ABSTRACT
Repinotan HC1 (repinotan, BAY × 3702), a highly selective 5‐HT1A receptor agonist with a good record of safety was found to have pronounced neuroprotective effects in experimental models that mimic various aspects of brain injury. Repinotan caused strong, dose‐dependent infarct reductions in permanent middle cerebral artery occlusion, transient middle cerebral artery occlusion, and traumatic brain injury paradigms. The specific 5‐HT1A receptor antagonist WAY 100635 blocked these effects, indicating that the neuroprotective properties of repinotan are mediated through the 5‐HT1A receptor.
The proposed neuroprotective mechanisms of repinotan are thought to be the result of neuronal hyperpolarization via the activation of G protein‐coupled inwardly rectifying K+ channels upon binding to both pre‐ and post‐synaptic 5‐HT1A receptors. Hyperpolarization results in inhibition of neuron firing and reduction of glutamate release. These mechanisms, leading to protection of neurons against overexcitation, could explain the neuroprotective efficacy of repinotan per se, but not necessarily the efficacy by delayed administration. The therapeutic time window of repinotan appeared to be at least 5 h in in vivo animal models, but may be even longer at higher doses of the drug.
Experimental studies indicate that repinotan affects various mechanisms involved in the pathogenesis of brain injury. In addition to the direct effect of repinotan on neuronal hyperpolarization and suppression of glutamate release this compound affects the death‐inhibiting protein Bcl‐2, serotonergic glial growth factor S‐100β and Nerve Growth Factor. It also suppresses the activity of caspase‐3 through MAPK and PKCα; this effect may contribute to its neuroprotective efficacy. The dose‐ and time‐dependent neuroprotective efficacy of repinotan indicates that the drug is a promising candidate for prevention of secondary brain damage in brain‐injured patients suffering from acute ischemic stroke. Unfortunately, however, the first, randomized, double blind, placebo‐controlled clinical trial did not demonstrate the efficacy of repinotan in acute ischemic stroke.
Keywords: Apoptosis, BAY × 3702, Excitotoxicity, Ischemia, Neuroprotection Repinotan HC1, Stroke
Full Text
The Full Text of this article is available as a PDF (149.7 KB).
References
- 1. Adayev T, El‐Sherif Y, Barua M, Penington NJ, Banerjee P. Agonist stimulation of the serotonin 1A receptor causes suppression of anoxia‐induced apoptosis via mitogen‐activated protein kinase in neuronal HN‐2–5 cells. J Neurochem 1999;72:1489–1496. [DOI] [PubMed] [Google Scholar]
- 2. Adayev T, Ray I, Sondhi R, Sobocki T, Banerjee P. The G protein‐coupled 5‐HT1A receptor causes suppression of caspase‐3 through MAPK and protein kinase Cα. Biochim Biophys Acta 2003;1640:85–96. [DOI] [PubMed] [Google Scholar]
- 3. Ahlemeyer B, Beier H, Semkova I, Schaper C, Krieglstein J. S‐100β protects cultured neurons against glutamate‐ and staurosporine‐induced damage and is involved in the antiapoptotic action of the 5 HT1A‐receptor agonist, Bay × 3702, Brain Res 2000;858:121–128. [DOI] [PubMed] [Google Scholar]
- 4. Ahlemeyer B, Glaser A, Schaper C, Semkova I, Krieglstein J. The 5‐HT1A receptor agonist, Bay × 3702, inhibits apoptosis induced by serum deprivation in cultured neurons. Eur J Pharmacol 1999;370:211–216. [DOI] [PubMed] [Google Scholar]
- 5. Ahlemeyer B, Krieglstein J. Stimulation of 5‐HT1A inhibits apoptosis induced by serum deprivation in cultured neurons from chick embryo. Brain Res 1997;777:179–186. [DOI] [PubMed] [Google Scholar]
- 6. Alessandri B, Tsuchida E, Bullock RM. The neuroprotective effect of a new serotonin receptor agonist, BAY × 3702, upon focal ischemic brain damage caused by acute subdural hematoma in the rat. Brain Res 1999;845:232–235. [DOI] [PubMed] [Google Scholar]
- 7. Andrade R. Electrophysiology of 5‐HT1A receptors in the rat hippocampus and cortex. Drug Dev Res 1992;26:275–286. [Google Scholar]
- 8. Azmitia EC. Modern views on an ancient chemical: Serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res Bull 2001;56:413–424. [DOI] [PubMed] [Google Scholar]
- 9. Azmitia EC, Dolan K, Whitaker‐Azmitia PM. S‐100β but not NGF, EGF, insulin, or calmodulin is a serotonergic growth factor. Brain Res 1990;516:354–356. [DOI] [PubMed] [Google Scholar]
- 10. Azmitia EC, Rubenstein VJ, Strafaci JA, Rios JC, Whitaker‐Azmitia PM. 5‐HT1A agonist and dexamethasone reversal of PCA‐induced loss of MAP‐2 and synaptophysin immunoreactivity in adult rat brain. Brain Res 1995;677:181–185. [DOI] [PubMed] [Google Scholar]
- 11. Azmitia EC, Whitaker‐Azmitia PM. Awakening the sleeping giant: Anatomy and plasticity of the brain serotonergic system. J Clin Psychiatry 1991;52:4–16. [PubMed] [Google Scholar]
- 12. Baker AJ, Zornow MH, Scheller MS, et al. Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J Neurochem 1991;57:1370–1379. [DOI] [PubMed] [Google Scholar]
- 13. Barger SW, Van Eldik LJ, Mattson M. S‐100β protects hippocampal neurons from damage induced by glucose deprivation. Brain Res 1995;677:167–170. [DOI] [PubMed] [Google Scholar]
- 14. Benyo Z, De Jong GI, Luiten PGM. Nimodipine prevents early loss of hippocampal CA1 parvalbumin immunoreactivity after focal cerebral ischemia in the rat. Brain Res Bull 1995;36:569–572. [DOI] [PubMed] [Google Scholar]
- 15. Bielenberg GW, Burkhart M. 5‐hydroxytryptamine 1A agonists. A new therapeutic principle for stroke treatment. Stroke 1990;21 (Suppl IV): 161–163. [PubMed] [Google Scholar]
- 16. Bode‐Greuel KM, Klisch J, Horvαth E, Glaser T, Traber J. Effects of 5‐hydroxytryptamine 1A receptor agonists on hippocampal damage after transient forebrain ischemia in Mongolian gerbil. Stroke 1990;21:164–166. [PubMed] [Google Scholar]
- 17. Bortolozzi A, Amargós‐Bosch M, Adell A, et al. In vivo modulation of 5‐hydroxytryptamine release in mouse prefrontal cortex by local 5‐HT2A receptors: Effect of antipsychotic drugs. Eur J Neurosci 2003;18:1235–1246. [DOI] [PubMed] [Google Scholar]
- 18. Boxer PA, Bigge CF. Mechanisms of neuronal cell injury/death and targets for drug intervention. Drug Discov Today 2 1997;2:219–228. [Google Scholar]
- 19. Cardenas CG, Del Mar LP, Scroggs RS. Two parallel signaling pathways couple 5‐HT1A receptors to N‐ and L‐type calcium channels in C‐like rat dorsal root ganglion cells. J Neurophysiol 1997;77:3284–3296. [DOI] [PubMed] [Google Scholar]
- 20. Casanovas JM, Artigas F. Differential effects of ipsapirone on 5‐HT release in the dorsal and median raphe neuronal pathways. J Neurochem 1996;67:1945–1952. [DOI] [PubMed] [Google Scholar]
- 21. Casanovas JM, Berton O, Celada P, Artigas F. In vivo actions of the selective 5‐HT1A receptor agonist BAY × 3702 on serotonergic cell firing and release. Arch Pharmacol 2000;362:248–254. [DOI] [PubMed] [Google Scholar]
- 22. Casanovas JM, Hervαs I, Artigas F. Postsynaptic 5‐HT1A receptors control 5‐HT release in the rat medial prefrontal cortex. Neuroreport 1999;10:1441–1445. [DOI] [PubMed] [Google Scholar]
- 23. Casanovas JM, Lésourd M, Artigas F. The effect of the selective 5‐HT1A agonists alnespirone (S‐20499) and 8‐OH‐DPAT on extracellular 5‐hydroxytryptamine in different regions of rat brain. Br J Pharmacol 1997;122:733–741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Chalmers DT, Watson SJ. Comparative anatomical distribution of 5‐HT1A receptor mRNA and 5‐HT1A binding in rat brain — a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 1991;561:51–60. [DOI] [PubMed] [Google Scholar]
- 25. Chaput Y, de Montigny C. Effects of the 5‐hydroxytryptamine 1 receptor antagonist, BMY 7378, on 5‐hydroxytryptamine 1 neurotransmission: Electrophysiological studies in the rat central nervous system. J Pharmacol Exp Ther 1988;246:359–370. [PubMed] [Google Scholar]
- 26. Chen J, Simon RP, Nagayama T, et al. Suppression of endogenous bcl‐2 expression by antisense treatment exacerbates ischemic neuronal death. J Cereb Blood Flow Metab 2000;20:1033–1039. [DOI] [PubMed] [Google Scholar]
- 27. Choi DW. Cellular defences destroyed. Nature 2005;433:696–698. [DOI] [PubMed] [Google Scholar]
- 28. Clark RS, Kochanek PM, Marion DW, et al. Mild posttraumatic hypothermia reduces mortality after severe controlled cortical impact in rats. J Cereb Blood Flow Metab 1996;16:253–261. [DOI] [PubMed] [Google Scholar]
- 29. Della Rocca GC, Mukhin YV, Garnovskaya MN, et al. Serotonin 5‐HT1A receptor‐mediated ERK activation requires calcium/calmodulin‐dependent receptor endocytosis. J Biol Chem 1999;274:4749–4753. [DOI] [PubMed] [Google Scholar]
- 30. De Keyser J, Sulter G, Luiten PG. Clinical trials with neuroprotective drugs in acute ischaemic stroke: Are we doing the right thing Trends Neurosci 1999;22:535–540. [DOI] [PubMed] [Google Scholar]
- 31. De Vry J. 5‐HT1A receptor agonists: Recent developments and controversial issues. Psychopharmacology 1995;121:1–26. [DOI] [PubMed] [Google Scholar]
- 32. De Vry J. 5‐HT1A receptors in psychopathology and the mechanism of action of clinically effective therapeutic agents. Drug News Perspect 1996;9:270–280. [Google Scholar]
- 33. De Vry J, Dietrich H, Glaser T, et al. BAY × 3702: Neuroprotectant 5‐HT1A agonist. Drugs Future 1997;22:341–349. [Google Scholar]
- 34. De Vry J, Jentzsch KR. Discriminative stimulus properties of the 5‐HT1A receptor agonist BAY × 3702 in the rat. Eur J Pharmacol 1998;357:1–8. [DOI] [PubMed] [Google Scholar]
- 35. De Vry J, Schohe‐Loop R, Heine HG, Greuel JM, Mauler F and Glaser T. BAY × 3702, a novel aminomethylchroman derivative with potent 5‐HT1A receptor agonist properties. Soc Neurosci 1997;23:1922 (bstract 745.6). [Google Scholar]
- 36. De Vry J, Schohe‐loop R, Heine HG, et al. Characterization of the aminomethylchroman derivative BAY × 3702 as a highly potent 5‐hydroxytryptamine(1A) receptor agonist. J Pharmacol Exp Ther 1998;284:1082–1094. [PubMed] [Google Scholar]
- 37. Dong J, de Montigny C, Blier P. Full agonistic properties of Bay × 3702 on presynaptic and postsynaptic 5‐HT1A receptors electrophysiological studies in the rat hippocampus and dorsal raphe. J Pharmacol Exp Ther 1998;286:1239–1247. [PubMed] [Google Scholar]
- 38. Doppenberg EMR, Bullock R. Clinical neuro‐protection trials in severe traumatic brain injury: Lessons from previous studies. J Neurotrauma 1997;14:71–80. [DOI] [PubMed] [Google Scholar]
- 39. Dong JM, de Montigny C, Blier P. Full agonistic properties of BAY × 3702 on presynaptic and postsynaptic 5‐HT1A receptors: Electrophysiological studies in the rat hippocampus and dorsal raphe. J Pharmacol Exp Ther 1998;286:1239–1247. [PubMed] [Google Scholar]
- 40. Dunn LT. Head injury therapies. Exp Opin Invest Drugs 1997;6:1511–1526. [DOI] [PubMed] [Google Scholar]
- 41. Fanburg BL, Lee SL. A new role for an old molecule: Serotonin as a mitogen. Am J Physiol 1997;27:L795–L806. [DOI] [PubMed] [Google Scholar]
- 42. Fanò G, Biocca S, Fulle S, Mariggiò MA, Belia S, Calissano P. A protein family in search of a function. Prog Neurobiol 1995;46:71–82. [DOI] [PubMed] [Google Scholar]
- 43. Forster EA, Cliffe IA, Bill DJ, et al. A pharmacological profile of the selective silent 5‐HT1A receptor antagonist, WAY 100635. Eur J Pharmacol 1995;281:81–88. [DOI] [PubMed] [Google Scholar]
- 44. Fulle S, Mariggiò MA, Belia S, Nicoletti I, Fanò G. Nerve growth factor inhibits apoptosis induced by S‐100 binding in neuronal PC 12 cells. Neuroscience 1997;76:159–166. [DOI] [PubMed] [Google Scholar]
- 45. Garnovskaya MN, Mukhin Y, Raymond JR. Rapid activation of sodium‐proton and extracellular signal‐regulated protein kinase in fibroblasts by G protein‐coupled 5‐HT1A receptor involves distinct signalling cascades. Biochem J 1998;330:489–495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Gerlach I, Horvαth E, Jork R. BAY × 3702 ameliorates sensorimotor performance after subdural hematoma. J Neurotrauma 1998;15:870. [Google Scholar]
- 47. Gerlai R, Wojtowicz JM, Marks A, Roder J. Over Expression of a calcium binding protein, S‐100b, in astrocytes impairs synaptic plasticity and spatial learning in transgenic mice. Learn Mem 1995;2:26–31. [DOI] [PubMed] [Google Scholar]
- 48. Gillardon F, Lenz C, Waschke KF, et al. Altered Expression of Bcl‐2, Bcl‐X, Bax, and c‐Fos co‐localises with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mol Brain Res 1996;40:254–260. [DOI] [PubMed] [Google Scholar]
- 49. Green DR. Apoptotic pathways: The roads to ruin. Cell 1998;94:695–698. [DOI] [PubMed] [Google Scholar]
- 50. Haddjeri N, Blier P, de Montigny C. Long‐term antidepressant treatments result in a tonic activation of fore‐brain 5‐HT1A receptors. J Neurosci 1998;18:10150–10156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Hansra G, Garcia‐Paramio P, Prevostel C, Whelan RDH, Bornancin F, Parker P. Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes. Biochem J 1999;342:337–344. [PMC free article] [PubMed] [Google Scholar]
- 52. Haring JH, Hagan A, Olson J, Rodgers B. Hippocampal serotonin levels influence the Expression of S‐100β detected by immunocyto‐chemistry. Brain Res 1993;631:119–123. [DOI] [PubMed] [Google Scholar]
- 53. Harkany T, Dijkstra IM, Oosterink BJ, et al. Increased amyloid precursor protein Expression and serotonergic sprouting following excitotoxic lesion of the rat magnocellular nucleus basalis: Neuroprotection by Ca2+ antagonist nimodipine. Neuroscience 2000;101:97–110. [DOI] [PubMed] [Google Scholar]
- 54. Harkany T, Grosche J, Mulder J, et al. Short‐term consequences of N‐methyl‐D‐aspartate excitotoxicity in rat magnocellular nucleus basalis: Effects on in vivo labelling of cholinergic neurons. Neuroscience 2001;108:611–627. [DOI] [PubMed] [Google Scholar]
- 55. Harkany T, Mulder J, Horvath KM, et al. Oral postlesion administration of 5‐HT1A receptor agonist Repinotan hydrochloride (BAY × 3702) attenuates NMDA‐induced delayed neuronal death in rat magnocellular nucleus basalis. Neuroscience 2001;108:629–642. [DOI] [PubMed] [Google Scholar]
- 56. Herrmann M, Curio N, Jost S, Wunderlich MT, Synowitz H, Wallesch CW. Protein S‐100β and neuron‐specific enolase as early neurobiochemical markers of the severity of traumatic brain injury. Restor Neurol Neurosci 1999;14:2–3. [PubMed] [Google Scholar]
- 57. Hjorth S. Hypothermia in the rat induced by the potent serotonergic agent 8‐OH‐DPAT. J Neural Transm 1985;61:131–135. [DOI] [PubMed] [Google Scholar]
- 58. Holmin S, Mathiesen T, Shetye J, Biberfeld P. Intracerebral inflammatory response to Experimental brain confusion. Acta Neurochir 1995;132:110–119. [DOI] [PubMed] [Google Scholar]
- 59. Horiuchi M, Akishita M, Dzau VJ. Molecular and cellular mechanism of angiotensin II‐mediated apoptosis. Endocrinol Res 1998;24:307–314. [DOI] [PubMed] [Google Scholar]
- 60. Hortelano S, Bosca LA. 6‐Mercaptopurine decreases the bcl‐2/bax ratio and induces apoptosis in activated splenic B‐lymphocytes. Mol Pharmacol 1997;51:414–421. [PubMed] [Google Scholar]
- 61. Hortelano S, Bosca LA. 6‐Mercaptopurine decreases the bcl‐2/bax ratio and induces apoptosis in activated splenic B‐lymphocytes. Mol Pharmacol 1997;51:414–421. [PubMed] [Google Scholar]
- 61. Horvαth E, Augstein KH. Neuroprotection by the novel 5‐HT1A receptor agonist BAY × 3702 in the rat model of acute subdural hematoma. J Neurotrauma 1997;14:800 (bstract 170). [Google Scholar]
- 62. Horvαth E, Augstein KH, Wittka R. Neuroprotective effect of the novel 5‐HT1A receptor agonist BAY × 3702 in rat model of permanent focal cerebral ischemia and traumatic brain injury. Soc Neurosci Abstr 1997;23:1923 (bstract 745.9). [Google Scholar]
- 63. Hoyer D, Clarke DE, Fozard JR, et al. International Union of Pharmacology classification of receptors for 5‐hydroxytryptamine (Serotonin). Pharmacol Rev 1994;46:157–203. [PubMed] [Google Scholar]
- 64. Isenmann S, Stoll G, Schroeter M, Krajewski S, Reed JC, Bahr M. Differential regulation of Bax, Bcl‐2 and Bcl‐X proteins in focal cortical ischemia in the rat. Brain Pathol 1998;8:49–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Jemal A, Ward E, Hao Y, Thun M. Trends in the leading causes of death in the United States,1970–2002. JAMA 2005;14:1255–1259. [DOI] [PubMed] [Google Scholar]
- 66. Jennett B, Frankowski RF. The epidemiology of head injury In: Handbook of clinical neurology, Braakman R, Ed. New York : Elsevier, 1990:1–16. [Google Scholar]
- 67. Katsumata T, Muramatsu H, Nakamura H, Nishiyama Y, Aoki Y, Katayama Y. Neuroprotective effect of NS‐7, a novel Na+ and Ca2+ channel blocker, in a focal ischemic model in the rat. Brain Res 2003;969:168–174. [DOI] [PubMed] [Google Scholar]
- 68. Khateb A, Fort P, Alonso A, Jones BE, Muhlethaler M. Pharmacological and immunohistochemical evidence for serotonergic modulation of cholinergic nucleus basalis neurons. Eur J Neurosci 1993;5:541–547. [DOI] [PubMed] [Google Scholar]
- 69. Khawaja X, Evans N, Reilly Y, Ennis C, Minchin MCW. Characterization of the binding of [3H]WAY 100635, a novel 5‐HT1A receptor antagonist, to rat brain. J Neurochem 1995;64:2716–2726. [DOI] [PubMed] [Google Scholar]
- 70. Kim JS, Yoon SS, Kim YH, Ryu JS. Serial measurement of interleukin‐6, transforming growth factor‐β, and S‐100 protein in patients with acute stroke. Stroke 1996;27:1553–1557. [DOI] [PubMed] [Google Scholar]
- 71. Kline AE, Yu J, Horvαth E, Marion DW, Dixon CE. The selective 5‐HT1A receptor agonist repinotan HCL attenuates histopathology and spatial learning deficits following traumatic brain injury in rats. Neuroscience 2001;106:547–555. [DOI] [PubMed] [Google Scholar]
- 72. Kornhuber J, Weller M. Psychotogenicity and N‐methyl‐D‐aspartate receptor antagonism: Implications for neuroprotective pharmacotherapy. Biol Psychiatry 1997;41:135–144. [DOI] [PubMed] [Google Scholar]
- 73. Koyama T, Nakajima Y, Fujii T, Kawashima K. Enhancement of cortical and hippocampal cholinergic neurotransmission through 5‐HT1A receptor‐mediated pathways by BAY × 3702 in freely moving rats. Neurosci Lett 1999;265:33–36. [DOI] [PubMed] [Google Scholar]
- 74. Kozuka M, Itawa N. Changes in levels of monoamines and their metabolites in incompletely ischemic brains of spontaneously hypertensive rats. Neurochem Res 1995;20:1429–1435. [DOI] [PubMed] [Google Scholar]
- 75. Kukley M, Schaper C, Becker A, Rose K, Krieglstein J. Effect of 5‐hydroxytryptamine 1A receptor agonist BAY × 3702 on BCL‐2 and BAX proteins level in the ipsilateral cerebral cortex of rats after transient focal ischaemia. Neuroscience 2001;107:405–413. [DOI] [PubMed] [Google Scholar]
- 76. Kuroiwa T, Ting P, Martinez H, Klatzo I. The biphasic opening of the blood‐brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol 1985;68:122–129. [DOI] [PubMed] [Google Scholar]
- 77. Larsson LG, Stenfors C, Ross SB. Differential regional antagonism of 8‐OH‐DPAT‐induced decrease in serotonin synthesis by two 5‐HT1A receptor antagonists. Eur J Pharmacol 1998;346:209–215. [DOI] [PubMed] [Google Scholar]
- 78. Lees KR. Cerestat and other NMDA antagonists in ischemic stroke. Neurology 1997;49 (Suppl 4): S66–S69. [DOI] [PubMed] [Google Scholar]
- 79. Lewén A, Fredriksson A, Li GL, Olsson Y, Hillered L. Behavioural and morphological outcome of mild cortical contusion trauma of the rat brain: Influence of NMDA‐receptor blockade. Acta Neurochir 1999;141:193–202. [DOI] [PubMed] [Google Scholar]
- 80. Lewis D, Teyler TJ. Anti‐S‐100 serum blocks long‐term potentiation in the hippocampal slice. Brain Res 1986;38:159–166. [DOI] [PubMed] [Google Scholar]
- 81. Linnik MD. Programmed cell death in cerebral ischemia: Therapeutic implication. CNS Drugs 1995;3:239–244. [Google Scholar]
- 82. Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 1993;24:2002–2008. [DOI] [PubMed] [Google Scholar]
- 83. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999;79:1431–1568. [DOI] [PubMed] [Google Scholar]
- 84. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 1994;330:613–622. [DOI] [PubMed] [Google Scholar]
- 86. Liu YZ, Boxer LM, Latchman DS. Activation of Bcl‐2 promoter by nerve growth factor is mediated by the p42/p44 MAPK cascade. Nucleic Acids Res 1999;27:2086–2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003;4:399–415. [DOI] [PubMed] [Google Scholar]
- 87. Lo EH, Pan Y, Matsumoto K, Kowall NW. Blood‐brain barrier disruption in Experimental focal ischemia: Comparison between in vivo MRI and immunocytochemistry. Magn Res Imaging 1994;12:403–411. [DOI] [PubMed] [Google Scholar]
- 88. Lotem J, Cragoe EJ, Sachs L. Rescue from programmed cell death in leukemic and normal myeloid cells. Blood 1991;78:953–960. [PubMed] [Google Scholar]
- 89. Lu B, Yokoyama M, Dreyfus C, Black IB. Depolarizing stimuli regulate nerve growth factor gene Expression in cultured hippocampal neurons. Proc Natl Acad Sci USA 1991;88:6289–6292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90. Luiten PGM, Douma BRK, Van der Zee EA, Nyakas C. Neuroprotection against NMDA induced cell death in rat nucleus basalis by Ca2+ antagonist nimodipine, influence of aging and developmental drug treatment. Neurodegeneration 1995;4:307–314. [DOI] [PubMed] [Google Scholar]
- 91. MacManus JP, Buchan AM, Hill IE, Rasquinha I, Preston E. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett 1993;164:89–92. [DOI] [PubMed] [Google Scholar]
- 92. Maertins T, Schwarz T V, Kuetz E, Unsworth C. Preclinical safety evaluation of BAY × 3702: A novel 5‐HT1A receptor agonist with neuroprotective properties. Soc Neurosci Abstr 1997;23:1923 (bstract 745.8). [Google Scholar]
- 93. Marion DW, Penrod LE, Kelsey SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 1997;336:540–546. [DOI] [PubMed] [Google Scholar]
- 94. Martinez‐Sanchez M, Striggow F, Schroder UH, Kahlert S, Reymann KG, Reiser G. Na+ and Ca2+ homeostasis pathways, cell death and protection after oxygen‐glucose‐deprivation in organotypic hippocampal slice cultures. Neuroscience 2004;128:729–740. [DOI] [PubMed] [Google Scholar]
- 95. Matsuyama S, Nei K, Tanaka C. Regulation of glutamate release via NMDA and 5‐HT1A receptors in guinea pig dentate gyrus. Brain Res 1996;728:175–180. [DOI] [PubMed] [Google Scholar]
- 96. Mauler F, Fahrig T, Horváth E, Jork R. Inhibition of evoked glutamate release by the neuroprotective 5‐HT1A receptor agonist BAY × 3702 in vitro and in vivo. Brain Res 2001;888:150–157. [DOI] [PubMed] [Google Scholar]
- 97. Mauler F, Horváth E. Neuroprotective efficacy of Repinotan HCl, a 5‐HT1A receptor agonist, in animal models of stroke and traumatic brain injury. J Cereb Blood Flow Metab 2005;25:451–459. [DOI] [PubMed] [Google Scholar]
- 98. Melena J, Chidlow G, Osborne NN. Blockade of voltage‐sensitive Na+ channels by the 5‐HT1A receptor agonist 8‐OH‐DPAT: Possible significance for neuroprotection. Eur J Pharmacol 2000;406:319–324. [DOI] [PubMed] [Google Scholar]
- 99. Millan MJ, Rivet JM, Canton H, Le Maouille‐Girardon S, Gobert A. Induction of hypothermia as a model of 5‐hydroxytryptamine 1A receptor‐mediated activity in the rat: A pharmacological characterization of the actions of novel agonists and antagonists. J Pharmacol Exp Ther 1993;264:1364–1376. [PubMed] [Google Scholar]
- 100. Missler U, Wiesmann M, Friedrich C, Kaps M. S‐100 protein and neuron specific enolase concentration in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 1997;28:1956–1960. [DOI] [PubMed] [Google Scholar]
- 101. Mocchetti I, Bernardi MA, Szekeley AM, Alho H, Brooker G, Costa E. Regulation of nerve growth factor biosynthesis by β‐adrenergic receptor activation in astrocytoma cells: A potential role of c‐fos protein. Proc Natl Acad Sci USA 1989;86:3891–3895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102. Mohr JP, Gautier JC, Hier D, Stein RW. Middle cerebral artery In: Stroke: Pathophysiology, diagnosis and management. Vol. 1, Barnett HJM, Stein BM, Mohr JP, Yatsu FM, Eds. New York : Churchill Livingstone, 1986;377–450. [Google Scholar]
- 103. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965;19:739–744. [DOI] [PubMed] [Google Scholar]
- 105. Mukhin YV, Garnovskaya MN, Collinsworth G, et al. R‐hydroxytryptamine 1A receptor/Gi βγ stimulates mitogen‐activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in Chinese hamster ovary fibroblasts. Biochem J 2000;347:61–67. [PMC free article] [PubMed] [Google Scholar]
- 105. Nakata N, Suda H, Izumi J, et al. Role of hippocampal serotoninergic neurones in ischemic neuronal death. Behav Brain Res 1997;83:217–220. [DOI] [PubMed] [Google Scholar]
- 106. Nyakas C, Oosterink BJ, Keijser J, et al. Selective decline of 5‐HT1A receptor binding sites in rat cortex, hippocampus and cholinergic basal forebrain nuclei during aging. J Chem Neuroanat 1997;13:53–61. [DOI] [PubMed] [Google Scholar]
- 107. Ohman J, Braakman R, Legout V. Repinotan (BAY × 3702): A 5‐HT1A agonist in traumatically brain injured patients. J Neurotrauma 2001;18:1313–1321. [DOI] [PubMed] [Google Scholar]
- 108. Okiyama K, Smith DH, White WF, Richter K, McIntosh TK. Effects of the novel NMDA antagonists CP‐98,113, CP‐101,581, and CP‐101–606 on cognitive function and regional cerebral edema following experimental brain injury in the rat. J Neurotrauma 1997;14:211–222. [DOI] [PubMed] [Google Scholar]
- 109. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 1989;244:1360–1362. [DOI] [PubMed] [Google Scholar]
- 110. O'Neill MJ, Hicks CA, Ward MA, et al. LY393615, a novel neuronal Ca2+ and Na+ channel blocker with neuroprotective effects in models of in vitro and in vivo cerebral ischemia. Brain Res 2001;888:138–149. [DOI] [PubMed] [Google Scholar]
- 111. Osborne KA, Shigeno T, Balarsky AM, et al. Quantitative assessment of early brain damage in a rat model of focal cerebral ischaemia. J Neurol Neurosurg Psychiatry 1987;50:402–410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112. Parsons CG, Danysz W, Quack G. Glutamate in CNS disorders as a target for drug development: An update. Drug News Perspect 1998;11:523–569. [DOI] [PubMed] [Google Scholar]
- 113. Phillips LL, Lyeth BG, Hamm RJ, Jiang JY, Povlishock JT, Reeves TM. Effect of prior receptor antagonism on behavioural morbidity produced by combined fluid percussion injury and entorhinal cortical lesion. J Neurosci Res 1997;49:197–206. [PubMed] [Google Scholar]
- 114. Phillips LL, Lyeth BG, Hamm RJ, Reeves TM, Povlishock JT. Glutamate antagonism during secondary deafferentation enhances cognitive and axo‐dendritic integrity after traumatic brain injury. Hippocampus 1998;8:390–401. [DOI] [PubMed] [Google Scholar]
- 115. Prehn JHM, Backhauß, C , Karkoutly C, et al. Neuroprotective properties of 5‐HT1A receptor agonists in rodent models of focal and global cerebral ischemia. Eur J Pharmacol 1991;203:213–222. [DOI] [PubMed] [Google Scholar]
- 116. Raiteri M, Maura G, Barzizza A. Activation of presynaptic 5‐hydroxytryptamine1‐like receptors on glutamatergic terminals inhibits N‐methyl‐D‐aspartate‐induced cyclic GMP production in cerebellar slices. J Pharmacol Exp Ther 1991;257:1184–1188. [PubMed] [Google Scholar]
- 117. Ramos AJ, Rubio MD, Defagot C, Hischberg L, Villar MJ, Brusco A. The 5‐HT1A receptor agonist, 8‐OH‐DPAT, protects neurons and reduces astroglial reaction after ischemic damage caused by cortical devascularization. Brain Res 2004;1030:201–220. [DOI] [PubMed] [Google Scholar]
- 118. Ringelstein EB, Biniek R, Weiller C, Ammeling B, Nolte PN, Thron A. Type and extent of hemispheric brain infarctions and clinical outcome in early and delayed middle cerebral artery recanalization. Neurology 1992;42:289–298. [DOI] [PubMed] [Google Scholar]
- 119. Rothoerl RD, Woertgen C, Brawanski A. S‐100 serum levels and outcome after severe head injury. Acta Neurochir 2000;Suppl 76:97–100. [DOI] [PubMed] [Google Scholar]
- 120. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic‐ischemic brain damage. Ann Neurol 1986;19:105–111. [DOI] [PubMed] [Google Scholar]
- 121. Rupalla K, Jakob R, Krieglstein J. Effects of 5‐HT1A receptor agonists on glutamate induced rise in cytosolic calcium concentration as well as on calcium and potassium currents in hippocampal neurons In: Pharmacology of cerebral ischemia, Krieglstein J, Oberpichler‐Schwenk H, Ed. Stuttgart : Wissenschaftliche Verlagsgesellschaft, 1994;89–94. [Google Scholar]
- 122. Sacco RL. Frequency and determinants of stroke In: Clinical Atlas of Cerebrovascular Disease, Fisher M, Ed. London : Mosby‐Year Book Europe, 1994;1.1–1.16. [Google Scholar]
- 123. Schaper C, Zhu Y, Kouklei M, Culmsee C, Krieglstein J. Stimulation of 5‐HT1A receptors reduces apoptosis after transient forebrain ischemia in the rat. Brain Res 2000;883:41–50. [DOI] [PubMed] [Google Scholar]
- 125. Schurr A. Neuroprotection against ischemic/hypoxic brain damage: blockers of ionotropic glutamate receptor and voltage sensitive calcium channels. Curr Drug Targets 2004;5:603–618. [DOI] [PubMed] [Google Scholar]
- 125. Schwartz JP, Mishler K. Beta‐adrenergic receptor regulation through cyclic AMP, of nerve growth factor Expression in rat cortical and cerebellar astrocytes. Cell Mol Neurobiol 1990;10:447–457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126. Schwarz T, Beckermann B, Buehner K, et al. Pharmacokinetics of the novel 5‐HT1A neuro‐protectant BAY × 3702 in the rat. Soc Neurosci Abstr 1997;23:1923 (bstract 745.7). [Google Scholar]
- 127. Schwarz T, Beckermann B, Buehner K, et al. Pharmacokinetics of repinotan in healthy and brain injured animals. Biopharm Drug Dispos 2005;26:259–268. [DOI] [PubMed] [Google Scholar]
- 128. Semkova I, Schilling M, Henrich‐Noack P, Rami A, Krieglstein J. Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF. Brain Res 1996;717:44–54. [DOI] [PubMed] [Google Scholar]
- 129. Semkova I, Wolz P, Krieglstein J. Neuroprotective effect of 5‐HT1A receptor agonist Bay × 3702 demonstrated in vitro and in vivo. Eur J Pharmacol 1998;359:251–260. [DOI] [PubMed] [Google Scholar]
- 130. Shapira Y, Yadid G, Cotev S, Niska A, Shohami E. Protective effect of MK‐801 in experimental brain injury. J Neurotrauma 1990;7:131–139. [DOI] [PubMed] [Google Scholar]
- 131. Shibati S, Kagami‐Ishi Y, Tominaga K, Kodama K, Ueki S, Watanabe S. Ischemia‐induced impairment of 2‐deoxyclucose uptake and CA1 field potentials in rat hippocampal slices: Protection by 5‐HT1A receptor agonists and 5‐HT2 receptor agonists. Eur J Pharmacol 1992;229:21–29. [DOI] [PubMed] [Google Scholar]
- 132. Shimizu H, Graham SH, Chang LH, et al. Relationship between extracellular neurotransmitter amino acids and energy metabolism during cerebral ischemia in rats monitored by microdialysis and in vivo magnetic resonance spectroscopy. Brain Res 1993;605:33–42. [DOI] [PubMed] [Google Scholar]
- 133. Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia, Part II: Mechanisms of damage and treatment. J Neurosurg 1992;77:337–354. [DOI] [PubMed] [Google Scholar]
- 134. Srkalovic G, Selim M, Rea MA, Glass JD. Serotonergic inhibition of extracellular glutamate in the suprachiasmatic nuclear region assessed using in vivo brain microdialysis. Brain Res 1994;656:302–308. [DOI] [PubMed] [Google Scholar]
- 135. Stuiver BT, Douma BRK, Bakker R, Nyakas C, Luiten PGM. In vivo protection against NMDA‐induced neurodegeneration by MK‐801 and nimodipine: Combined therapy and temporal course of protection. Neurodegeneration 1996;5:153–159. [DOI] [PubMed] [Google Scholar]
- 136. Suchanek B, Struppeck H, Fahrig T. The 5‐HT1A receptor agonist BAY × 3702 prevents staurosporine‐induced apoptosis. Eur J Pharmacol 1998;355:95–101. [DOI] [PubMed] [Google Scholar]
- 138. Sun QQ, Dale N. G‐proteins are involved in 5‐HT receptor‐mediated modulation of N‐ and P/Q‐ but not T‐type Ca2+ channels. J Neurosci 1999;19:890–899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138. Ueda S, Hou XP, Whitaker‐Azmitia PM, Azmitia EC. Neuro‐glial neurotrophic interaction in the S‐100β retarded mutant mouse (Polydactyly Nagoya): II, Co‐cultures study. Brain Res 1994;633:284–288. [DOI] [PubMed] [Google Scholar]
- 140. Vergé D, Daval G, Patey A, Gozlan A, El Mestikawy S, Hamon M. Presynaptic 5‐HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5‐HT1A subtype. Eur J Pharmacol 1985;113:463–464. [DOI] [PubMed] [Google Scholar]
- 140. Whitaker‐Azmitia PM, Azmitia EC. Autoregulation of fetal serotonergic neuronal development: Role of high‐affinity serotonin receptors. Neurosci Lett 1986;67:307–311. [DOI] [PubMed] [Google Scholar]
- 141. Whitaker‐Azmitia PM, Azmitia EC. Astroglial 5‐HT 1A receptors and S‐100β in development and plasticity. Perspect Dev Neurobiol 1994;2:233–238. [PubMed] [Google Scholar]
- 142. Whitaker‐Azmitia PM, Murphy R, Azmitia EC. S‐100 protein is released from astroglial cells by stimulation of 5‐HT1A receptors. Brain Res 1990;528:155–158. [DOI] [PubMed] [Google Scholar]
- 143. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg MS. Opposing effects on ERK and JNK‐p38 MAP kinases on apoptosis. Science 1995;270:1326–1331. [DOI] [PubMed] [Google Scholar]
- 144. Yan W, Wilson CC, Haring JH. 5‐HT1A receptors mediate neurotrophic effect of serotonin on developing dentate granule cells. Dev Brain Res 1995;98:185–190. [DOI] [PubMed] [Google Scholar]
- 145. Yan HQ, Yu J, Kline AE, et al. Evaluation of combined fibroblast growth factor‐2 and moderate hypothermia therapy in traumatically brain injured rats. Brain Res 2000;887:136–145. [DOI] [PubMed] [Google Scholar]
- 146. Yenari MA, Bell TE, Kotake AN, Powell M, Steinberg GK. Dose escalation safety and tolerance study of the competitive NMDA antagonist selfotel (CGS 19755) in neurosurgery patients. Clin Neuropharmacol 1998;21:28–34. [PubMed] [Google Scholar]
- 147. Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H. Regulation of brain‐derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 1992;12:4793–4799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148. Zhou FC, Azmitia EC, Bledsoe S. Rapid serotonergic fiber sprouting in response to ibotenic acid lesion in the striatum and hippocampus. Dev Brain Res 1995;84:89–98. [DOI] [PubMed] [Google Scholar]