecol Oncol 2004;93: 144–148. [DOI] [PubMed] [Google Scholar]
- 28. Pacheco MA, Stockmeier C, Meltzer NY, Overholser JC, Dilley GE, Jope RS. Alterations in phosphoinosi‐tide signaling and G‐protein levels in depressed suicide brain. Brain Res 1996;723: 37–45. [DOI] [PubMed] [Google Scholar]
- 29. Pákáski M, Bjelik A, Hugyecz M, Kása P, Janka Z, Kálmán J. Imipramine and citalopram facilitate amyloid precursor protein secretion in vitro. Neurochem Intern 2005;47: 190–195. [DOI] [PubMed] [Google Scholar]
- 30. Pandey GN, Dwivedi Y. Effects of adrenal glucocorticoid on protein kinase C (PKC) binding sites, PKC activity and expression of PKC isozymes in the brain. J Neurochem 2000;74: S21D. [Google Scholar]
- 31. Pandey GN, Dwivedi Y, Ren X, et al. Altered expression and phosphorylation of myristoylated alanine‐rich C kinase (MARCKS) in postmortem brain of suicide victims with or without depression. J Psychiatr Res 2003;37: 421–432. [DOI] [PubMed] [Google Scholar]
- 32. Pandey GN, Ewivedi Y, Rizavi HS, Ren X, Conley RR. Decreased catalytic activity and expression of protein kinase C isozymes in teenage suicide victims. Arch Gen Psychiatry 2004;61: 685–693. [DOI] [PubMed] [Google Scholar]
- 33. Pettit GR, Herald CL, Doubek DL, Arnold E, Clardy J. Isolation and structures of bryostatin‐1. J Am Chem Soc 1982;104: 6846–6848. [Google Scholar]
- 34. Pascale A, Amadio M, Scapagnini G, et al. Neuronal ELAV proteins enhances mRNA stability by a PKCá‐dependent pathway. Proc Natl Acad Sci USA 2005;102: 12065–12070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Rahimian R, Hrdina PD. Possible role of protein kinase C in regulation of 5‐hydroxytryptamine 2A receptors in rat brain. Can J Physiol Pharmacol 1995;73: 1686–1691. [DOI] [PubMed] [Google Scholar]
- 36. Ramamoorthy S, Giovanetti E, Qian Y, Blakely RD. Phosphorylation and regulation of antidepressant‐sensitive serotonin transporters. J Biol Chem 1998;273: 2458–2466. [DOI] [PubMed] [Google Scholar]
- 37. Spitaler M, Utz I, Hilbe W, Hofmann J, Grunicke HH. PKC‐independent modulation of multidrug resistance in cells with mutant (V185) but not wild‐type (G185) P‐glycoprotein by bryostatin‐1. Biochem Pharm 1998;56: 861–869. [DOI] [PubMed] [Google Scholar]
- 38. Sun M‐K, Alkon DL. Depressed or demented: Common CNS drug targets?! Curr Drug Targets. CNS Neurol Disord 2002;1: 573–589. [DOI] [PubMed] [Google Scholar]
- 39. Sun M‐K, Alkon DL. Dual effects of bryostatin‐1 on spatial memory and depression. Eur J Pharmacol 2005;512: 43–51. [DOI] [PubMed] [Google Scholar]
- 40. Sun M‐K, Alkon DL. Protein kinase C isozymes: Memory therapeutic potential. Curr Drug Targets. CNS Neurol Disord 2005;4: 541–52. [DOI] [PubMed] [Google Scholar]
- 41. Szallasi Z, Du L, Levine R, et al. The bryostatins inhibit growth of B16/F10 melanoma cells in vitro through a protein kinase C‐independent mechanism: Dissociation of activities using 26‐epi‐bryostatin‐1. Cancer Res 1996;56: 2105–2111. [PubMed] [Google Scholar]
- 42. Weeber EJ, Atkins CM, Selcher JC, et al. A role for the b isoform of protein kinase C in fear conditioning. J Neurosci 2000;20: 5906–5914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Weitman S, Langevin AM, Berkow RL, et al. A phase I trial of bryostatin‐1 in children with refractory solid tumors: Apediatric oncology group study. Clin Cancer Res 1999;5: 2344–2348. [PubMed] [Google Scholar]
- 44. Wender PA, Baryza JL, Bennett CE, et al. The practical synthesis of a novel and highly potent analogue of bryostatin. J Am Chem Soc 2002;124: 13648–13649. [DOI] [PubMed] [Google Scholar]
- 45. Wender PA, Baryza JL. Identification of a tunable site in bryostatin analogs: C20 bryologs through late stage diversification. Org Lett 2005;7: 1177–1180. [DOI] [PubMed] [Google Scholar]
- 46. Wender PA, Clarke MO, Horan JC. Role of the A‐ring of bryostatin analogues in PKC binding: Synthesis and initial biological evaluation of new A‐ring‐modified bryologs. Org Lett 2005;7: 1995–1998. [DOI] [PubMed] [Google Scholar]
- 47. Yeon SW, Jung MW, Ha MJ, et al. Blockade of PKC epsilon activation attenuates phorbol ester‐induced increase of alpha‐secretase‐derived secreted form of amyloid precursor protein. Biochem Biophys Res Commun 2001;280: 782–787. [DOI] [PubMed] [Google Scholar]
- 48. Zhang X, Zhang R, Zhao H, et al. Preclinical pharmacology of the natural product anticancer agent bryostatin‐1, an activator of protein kinase C. Cancer Res 56: 802–808, 1996. [PubMed] [Google Scholar]
- 49. Zhao M, Rudek MA, He P, Smith, BD , Baker, S.D. Validation and implementation of a method for determination of bryostatin‐1 in human plasma by using liquid chromatography/tandem mass spectrometry. Ann Biochem 337: 143–148, 2005. [DOI] [PubMed] [Google Scholar]
- 50. Zhu G, Wang D, Lin YH, McMahon T, Koo EH, Messing RO. Protein kinase C epsilon suppresses Abeta production and promotes activation of á‐secretase. Biochem Biophys Res Commun 2001;285: 997–1006. [DOI] [PubMed] [Google Scholar]