ABSTRACT
4‐Aminopyridine (4‐AP or fampridine) is a potassium channel‐blocking agent that has been shown to restore conduction in focally demyelinated axons. A sustained‐release matrix tablet form of 4‐AP (fampridine‐SR) is currently undergoing multicenter clinical trials in patients with multiple sclerosis or chronic spinal cord injury. This review describes the pharmacology and mechanisms of action of 4‐AP, its pharmacokinetics in human subjects, and the outcomes of clinical trials employing either immediate‐release or sustained‐release formulations of the drug. The randomized clinical trials that have been completed to date indicate that K+ channel blockade may prove to be a useful strategy for ameliorating central conduction deficits due to demyelination. Diverse neurological gains have been reported for both motor and sensory domains. At the present time, however, the clinical trials have not provided sufficiently robust or definitive evidence of efficacy to gain regulatory approval for the symptomatic management of patients with either multiple sclerosis or spinal cord injury.
Keywords: 4‐Aminopyridine, Demyelination, Fampridine, Multiple sclerosis, Spinal cord injury
Full Text
The Full Text of this article is available as a PDF (157.7 KB).
REFERENCES
- 1. Agoston S, Maestrone E, van Hezik EJ, Ket JM, Houwertjes MC, Uges DR. Effective treatment of verapamil intoxication with 4‐aminopyridine in the cat. J Clin Invest 1984;73:1291–1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Agoston S, Salt PJ, Erdmann W, Hilkemeijer T, Bencini A, Langrehr D. Antagonism of ketamine‐diazepam anaesthesia by 4‐aminopyridine in human volunteers. Br J Anaesth 1980;52:367–370. [DOI] [PubMed] [Google Scholar]
- 3. Agoston S, van Weerden T, Westra P, Broekert A. Effects of 4‐aminopyridine in Eaton Lambert Syndrome. Br J Anaesth 1978;50:383–385. [DOI] [PubMed] [Google Scholar]
- 4. Armstrong CM, Loboda A. A model for 4‐aminopyridine action on K channels: Similarities to tetraethylam‐monium ion action. Biophys J 2001;81:895–904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Ball AP, Hopkinson RB, Farrell ID, et al. Human botulism caused by Clostridium botulinum type E: the Birmingham outbreak. Quart J Med 1979;48:473–491. [PubMed] [Google Scholar]
- 6. Barros TE, Oliveira R, Barros EMK, Cristante AF, Marcon RM, Camargo A. Somatosensory evoked potential in the evaluation of the effects of 4‐aminopyridine. J Spinal Cord Med 2003;26:S33. [Google Scholar]
- 7. Bever CT, Jr. 4‐Aminopyridine: Use in Multiple Sclerosis. CNS Drug Rev 1995;1:261–279. [Google Scholar]
- 8. Bever CT, Jr. , Katz E, Tierney D, Johnson K. Experience with slow release 4‐aminopyridine in multiple sclerosis patients: Long term tolerability and safety. J Neuroimmunol 1995;1(Suppl):58. [Google Scholar]
- 9. Bever CT, Jr. , Young D, Anderson PA, et al. The effects of 4‐aminopyridine in multiple sclerosis patients: Results of a randomized, placebo‐controlled, double‐blind, concentration‐controlled, crossover trial. Neurology 1994;44:1054–1059. [DOI] [PubMed] [Google Scholar]
- 10. Bever CT, Jr. , Young D, Tierney D, et al. The Pharmacokinetics and tolerability of a slow‐release formulation of 4‐aminopyridine in multiple sclerosis patients. Neurology 1995;45(Suppl 4):A351. [Google Scholar]
- 11. Blight AR. Effect of 4‐aminopyridine on axonal conduction‐block in chronic spinal cord injury. Brain Res Bull 1989;22:47–52. [DOI] [PubMed] [Google Scholar]
- 12. Blight AR, Gruner JA. Augmentation by 4‐aminopyridine of vestibulospinal free fall responses in chronic spinal‐injured cats. J Neurol Sci 1987;82:145–159. [DOI] [PubMed] [Google Scholar]
- 13. Blight AR, Toombs JP, Bauer MS, Widmer WR. The effects of 4‐aminopyridine on neurological deficits in chronic cases of traumatic spinal cord injury in dogs: A phase I clinical trial. J Neurotrauma 1991;8:103–119. [DOI] [PubMed] [Google Scholar]
- 14. Bostock H, Sears TA, Sherratt RM. The effects of 4‐aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres. J Physiol 1981;313:301–315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Bostock H, Sherratt RM, Sears TA. Overcoming conduction failure in demyelinated nerve fibres by prolonging action potentials. Nature 1978;274:385–387. [DOI] [PubMed] [Google Scholar]
- 16. Bowe CM, Kocsis JD, Targ EF, Waxman SG. Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers. Ann Neurol 1987;22:264–268. [DOI] [PubMed] [Google Scholar]
- 17. Bunge RP, Puckett WR, Becerra JL, et al. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination In: Seil FJ, eds. Advances in Neurology. Vol. 59 New York : Raven Press, 1993;75–89. [PubMed] [Google Scholar]
- 18. Byrne TN, Waxman SG. Spinal cord compression: Diagnosis and principles of management. Philadelphia : F. A. Davis Co., 1990. [Google Scholar]
- 19. Chiu SY, Ritchie JM. Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated mammalian single nerve fibres. J Physiol 1981;313:415–437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Chiu SY, Ritchie JM. On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibres. Proc R Soc Lond B Biol Sci 1984;220:415–422. [DOI] [PubMed] [Google Scholar]
- 21. Davis FA. Axonal conduction studies based on some considerations of temperature effects in multiple sclerosis. Electroencephalogr Clin Neurophysiol 1970;28:281–286. [DOI] [PubMed] [Google Scholar]
- 22. Davis FA, Jacobson S. Altered thermal sensitivity in injured and demyelinated nerve. A possible model of temperature effects in multiple sclerosis. J Neurol Neurosurg Psychiatry 1971;34:551–561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Davis FA, Stefoski D, Quandt FN. Mechanism of action of 4‐aminopyridine in the symptomatic treatment of multiple sclerosis. Ann Neurol 1995;37:684. [DOI] [PubMed] [Google Scholar]
- 24. Davis FA, Stefoski D, Rush J. Orally administered 4‐aminopyridine improves clinical signs in multiple sclerosis. Ann Neurol 1990;27:186–192. [DOI] [PubMed] [Google Scholar]
- 25. Devaux J, Beeton C, Beraud E, Crest M. Ion channels and demyelination: Basis of a treatment of experimental autoimmune encephalomyelitis (EAE) by potassium channel blockers. Rev Neurol (Paris) 2004;160:S16–S27. [DOI] [PubMed] [Google Scholar]
- 26. Ditunno JF, Jr. , Graziani V, Katz MA, Blight AR, Group S‐S. Double‐blind, placebo‐controlled, dose‐escalating study evaluating the safety and efficacy of oral doses of fampridine‐SR (sustained‐release 4‐aminopyridine) in patients with chronic spinal cord injury. J Spinal Cord Med 2002;25:S1–S38. 12051241 [Google Scholar]
- 27. Donovan WH, Halter JA, Graves DE, et al. Intravenous infusion of 4‐AP in chronic spinal cord injured subjects. Spinal Cord 2000;38:7–15. [DOI] [PubMed] [Google Scholar]
- 28. Dubuc R, Rossignol S, Lamarre Y. The effects of 4‐aminopyridine on the spinal cord: Rhythmic discharges recorded from the peripheral nerves. Brain Res 1986;369:243–259. [DOI] [PubMed] [Google Scholar]
- 29. Evenhuis J, Agoston S, Salt PJ, De LA, Wouthuyzen W, Erdmann W. Pharmacokinetics of 4‐aminopyridine in human volunteers: A preliminary study using a new GLC method for its estimation. Br J Anaesth 1981;53:567–570. [DOI] [PubMed] [Google Scholar]
- 30. Fehlings MG, Nashmi R. Changes in pharmacological sensitivity of the spinal cord to potassium channel blockers following acute spinal cord injury. Brain Res 1996;736:135–145. [DOI] [PubMed] [Google Scholar]
- 31. Felts PA, Smith KJ. The use of potassium channel blocking agents in the therapy of demyelinating diseases. Ann Neurol 1994;36:454. [DOI] [PubMed] [Google Scholar]
- 32. Fujihara K, Miyoshi T. The effects of 4‐aminopyridine on motor evoked potentials in multiple sclerosis. J Neurol Sci 1998;159:102–106. [DOI] [PubMed] [Google Scholar]
- 33. Gay R, Algeo S, Lee R, Olajos M, Morkin E, Goldman S. Treatment of verapamil toxicity in intact dogs. J Clin Invest 1986;77:1805–1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Goodman AD, Blight A, Cohen JA, et al. Placebo‐controlled double‐blinded dose ranging study of fampridine‐SR in multiple sclerosis. Neurology 2003;60:A167. [DOI] [PubMed] [Google Scholar]
- 35. Gordon TR, Kocsis JD, Waxman SG. Electrogenic pump (Na+/K+‐ATPase) activity in rat optic nerve. Neuroscience 1990;37:829–837. [DOI] [PubMed] [Google Scholar]
- 36. Grijalva I, Guizar‐Sahagun G, Castaneda‐Hernandez G, et al. Efficacy and safety of 4‐aminopyridine in patients with long‐term spinal cord injury: A randomized, double‐blind, placebo‐controlled trial. Pharmaco-therapy 2003;23:823–834. [DOI] [PubMed] [Google Scholar]
- 37. Haghighi SS, Clapper A, Johnson GC, Stevens A, Prapaisilp A. Effect of 4‐aminopyridine and single‐dose methylprednisolone on functional recovery after a chronic spinal cord injury. Spinal Cord 1998;36:6–12. [DOI] [PubMed] [Google Scholar]
- 38. Halter JA, Blight AR, Donovan WH, Calvillo O. Intrathecal administration of 4‐aminopyridine in chronic spinal injured patients. Spinal Cord 2000;38:728–732. [DOI] [PubMed] [Google Scholar]
- 39. Hansebout RR, Blight AR, Fawcett S, Reddy K. 4‐Aminopyridine in chronic spinal cord injury: A controlled, double‐blind, crossover study in eight patients. J Neurotrauma 1993;10:1–18. [DOI] [PubMed] [Google Scholar]
- 40. Hayes KC. 4‐Aminopyridine and spinal cord injury: A review. Rest Neurol Neurosci 1994;6:259–270. [DOI] [PubMed] [Google Scholar]
- 41. Hayes KC, Katz MA, Devane JG, et al. Pharmacokinetics of an immediate‐release oral formulation of fampridine (4‐aminopyridine) in normal subjects and patients with spinal cord injury. J Clin Pharmacol 2003;43:379–385. [DOI] [PubMed] [Google Scholar]
- 42. Hayes KC, Potter PJ, Hansebout RR, et al. Pharmacokinetic studies of single and multiple oral doses of fampridine‐SR (sustained‐release 4‐aminopyridine) in patients with chronic spinal cord injury. Clin Neuropharmacol 2003;26:185–192. [DOI] [PubMed] [Google Scholar]
- 43. Hayes KC, Potter PJ, Hsieh JT, Katz MA, Blight AR, Cohen R. Pharmacokinetics and safety of multiple oral doses of sustained‐release 4‐aminopyridine (Fampridine‐SR) in subjects with chronic, incomplete spinal cord injury. Arch Phys Med Rehabil 2004;85:29–34. [DOI] [PubMed] [Google Scholar]
- 44. Hayes KC, Potter PJ, Wolfe DL, Hsieh JTC, Delaney GA, Blight AR. 4‐aminopyridine‐sensitive neurologic deficits in patients with spinal cord injury. J Neurotrauma 1994;11:433–446. [DOI] [PubMed] [Google Scholar]
- 45. Jones EG. The nature of the afferent pathways conveying short‐latency inputs to primate motor cortex. Adv Neurol 1983;39:263–285. [PubMed] [Google Scholar]
- 46. Judge SI, Paterson PY, Mannie MD, Yeh JZ. Modulation of outward K+ conductance is a post‐activational event in rat T lymphocytes responsible for the adoptive transfer of experimental allergic encephalomyelitis. J Biomed Sci 1997;4:98–110. [DOI] [PubMed] [Google Scholar]
- 47. Judge SIV, Yeh JZ, Goolsby JE, Monteiro MJ, Bever CT, Jr. Determinants of 4‐aminopyridine sensitivity in a human brain kv1.4 K+ channel: Phenylalanine substitutions in leucine heptad repeat region stabilize channel closed state. Mol Pharmacol 2002;61:913–920. [DOI] [PubMed] [Google Scholar]
- 48. Judge SI, Monteiro MJ, Yeh JZ, Bever CT. Inactivation gating 4‐AP sensitivity in human brain Kv1.4 potassium channel. Brain Res 1999;831:43–54. [DOI] [PubMed] [Google Scholar]
- 49. Kaji R, Sumner AJ. Effects of 4‐aminopyridine in experimental CNS demyelination. Neurology 1988;38:1884–1887. [DOI] [PubMed] [Google Scholar]
- 50. Karimi‐Abdolrezaee S, Eftekharpour E, Fehlings MG. Temporal and spatial patterns of Kv1.1 and Kv1.2 protein and gene expression in spinal cord white matter after acute and chronic spinal cord injury in rats: Implications for axonal pathophysiology after neurotrauma. Eur J Neurosci 2004;19:577–589. [DOI] [PubMed] [Google Scholar]
- 51. Katz MA, Butler J, Blight AR, Devane J. Pharmacokinetics and excretion of a single oral dose of 14C‐labeled fampridine (4‐aminopyridine) in health volunteers. J Spinal Cord Med 2002;25(Suppl 1):S29. [Google Scholar]
- 52. Kim YI, Goldner MM, Sanders DB. Facilitatory effects of 4‐aminopyridine on neuromuscular transmission in disease states. Muscle Nerve 1980;3:112–119. [DOI] [PubMed] [Google Scholar]
- 53. Kim YI, Goldner MM, Sanders DB. Facilitatory effects of 4‐aminopyridine on normal neuromuscular transmission. Muscle Nerve 1980;3:105–111. [DOI] [PubMed] [Google Scholar]
- 54. Kirchoff C, Leah JD, Jung S, Reeh PW. Excitation of cutaneous sensory nerve endings in the rat by 4‐Aminopyridine and tetraethylammonium. J Neurophysiol 1992;67:125–131. [DOI] [PubMed] [Google Scholar]
- 55. Kirsch GE, Drewe JA. Gating‐dependent mechanism of 4‐aminopyridine block in two related potassium channels. J Gen Physiol 1993;102:797–816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Kirsch GE, Shieh CC, Drewe JA, Vener DF, Brown AM. Segmental exchanges define 4‐aminopyridine binding and the inner mouth of K+ pores. Neuron 1993;11:503–512. [DOI] [PubMed] [Google Scholar]
- 57. Kocsis JD, Bowe CM, Waxman SG. Different effects of 4‐aminopyridine on sensory and motor fibers: Pathogenesis of paresthesias. Neurology 1986;36:117–120. [DOI] [PubMed] [Google Scholar]
- 58. Lammertse D, Graziani V, Katz MA. Safety and efficacy of oral fampridine‐SR (sustained‐release 4‐aminopyridine) in patients with chronic motor‐incomplete spinal cord injury. J Spinal Cord Med 2002;25:S5. [Google Scholar]
- 59. Lechat P. Historical review In: Lechat P, Thesleff S, Bowman WC, eds. Aminopyridines and similarly acting drugs: Effects on nerves, muscles and synapses, Advances in Biosciences. Vol. 35 Oxford : Pergamon Press, 1982;3–7. [Google Scholar]
- 60. Lemeignan M, Millart H, Lamiable D, Molgo J, Lechat P. Evaluation of 4‐aminopyridine and 3,4‐diaminopyridine penetrability into cerebrospinal fluid in anesthetized rats. Brain Res 1984;304:166–169. [DOI] [PubMed] [Google Scholar]
- 61. Lundh H. Effects of 4‐aminopyridine on neuromuscular transmission. Brain Res 1978;153:307–318. [DOI] [PubMed] [Google Scholar]
- 62. Lundh H, Nilsson O, Rosen I. 4‐aminopyridine — a new drug tested in the treatment of Eaton‐Lambert syndrome. J Neurol Neurosurg Psychiatry 1977;40:1109–1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63. Lundh H, Nilsson O, Rosen I. Effects of 4‐aminopyridine in myasthenia gravis. J Neurol Neurosurg Psychiatry 1979;42:171–175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64. McDonald WI, Sears TA. The effects of experimental demyelination on conduction in the central nervous system. Brain 1970;93:583–598. [DOI] [PubMed] [Google Scholar]
- 65. Meythaler JM, Guin‐Renfroe S, Johnson A, Brunner RM. The safety and efficacy of 4‐aminopyridine for motor weakness due to Guillain‐Barré Syndrome: A double‐blind cross‐over Phase I drug trial. Arch Phys Med Rehabil 2000;81:1293. [Google Scholar]
- 66. Miller RD, Booij LH, Agoston S, Crul JF. 4‐Aminopyridine potentiates neostigmine and pyridostigmine in man. Anesthesiology 1979;50:416–420. [DOI] [PubMed] [Google Scholar]
- 67. Molgo J, Lundh H, Thesleff S. Potency of 3, 4‐diaminopyridine and 4‐aminopyridine on mammalian neuromuscular transmission and the effect of pH changes. Eur J Pharmacol 1980;61:25–34. [DOI] [PubMed] [Google Scholar]
- 68. Nashmi R, Fehlings MG. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience 2001;104:235–251. [DOI] [PubMed] [Google Scholar]
- 69. Nashmi R, Fehlings MG. Mechanisms of axonal dysfunction after spinal cord injury: With an emphasis on the role of voltage‐gated potassium channels. Brain Res Brain Res Rev 2001;38:165–191. [DOI] [PubMed] [Google Scholar]
- 70. Paskov DS, Stojanov NA, Micov VZ. 4‐aminopyridine hydrochloride (Pymadin). In: Charkevich DA, eds. New neuromuscular blocking agents — Basic and Applied Aspects, Handbook of Experimental Pharmacology. Vol. 79 New York : Springer‐Verlag, 1986;679–717. [Google Scholar]
- 71. Pelhate M, Pichon Y. Proceedings: Selective inhibition of potassium current in the giant axon of the cockroach. J Physiol 1974;242:90P–91P. [PubMed] [Google Scholar]
- 72. Perez‐Espejo MA, Haghighi SS, Adelstein EH, Madsen R. The effects of taxol, methylprednisolone, and 4‐aminopyridine in compressive spinal cord injury: A qualitative experimental study. Surg Neurol 1996;46:350–357. [DOI] [PubMed] [Google Scholar]
- 73. Pichon Y, Meves H, Pelhate M. Effects of aminopyridines on ionic currents ad ionic channel noise in unmyelinated axons In: Lechat P, Thesleff S, Bowman WC, eds. Aminopyridine and similarly acting drugs: Effects on nerves, muscles and synapses. Vol. 35 Oxford : Pergamon, 1982;53–68. [Google Scholar]
- 74. Pickett TA, Enns R. Atypical presentation of 4‐aminopyridine overdose. Ann Emerg Med 1996;27:382–385. [DOI] [PubMed] [Google Scholar]
- 75. Polman CH, Bertelsmann FW, van Loenen AC, Koetsier JC. 4‐aminopyridine in the treatment of patients with multiple sclerosis. Long‐term efficacy and safety. Arch Neurol 1994;51:292–296. [DOI] [PubMed] [Google Scholar]
- 76. Pongs O. Molecular biology of voltage‐dependent potassium channels. Physiol Rev 1992;72:S69–S88. [DOI] [PubMed] [Google Scholar]
- 77. Popovich PG, Stokes BT, Whitacre CC. Concept of autoimmunity following spinal cord injury: Possible roles for T lymphocytes in the traumatized central nervous system. J Neurosci Res 1996;45:349–363. [DOI] [PubMed] [Google Scholar]
- 78. Potter PJ, Hayes KC, Segal JL, Hsieh JTC, Brunnemann SR, Delaney GA, Tierney DS, Mason D. Randomized double‐blind crossover trial of fampridine‐SR (sustained‐release 4‐aminopyridine) in patients with incomplete spinal cord injury. J Neurotrauma 1998;10:837–849. [DOI] [PubMed] [Google Scholar]
- 79. Qiao J, Hayes KC, Hsieh JTC, Potter PJ, Delaney GA. Effects of 4‐aminopyridine on motor evoked potentials in patients with spinal cord injury. J Neurotrauma 1997;14:135–149. [DOI] [PubMed] [Google Scholar]
- 80. Reid G, Scholz A, Bostock H, Vogel W. Human axons contain at least five types of voltage‐dependent potassium channel. J Physiol 1999;518(Pt 3):681–696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81. Rossini PM, Pasqualetti P, Pozzilli C, et al. Fatigue in progressive multiple sclerosis: Results of a randomized, double‐blind, placebo‐controlled, crossover trial of oral 4‐aminopyridine. Mult Scler 2001;7:354–358. [DOI] [PubMed] [Google Scholar]
- 82. Sakatani K, Iizuka H, Young W. Randomized double pulse stimulation for assessing stimulus frequency‐dependent conduction in injured spinal and peripheral axons. Electroencephalogr Clin Neurophysiol 1991;81:108–117. [DOI] [PubMed] [Google Scholar]
- 83. Schafer EW, Brunton RB, Cunningham DJ. A summary of the acute toxicity of 4‐aminopyridine to birds and mammals. Toxicol Appl Pharmacol 1973;26:532–538. [DOI] [PubMed] [Google Scholar]
- 84. Schafer EW, Burnton RB, Lockyer NF. The effects of subacute and chronic exposure to 4‐aminopyridine on reproduction in coturnix quail. Bull Environ Contam Toxicol 1975;758–764. [DOI] [PubMed] [Google Scholar]
- 85. Schafer EW, Burnton RB, Lockyer NF. Hazards to animals feeding on blackbirds killed with 4‐aminopyridine baits. J Wild Manage 1974;38:424–426. [Google Scholar]
- 86. Schauf CL, Davis FA. Impulse conduction in multiple sclerosis: A theoretical basis for modification by temperature and pharmacological agents. J Neurol Neurosurg Psychiatr 1974;37:152–161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87. Schwid SR, Petrie MD, McDermott MP, Tierney DS, Mason DH, Goodman AD. Quantitative assessment of sustained release 4‐Aminopyridine for symptomatic treatment of multiple sclerosis. Neurology 1997;48:817–821. [DOI] [PubMed] [Google Scholar]
- 88. Segal JL, Brunnemann SR. 4‐Aminopyridine improves pulmonary function in quadriplegic humans with longstanding spinal cord injury. Pharmacotherapy 1997;17:415–423. [PubMed] [Google Scholar]
- 89. Segal JL, Hayes KC, Brunnemann SR, et al. Absorption characteristics of sustained‐release 4‐aminopyridine (fampridine SR) in patients with chronic spinal cord injury. J Clin Pharmacol 2000;40:402–409. [DOI] [PubMed] [Google Scholar]
- 90. Segal JL, Pathak MS, Hernandez JP, Himber PL, Brunnemann SR, Charter RS. Safety and efficacy of 4‐aminopyridine in humans with spinal cord injury: A long‐term, controlled trial. Pharmacotherapy 1999;19:713–723. [DOI] [PubMed] [Google Scholar]
- 91. Sherratt RM, Bostock H, Sears TA. Effects of 4‐aminopyiridine on normal and demyelinated mammalian nerve fibres. Nature 1980;283:570–572. [DOI] [PubMed] [Google Scholar]
- 92. Shi R, Blight AR. Differential effects of low and high concentrations of 4‐aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience 1997;77:553–562. [DOI] [PubMed] [Google Scholar]
- 93. Smeets JW, Kunst MW. Severe poisoning by 4‐aminopyridine in a body builder. Ned Tijdschr Geneeskd 1995;139:2667–2669. [PubMed] [Google Scholar]
- 94. Smith KJ, Felts PA, John GR. Effects of 4‐aminopyridine on demyelinated axons, synapses and muscle tension. Brain 2000;123(Pt 1):171–184. [DOI] [PubMed] [Google Scholar]
- 95. Smith KJ, Hall SM. Nerve conduction during peripheral demyelination and remyelination. J Neurol Sci 1980;48:201–219. [DOI] [PubMed] [Google Scholar]
- 96. Smits RC, Emmen HH, Bertelsmann FW, Kulig BM, van Loenen AC, Polman CH. The effects of 4‐aminopyridine on cognitive function in patients with multiple sclerosis: A pilot study. Neurology 1994;44:1701–1705. [DOI] [PubMed] [Google Scholar]
- 97. Solari A, Uitdehaag B, Giuliani G, Pucci E, Taus C. Aminopyridines for symptomatic treatment in multiple sclerosis. Cochrane Database Syst Rev 2003;CD001330. [DOI] [PubMed] [Google Scholar]
- 98. Soni N, Kam P. 4‐Aminopyridine — a review. Anaesth Intensive Care 1982;10:120–126. [DOI] [PubMed] [Google Scholar]
- 99. Spyker DA, Lynch C, Shabanowitz J, Sinn JA. Poisoning with 4‐aminopyridine: Report of three cases. Clin Toxicol 1980;16:487–497. [DOI] [PubMed] [Google Scholar]
- 100. Stefoski D, Davis FA, Faut M, Schauf CL. 4‐Aminopyridine improves clinical signs in multiple sclerosis. Ann Neurol 1987;21:71–77. [DOI] [PubMed] [Google Scholar]
- 101. Stefoski D, Davis FA, Fitzsimmons WE, Luskin SS, Rush J, Parkhurst GW. 4‐Aminopyridine in multiple sclerosis: Prolonged administration. Neurology 1991;41:1344–1348. [DOI] [PubMed] [Google Scholar]
- 102. Stork CM, Hoffman RS. Characterization of 4‐aminopyridine in overdose. J Toxicol Clin Toxicol 1994;32:583–587. [DOI] [PubMed] [Google Scholar]
- 103. Targ EF, Kocsis JD. 4‐aminopyridine leads to restoration of conduction in demyelinated rat sciatic nerve. Brain Res 1985;328:358–361. [DOI] [PubMed] [Google Scholar]
- 104. Tasaki I. Nervous Transmission. Springfield , IL : Charles C. Thomas, 1953. [Google Scholar]
- 105. Thesleff S. Aminopyridines and synaptic transmission. Neuroscience 1980;5:1413–1419. [DOI] [PubMed] [Google Scholar]
- 106. Thompson S. Aminopyridine block of transient potassium current. J Gen Physiol 1982;80:1–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107. Thomsen RH, Wilson DF. Effects of 4‐aminopyridine and 3,4‐diaminopyridine on transmitter release at the neuromuscular junction. J Pharmacol Exp Ther 1983;227:260–265. [PubMed] [Google Scholar]
- 108. Uges DRA, Sohn YJ, Greijdanus B, Scaf AHJ, Agoston S. 4‐Aminopyridine kinetics. Clin Pharmacol Ther 1982;31(5):587–593. [DOI] [PubMed] [Google Scholar]
- 109. van der Bruggen MA, Huisman HB, Beckerman H, Bertelsmann FW, Polman CH, Lankhorst GJ. Randomized trial of 4‐aminopyridine in patients with chronic incomplete spinal cord injury. J Neurol 2001;248:665–671. [DOI] [PubMed] [Google Scholar]
- 110. van Diemen HA, Polman CH, van Dongen MM, et al. 4‐Aminopyridine induces functional improvement in multiple sclerosis patients: A neurophysiological study. J Neurol Sci 1993;116:220–226. [DOI] [PubMed] [Google Scholar]
- 111. van Diemen HA, Polman CH, van Dongen TM, et al. The effect of 4‐aminopyridine on clinical signs in multiple sclerosis: A randomized, placebo‐controlled, double‐blind, cross‐over study. Ann Neurol 1992;32:123–130. [DOI] [PubMed] [Google Scholar]
- 112. Velez L, Shirazi F, Goto C, Shepherd G, Roth BA. Opisthotonic posturing with neuromuscular irritability attributable to 4‐aminopyridine ingestion by a healthy pediatric patient. Pediatrics 2003;111:e82–e84. [DOI] [PubMed] [Google Scholar]
- 113. Wakana CI, Segal JL. Effects of 4‐aminopyridine on cardiac repolarization, PR interval, and heart rate in patients with spinal cord injury. Pharmacotherapy 2003;23:133–136. [DOI] [PubMed] [Google Scholar]
- 114. Waxman SG. Conduction in myelinated, unmyelinated, and demyelinated fibers. Arch Neurol 1977;34:585–589. [DOI] [PubMed] [Google Scholar]
- 115. Waxman SG. Membranes, myelin, and the pathophysiology of multiple sclerosis. N Engl J Med 1982;306:1529–1533. [DOI] [PubMed] [Google Scholar]
- 116. Waxman SG. Demyelination in spinal cord injury. J Neurol Sci 1989;91:1–14. [DOI] [PubMed] [Google Scholar]
- 117. Waxman SG. Demyelinating diseases — new pathological insights, new therapeutic targets [editorial; comment]. N Engl J Med 1998;338:323–325. [DOI] [PubMed] [Google Scholar]
- 118. Waxman SG. Ion channels and neuronal dysfunction in multiple sclerosis. Arch Neurol 2002;59:1377–1380. [DOI] [PubMed] [Google Scholar]
- 119. Wesseling H, Agoston S, Van Dam GB, Pasma J, DeWit DJ, Havinga H. Effects of 4‐aminopyridine in elderly patients with Alzheimer's disease. N Engl J Med 1984;310:988–989. [DOI] [PubMed] [Google Scholar]
- 120. Wolfe DL, Hayes KC, Hsieh JT, Potter PJ. Effects of 4‐aminopyridine on motor evoked potentials in patients with spinal cord injury: A double‐blinded, placebo‐controlled crossover trial. J Neurotrauma 2001;18:757–771. [DOI] [PubMed] [Google Scholar]
- 121. Wulff H, Beeton C, Chandy KG. Potassium channels as therapeutic targets for autoimmune disorders. Curr Opin Drug Discov Devel 2003;6:640–647. [PubMed] [Google Scholar]
- 122. Wulff H, Knaus HG, Pennington M, Chandy KG. K+ channel expression during B cell differentiation: Implications for immunomodulation and autoimmunity. J Immunol 2004;173:776–786. [DOI] [PubMed] [Google Scholar]
- 123. Yeh JZ, Oxford GS, Wu CH, Narahashi T. Dynamics of aminopyridine block of potassium channels in squid axon membrane. J Gen Physiol 1976;68:519–535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124. Yeh JZ, Oxford GS, Wu CH, Narahashi T. Interactions of aminopyridines with potassium channels of squid axon membranes. Biophys J 1976;16:77–81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125. Yu K, Li J, Rong W, et al. Recording of spared motor evoked potentials and its augmentation by 4‐aminopyridine in chronic spinal cord‐injured rats. Chin Med J (Engl) 2001;114:155–161. [PubMed] [Google Scholar]