ABSTRACT
This paper reviews the pharmacology and toxicology of 3,4‐methylenedioxy‐N‐ethyl‐amphetamine (MDEA, “eve”). MDEA is a ring‐substituted amphetamine (RSA) like MDMA, its well known N‐methyl analog. Both have become very popular substances of abuse in the techno‐ and house‐music scene. They can evoke psychomotor stimulation, mild alterations of perception, sensations of closeness and a positive emotional state as well as sympathomimetic physical effects. At present, the name “ecstasy” is no longer used only for MDMA, but for the whole group of RSAs (MDA, MDMA, MDEA and MBDB) as they are chemically and pharmacologically nearly identical; moreover, many ecstasy pills contain mixtures of the RSAs. Hence, for a selective review on MDEA, it is crucial to strictly differentiate between: 1) street and chemical names, and 2) studies with or without chemically defined substances. In order to present MDEA‐specific information, the pharmacodynamics and kinetics are described on the basis of MDEA challenge studies in animals and humans. In the toxicology section, we present a collection of case reports on fatalities where MDEA was toxicologically confirmed. On the question of serotonergic neurotoxicity and possible long‐term consequences, however, MDEA‐specific information is available from animal studies only. The neurotoxic potential of MDEA in humans is difficult to estimate, as ecstasy users do not consume pure substances. For future research, challenge studies in animals using dosing regimens adapted to human consumption patterns are needed. Such challenge studies should directly compare individual RSAs. They will represent the most viable and fruitful approach to the resolution of the highly controversial issues of serotonergic neurotoxicity and its functional consequences.
Keywords: Amphetamine derivatives, Amphetamine toxicity, Ecstasy, Eve, MDE MDEA, MDMA, RSA, Street drugs
Full Text
The Full Text of this article is available as a PDF (181.9 KB).
REFERENCES
- 1. Antoniou T, Tseng AL. Interactions between recreational drugs and antiretroviral agents. Ann Pharmacother 2002;36:1598–1613. [DOI] [PubMed] [Google Scholar]
- 2. Arimany J, Medallo J, Pujol A, Vingut A, Borondo JC, Valverde JL. Intentional overdose and death with 3,4‐methylenedioxyethamphetamine (MDEA; “Eve”): Case report. Am J Forensic Med Pathol 1998;19:148–151. [DOI] [PubMed] [Google Scholar]
- 3. Baker R, Bowers M. Ritonavir and ecstasy. Beta 1997;March: 5. [PubMed]
- 4. Balanzó X, Rafel J, de la Torre R, Camí J. Intoxicación aguda mortal por metilendioxianfetamina (cited after Arimany et al. 1998). Med Clin (Barc) 1996;106:718. [PubMed] [Google Scholar]
- 5. Barrionuevo M, Aguirre N, Del Rio JD, Lasheras B. Serotonergic deficits and impaired passive‐avoidance learning in rats by MDEA: A comparison with MDMA. Pharmacol Biochem Behav 2000;65:233–240. [DOI] [PubMed] [Google Scholar]
- 6. Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB. Pharmacologic profile of MDMA (3,4‐methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 1988;149:159–163. [DOI] [PubMed] [Google Scholar]
- 7. Battaglia G, De Souza EB. Pharmacologic profile of amphetamine derivatives at various brain recognition sites: Selective effects on serotonergic systems. NIDA Res Monogr 1989;94:240–258. [PubMed] [Google Scholar]
- 8. Beck C. MDMA — Die frühen Jahre In: Rátsch C, Baker JR, Eds. Jahrbuch für Ethnomedizin und Bewuβtseinsforschung 1997/98. Berlin : VWB‐Verlag, 2000;95–125. [Google Scholar]
- 9. Beck J. The public health implications of MDMA use In: Peroutka SJ, Ed. Ecstasy: the clinical, pharmacological and neurotoxicological effects of the drug MDMA. Boston : Kluwer, 1990;77–103. [Google Scholar]
- 10. Bell SE, Burns DT, Dennis AC, Matchett LJ, Speers JS. Composition profiling of seized ecstasy tablets by Raman spectroscopy. Analyst 2000;125:1811–1815. [DOI] [PubMed] [Google Scholar]
- 11. Bogusz MJ, Kala M, Maier RD. Determination of phenylisothiocyanate derivatives of amphetamine and its analogues in biological fluids by HPLC‐APCI‐MS or DAD. J Anal Toxicol 1997;21:59–69. [DOI] [PubMed] [Google Scholar]
- 12. Boja JW, Schechter MD. Behavioral effects of N‐ethyl‐3,4‐methylenedioxyamphetamine (MDE; “EVE”). Pharmacol Biochem Behav 1987;28:153–156. [DOI] [PubMed] [Google Scholar]
- 13. Boja JW, Schechter MD. Possible serotonergic and dopaminergic mediation of the N‐ethyl‐3,4‐methylenedioxyamphetamine discriminative stimulus. Eur J Pharmacol 1991;202:347–353. [DOI] [PubMed] [Google Scholar]
- 14. Boyer EW, Quang L, Woolf A, Shannon M, Magnani B. Dextromethorphan and ecstasy pills. JAMA 2001;285:409–410. [DOI] [PubMed] [Google Scholar]
- 15. Braun U, Shulgin AT, Braun G. Centrally active N‐substituted analogs of 3,4‐methylenedioxyphenylisopro‐pylamine (3,4‐methylenedioxyamphetamine). J Pharm Sci 1980;69:192–195. [DOI] [PubMed] [Google Scholar]
- 16. Brunnenberg M, Kovar KA. Stereospecific analysis of ecstasy‐like N‐ethyl‐3,4‐methylenedioxyamphetamine and its metabolites in humans. J Chromatogr B Biomed Sci Appl 2001;751:9–18. [DOI] [PubMed] [Google Scholar]
- 17. Brunnenberg M, Lindenblatt H, Gouzoulis‐Mayfrank E, Kovar KA. Quantitation of N‐ethyl‐3,4‐methylenedioxyamphetamine and its major metabolites in human plasma by high‐performance liquid chromatography and fluorescence detection. J Chromatogr B Biomed Sci Appl 1998;719:79–85. [DOI] [PubMed] [Google Scholar]
- 18. Cherney DZ, Davids MR, Halperin ML. Acute hyponatraemia and ‘ecstasy’: Insights from a quantitative and integrative analysis. QJM 2002;95:475–483. [DOI] [PubMed] [Google Scholar]
- 19. Christophersen AS. Amphetamine designer drugs — an overview and epidemiology. Toxicol Lett 2000;112–113:127–131. [DOI] [PubMed] [Google Scholar]
- 20. Clauwaert KM, Van Bocxlaer JF, De Letter EA, Van Calenbergh S, Lambert WE, De Leenheer AP. Determination of the designer drugs 3,4‐methylenedioxymethamphetamine, 3,4‐methylenedioxyethylamphetamine, and 3,4‐methylenedioxyamphetamine with HPLC and fluorescence detection in whole blood, serum, vitreous humor, and urine. Clin Chem 2000;46:1968–1977. [PubMed] [Google Scholar]
- 21. Cleary L, Buber R, Docherty JR. Effects of amphetamine derivatives and cathinone on noradrenalineevoked contractions of rat right ventricle. Eur J Pharmacol 2002;451:303–308. [DOI] [PubMed] [Google Scholar]
- 22. Climko RP, Roehrich H, Sweeney DR, Al‐Razi J. Ecstasy: A review of MDMA and MDA. Int J Psychiatry Med 1986;16:359–372. [DOI] [PubMed] [Google Scholar]
- 23. Colado MI, Granados R, O'Shea E, Esteban B, Green AR. The acute effect in rats of 3,4‐methylenedioxy‐ethamphetamine (MDEA, “eve”) on body temperature and long term degeneration of 5‐HT neurones in brain: A comparison with MDMA (“ecstasy”). Pharmacol Toxicol 1999;84:261–266. [DOI] [PubMed] [Google Scholar]
- 24. Colado MI, O'Shea E, Granados R, Misra A, Murray TK, Green AR. A study of the neurotoxic effect of MDMA (‘ecstasy’) on 5‐HT neurones in the brains of mothers and neonates following administration of the drug during pregnancy. Br J Pharmacol 1997;121:827–833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Cole JC, Bailey M, Sumnall HR, Wagstaff GF, King LA. The content of ecstasy tablets: Implications for the study of their long‐term effects. Addiction 2002;97:1531–1536. [DOI] [PubMed] [Google Scholar]
- 26. Cox DE, Williams KR. “ADAM” or “EVE”?— A toxicological conundrum. Forensic Sci Int 1996;77:101–108. [DOI] [PubMed] [Google Scholar]
- 27. Crespi D, Mennini T, Gobbi M. Carrier‐dependent and Ca2+‐dependent 5‐HT and dopamine release induced by (+)‐amphetamine, 3,4‐methylendioxymethamphetamine, p‐chloroamphetamine and (+)‐fenfluramine. Br J Pharmacol 1997;121:1735–1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Curran HV, Travill RA. Mood and cognitive effects of +/‐3,4‐methylenedioxymethamphetamine (MDMA, ‘ecstasy’): Week‐end ‘high’ followed by mid‐week low. Addiction 1997;92:821–831. [PubMed] [Google Scholar]
- 29. de la Fuente de Hoz L, Rodriguez Arenas MA, Vicente Orta J, Sanchez Paya J, Barrio Anta G. [Epidemiology of designer drug use in Spain]. Med Clin (Barc) 1997;108:54–61. [PubMed] [Google Scholar]
- 30. de la Torre R, Farre M, Ortuno J, et al. Non‐linear pharmacokinetics of MDMA (‘ecstasy’) in humans. Br J Clin Pharmacol 2000;49:104–109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. de la Torre R, Farre M, Roset PN, et al. Pharmacology of MDMA in humans. Ann NY Acad Sci 2000;914:225–237. [DOI] [PubMed] [Google Scholar]
- 32. de la Torre R, Ortuno J, Mas M, Farre M, Segura J. Fatal MDMA intoxication. Lancet 1999;353:593. [DOI] [PubMed] [Google Scholar]
- 33. Dowling GP, McDonough ET 3rd, Bost RO ‘Eve’ and ‘Ecstasy’. A report of five deaths associated with the use of MDEA and MDMA. JAMA 1987;257:1615–1617. [DOI] [PubMed] [Google Scholar]
- 34. Ensslin HK, Kovar KA, Maurer HH. Toxicological detection of the designer drug 3,4‐methylenedioxyethylamphetamine (MDE, “Eve”) and its metabolites in urine by gas chromatography‐mass spectrometry and fluorescence polarization immunoassay. J Chromatogr B Biomed Appl 1996;683:189–197. [DOI] [PubMed] [Google Scholar]
- 35. Ensslin HK, Maurer HH, Gouzoulis E, Hermle L, Kovar KA. Metabolism of racemic 3,4‐methylenedioxyethylamphetamine in humans. Isolation, identification, quantification, and synthesis of urinary metabolites. Drug Metab Dispos 1996;24:813–820. [PubMed] [Google Scholar]
- 36. Fineschi V, Centini F, Mazzeo E, Turillazzi E. Adam (MDMA) and Eve (MDEA) misuse: An immunohistochemical study on three fatal cases. Forensic Sci Int 1999;104:65–74. [DOI] [PubMed] [Google Scholar]
- 37. Fineschi V, Masti A. Fatal poisoning by MDMA (ecstasy) and MDEA: A case report. Int J Legal Med 1996;108:272–275. [DOI] [PubMed] [Google Scholar]
- 38. Fischer C, Hatzidimitriou G, Wlos J, Katz J, Ricaurte G. Reorganization of ascending 5‐HT axon projections in animals previously exposed to the recreational drug (+/‐) 3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurosci 1995;15:5476–5485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Forrest AR, Galloway JH, Marsh ID, Strachan GA, Clark JC. A fatal overdose with 3,4‐methylenedioxyamphetamine derivatives. Forensic Sci Int 1994;64:57–59. [DOI] [PubMed] [Google Scholar]
- 40. Forsling M, Fallon JK, Kicman AT, Hutt AJ, Cowan DA, Henry JA. Arginine vasopressin release in response to the administration of 3,4‐methylenedioxymethamphetamine (“ecstasy”): Is metabolism a contributory factor J Pharm Pharmacol 2001;53:1357–1363. [DOI] [PubMed] [Google Scholar]
- 41. Forsling ML, Fallon JK, Shah D, et al. The effect of 3,4‐methylenedioxymethamphetamine (MDMA, ‘ecstasy’) and its metabolites on neurohypophysial hormone release from the isolated rat hypothalamus. Br J Pharmacol 2002;135:649–656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Forsyth AJ, Barnard M, McKeganey NP. Musical preference as an indicator of adolescent drug use. Addiction 1997;92:1317–1325. [PubMed] [Google Scholar]
- 43. Giroud C, Augsburger M, Sadeghipour F, Varesio E, Veuthey JL, Rivier L. [Ecstasy – the status in French‐speaking Switzerland. Composition of seized drugs, analysis of biological specimens and short review of its pharmacological action and toxicity]. Schweiz Rundsch Med Prax 1997;86:510–523. [PubMed] [Google Scholar]
- 44. Glennon RA. Phenylalkylamine stimulants, hallucinogens, and designer drugs. NIDA Res Monogr 1991;105:154–160. [PubMed] [Google Scholar]
- 45. Glennon RA, Misenheimer BR. Stimulus effects of N‐monoethyl‐1‐(3,4‐methylenedioxyphenyl)‐2–aminopropane (MDE) and N‐hydroxy‐1‐(3,4‐methylenedioxyphenyl)‐2‐aminopropane (N‐OH MDA) in rats trained to discriminate MDMA from saline. Pharmacol Biochem Behav 1989;33:909–912. [DOI] [PubMed] [Google Scholar]
- 46. Glennon RA, Young R. MDMA stimulus generalization to the 5‐HT(1A) serotonin agonist 8‐hydroxy‐2‐(di‐n‐propylamino)tetralin. Pharmacol Biochem Behav 2000;66:483–488. [DOI] [PubMed] [Google Scholar]
- 47. Glennon RA, Yousif M, Patrick G. Stimulus properties of 1‐(3,4‐methylenedioxyphenyl)‐2‐aminopropane (MDA) analogs. Pharmacol Biochem Behav 1988;29:443–449. [DOI] [PubMed] [Google Scholar]
- 48. Gouzoulis E, Borchardt D, Hermle L. A case of toxic psychosis induced by ‘eve’ (3,4‐methylene‐dioxyethylamphetamine). Arch Gen Psychiatry 1993;50:75. [DOI] [PubMed] [Google Scholar]
- 49. Gouzoulis E, Steiger A, Ensslin M, Kovar A, Hermle L. Sleep EEG effects of 3,4‐methylenedioxyethamphetamine (MDE; “eve”) in healthy volunteers. Biol Psychiatry 1992;32:1108–1117. [DOI] [PubMed] [Google Scholar]
- 50. Gouzoulis E, von Bardeleben U, Rupp A, Kovar KA, Hermle L. Neuroendocrine and cardiovascular effects of MDE in healthy volunteers. Neuropsychopharmacology 1993;8:187–193. [DOI] [PubMed] [Google Scholar]
- 51. Gouzoulis‐Mayfrank E, Becker S, Pelz S, Tuchtenhagen F, Daumann J. Neuroendocrine abnormalities in recreational ecstasy (MDMA) users: Is it ecstasy or cannabis Biol Psychiatry 2002;51:766–769. [DOI] [PubMed] [Google Scholar]
- 52. Gouzoulis‐Mayfrank E, Daumann J, Sass H. Neurotoxische Langzeitschäden bei Ecstasy (MDMA)‐Konsumenten. Nervenarzt 2002;73:405–421. [DOI] [PubMed] [Google Scholar]
- 53. Gouzoulis‐Mayfrank E, Daumann J, Tuchtenhagen F, et al. Impaired cognitive performance in drug free users of recreational ecstasy (MDMA). J Neurol Neurosurg Psychiatry 2000;68:719–725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Gouzoulis‐Mayfrank E, Hermle L, Kovar KA, Sass H. Die Entaktogene “Ecstasy” (MDMA), “Eve” (MDE) und andere ringsubstituierte Methamphetaminderivate. Eine neue Stoffklasse unter den illegalen Designerdrogen Nervenarzt 1996;67:369–380. [PubMed] [Google Scholar]
- 55. Gouzoulis‐Mayfrank E, Schreckenberger M, Sabri O, et al. Neurometabolic effects of psilocybin, 3,4‐methylenedioxyethylamphetamine (MDE) and d‐methamphetamine in healthy volunteers. A double‐blind, placebo‐controlled PET study with [18F]FDG. Neuropsychopharmacology 1999;20:565–581. [DOI] [PubMed] [Google Scholar]
- 56. Gouzoulis‐Mayfrank E, Thelen B, Habermeyer E, et al. Psychopathological, neuroendocrine and autonomic effects of 3,4‐methylenedioxyethylamphetamine (MDE), psilocybin and d‐methamphetamine in healthy volunteers. Results of an experimental double‐blind placebo‐controlled study. Psychopharmacology (Berl) 1999;142:41–50. [DOI] [PubMed] [Google Scholar]
- 57. Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4‐methylenedioxymethamphetamine (MDMA, “Ecstasy”). Pharmacol Rev 2003;55:463–508. [DOI] [PubMed] [Google Scholar]
- 58. Greer G. Using MDMA in psychotherapy. Advances 1985;2:57–62. [Google Scholar]
- 59. Grinspoon L, Bakalar JB. Can drugs be used to enhance the psychotherapeutic process Am J Psychother 1986;40:393–404. [DOI] [PubMed] [Google Scholar]
- 60. Gudelsky GA, Yamamoto BK. Neuropharmacology and neurotoxicity of 3,4‐methylenedioxymethamphetamine. Methods Mol Med 2003;79:55–73. [DOI] [PubMed] [Google Scholar]
- 61. Harris DS, Baggott M, Mendelson JH, Mendelson JE, Jones RT. Subjective and hormonal effects of 3,4‐methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology (Berl) 2002;162:396–405. [DOI] [PubMed] [Google Scholar]
- 62. Hatzidimitriou G, Tsai EH, McCann UD, Ricaurte GA. Altered prolactin response to M‐chlorophenylpiperazine in monkeys previously treated with 3,4‐methylenedioxymethamphetamine (MDMA) or fenfluramine. Synapse 2002;44:51–57. [DOI] [PubMed] [Google Scholar]
- 63. Hegadoren KM, Baker GB, Bourin M. 3,4‐Methylenedioxy analogues of amphetamine: Defining the risks to humans. Neurosci Biobehav Rev 1999;23:539–553. [DOI] [PubMed] [Google Scholar]
- 64. Hegadoren KM, Baker GB, Coutts RT. Analysis of the enantiomers of 3,4‐methylenedioxy‐N‐ethylamphetamine (MDE, “Eve”) and its metabolite 3,4‐methylenedioxyamphetamine (MDA) in rat brain. J Pharmacol Toxicol Methods 1995;34:117–123. [DOI] [PubMed] [Google Scholar]
- 65. Henderson GL. Designer drugs: Past history and future prospects. J Forensic Sci 1988;33:569–575. [PubMed] [Google Scholar]
- 66. Henry JA, Hill IR. Fatal interaction between ritonavir and MDMA. Lancet 1998;352:1751–1752. [DOI] [PubMed] [Google Scholar]
- 67. Henry JA, Jeffreys KJ, Dawling S. Toxicity and deaths from 3,4‐methylenedioxymethamphetamine (“ecstasy”). Lancet 1992;340:384–387. [DOI] [PubMed] [Google Scholar]
- 68. Hermle L, Spitzer M, Borchardt D, Kovar KA, Gouzoulis E. Psychological effects of MDE in normal subjects. Are entactogens a new class of psychoactive agents Neuropsychopharmacology 1993;8:171–176. [DOI] [PubMed] [Google Scholar]
- 69. Huether G, Zhou D, Ruther E. Causes and consequences of the loss of serotonergic presynapses elicited by the consumption of 3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”) and its congeners. J Neural Transm 1997;104:771–794. [DOI] [PubMed] [Google Scholar]
- 70. Iwersen S, Schmoldt A. Two very different fatal cases associated with the use of methylenedioxyethylamphetamine (MDEA): Eve as deadly as Adam. J Toxicol Clin Toxicol 1996;34:241–244. [DOI] [PubMed] [Google Scholar]
- 71. Jansen KL. Ecstasy (MDMA) dependence. Drug Alcohol Depend 1999;53:121–124. [DOI] [PubMed] [Google Scholar]
- 72. Johnson M, Hanson GR, Gibb JW. Effects of N‐ethyl‐3,4‐methylenedioxyamphetamine (MDE) on central serotonergic and dopaminergic systems of the rat. Biochem Pharmacol 1987;36:4085–4093. [DOI] [PubMed] [Google Scholar]
- 73. Johnson M, Hanson GR, Gibb JW. Characterization of acute N‐ethyl‐3,4‐methylenedioxyamphetamine (MDE) action on the central serotonergic system. Biochem Pharmacol 1989;38:4333–4338. [DOI] [PubMed] [Google Scholar]
- 74. Johnson MP, Hoffman AJ, Nichols DE. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur JPharmacol 1986;132:269–276. [DOI] [PubMed] [Google Scholar]
- 75. Johnston LD, O'Malley PM, Bachman JD. Monitoring the Future national survey results on drug use, 1975–2002: Volume I, Secondary school students (NIH Publication No. 03–5375). Bethesa , MD : National Institute on Drug Abuse, 2003. [Google Scholar]
- 76. Johnston LD, O'Malley PM, Bachman JD. Monitoring the Future national survey results on drug use, 1975–2002: Volume II, College students and adults ages 19–40 (NIH Publication No. 03–5376). Bethesa , MD : National Institute on Drug Abuse, 2003. [Google Scholar]
- 77. Jones SR, Gainetdinov RR, Wightman RM, Caron MG. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 1998;18:1979–1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78. Kalant H. The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. Can Med Assoc J 2001;165:917–928. [PMC free article] [PubMed] [Google Scholar]
- 79. Kaskey GB. Possible interaction between an MAOI and “ecstasy.” Am J Psychiatry 1992;149:411–412. [DOI] [PubMed] [Google Scholar]
- 80. Kelly PA, Ritchie IM, Quate L, McBean DE, Olverman HJ. Functional consequences of perinatal exposure to 3,4‐methylenedioxymethamphetamine in rat brain. Br J Pharmacol 2002;137:963–970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81. Kish SJ. How strong is the evidence that brain serotonin neurons are damaged in human users of ecstasy Pharmacol Biochem Behav 2002;71:845–855. [DOI] [PubMed] [Google Scholar]
- 82. Kraemer T, Maurer HH. Toxicokinetics of amphetamines: Metabolism and toxicokinetic data of designer drugs, amphetamine, methamphetamine, and their N‐alkyl derivatives. Ther Drug Monit 2002;24:277–289. [DOI] [PubMed] [Google Scholar]
- 83. Kramer HK, Poblete JC, Azmitia EC. Characterization of the translocation of protein kinase C (PKC) by 3,4‐methylenedioxymethamphetamine (MDMA/ecstasy) in synaptosomes: Evidence for a presynaptic localization involving the serotonin transporter (SERT). Neuropsychopharmacology 1998;19:265–277. [DOI] [PubMed] [Google Scholar]
- 84. Kreth K, Kovar K, Schwab M, Zanger UM. Identification of the human cytochromes P450 involved in the oxidative metabolism of “Ecstasy”‐related designer drugs. Biochem Pharmacol 2000;59:1563–1571. [DOI] [PubMed] [Google Scholar]
- 85. Kunsman GW, Manno JE, Cockerham KR, Manno BR. Application of the Syva EMIT and Abbott TDx amphetamine immunoassays to the detection of 3,4‐methylene‐dioxymethamphetamine (MDMA) and 3,4‐methylene‐dioxyethamphetamine (MDEA) in urine. J Anal Toxicol 1990;14:149–153. [DOI] [PubMed] [Google Scholar]
- 86. Lawn JC. Schedules of Controlled Substances; Scheduling of 3,4‐methylenedioxymethamphetamine (MDMA) into Schedule I of the Controlled Substance Act. Federal Register 1986;51:36552–36560. [Google Scholar]
- 87. Lekskulchai V, Mokkhavesa C. Evaluation of Roche Abuscreen ONLINE amphetamine immunoassay for screening of new amphetamine analogues. J Anal Toxicol 2001;25:471–475. [DOI] [PubMed] [Google Scholar]
- 88. Leonardi ET, Azmitia EC. MDMA (ecstasy) inhibition of MAO type A and type B: Comparisons with fenfluramine and fluoxetine (Prozoc). Neuropsychopharmacology 1994;10:231–238. [DOI] [PubMed] [Google Scholar]
- 89. Liechti ME, Baumann C, Gamma A, Vollenweider FX. Acute psychological effects of 3,4‐methylenedioxy‐methamphetamine (MDMA, “Ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology 2000;22:513–521. [DOI] [PubMed] [Google Scholar]
- 90. Lim HK, Foltz RL. In vivo and in vitro metabolism of 3,4‐(methylenedioxy)methamphetamine in the rat: Identification of metabolites using an ion trap detector. Chem Res Toxicol 1988;1:370–378. [DOI] [PubMed] [Google Scholar]
- 91. Logan BJ, Laverty R, Sanderson WD, Yee YB. Differences between rats and mice in MDMA (methylenedioxymethylamphetamine) neurotoxicity. Eur J Pharmacol 1988;152:227–234. [DOI] [PubMed] [Google Scholar]
- 92. Loor R, Lingenfelter C, Wason PP, Tang K, Davoudzadeh D. Multiplex assay of amphetamine, methamphetamine, and ecstasy drug using CED IA technology. J Anal Toxicol 2002;26:267–273. [DOI] [PubMed] [Google Scholar]
- 93. Lora‐Tamayo C, Tena T, Rodriguez A. Amphetamine derivative related deaths. Forensic Sci Int 1997;85:149–157. [DOI] [PubMed] [Google Scholar]
- 94. Lyon RA, Glennon RA, Titeler M. 3,4‐Methylenedioxymethamphetamine (MDMA): Stereo selective interactions at brain 5‐HT1 and 5‐HT2 receptors. Psychopharmacology 1986;88:525–526. [DOI] [PubMed] [Google Scholar]
- 95. Mansbach RS, Braff DL, Geyer MA. Prepulse inhibition of the acoustic startle response is disrupted by N‐ethyl‐3,4‐methylenedioxyamphetamine(MDEA) in the rat. Eur J Pharmacol 1989;167:49–55. [DOI] [PubMed] [Google Scholar]
- 96. Matsushima K, Nagai T, Kamiyama S. Optical isomer analysis of 3,4‐methylene‐dioxyamphetamine analogues and their stereo selective disposition in rats. J Anal Toxicol 1998;22:33–39. [DOI] [PubMed] [Google Scholar]
- 97. Maurer HH. On the metabolism and the toxicological analysis of methylenedioxyphenylalkylamine designer drugs by gas chromatography‐ mass spectrometry. Ther Drug Monit 1996;18:465–470. [DOI] [PubMed] [Google Scholar]
- 98. Maurer HH, Bickeboeller‐Friedrich J, Kraemer T, Peters FT. Toxicokinetics and analytical toxicology of amphetamine‐derived designer drugs (‘Ecstasy’). Toxicol Lett 2000;112–113:133–142. [DOI] [PubMed] [Google Scholar]
- 99. Maurer HH, Ensslin H, Kovar KA. Zum Metabolismus von 3,4‐Methylendioxyetilampfetamin (MDEA) beim Menschen. Sucht 1992;38:109–110. [Google Scholar]
- 100. McElhatton PR, Bateman DN, Evans C, Pughe KR, Thomas SH. Congenital anomalies after prenatal ecstasy exposure. Lancet 1999;354:1441–1442. [DOI] [PubMed] [Google Scholar]
- 101. McKenna DJ, Guan XM, Shulgin AT. 3,4‐Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H‐dopamine and 3H‐5‐hydroxytryptamine. Pharmacol Biochem Behav 1991;38:505–512. [DOI] [PubMed] [Google Scholar]
- 102. McKenna DJ, Peroutka SJ. Neurochemistry and neurotoxicity of 3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurochem 1990;54:14–22. [DOI] [PubMed] [Google Scholar]
- 103. Meyer A, Mayerhofer A, Kovar KA, Schmidt WJ. Enantioselective metabolism of the designer drugs 3,4‐methylenedioxymethamphetamine (‘ecstasy’) and 3,4‐methylenedioxyethylamphetamine (‘eve’) isomers in rat brain and blood. Neurosci Lett 2002;330:193–197. [DOI] [PubMed] [Google Scholar]
- 104. Meyer A, Mayerhofer A, Kovar KA, Schmidt WJ. Rewarding effects of the optical isomers of 3,4‐methylenedioxy‐methylamphetamine (‘Ecstasy’) and 3,4‐methylenedioxy‐ethylamphetamine (‘Eve’) measured by conditioned place preference in rats. Neurosci Lett 2002;330:280–284. [DOI] [PubMed] [Google Scholar]
- 105. Michel RE, Rege AB, George WJ. High‐pressure liquid chromatography/electrochemical detection method for monitoring MDA and MDMA in whole blood and other biological tissues. J Neurosci Methods 1993;50:61–66. [DOI] [PubMed] [Google Scholar]
- 106. Milroy CM, Clark JC, Forrest AR. Pathology of deaths associated with “ecstasy” and “eve” misuse. J Clin Pathol 1996;49:149–153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107. Moeller MR, Kraemer T. Drugs of abuse monitoring in blood for control of driving under the influence of drugs. Ther Drug Monit 2002;24:210–221. [DOI] [PubMed] [Google Scholar]
- 108. Moeller MR, Steinmeyer S, Kraemer T. Determination of drugs of abuse in blood. J Chromatogr B Biomed Sci Appl 1998;713:91–109. [DOI] [PubMed] [Google Scholar]
- 109. Montoya AG, Sorrentino R, Lukas SE, Price BH. Long‐term neuropsychiatric consequences of “ecstasy” (MDMA): Areview. Harv Rev Psychiatry 2002;10:212–220. [PubMed] [Google Scholar]
- 110. Morgan MJ. Ecstasy (MDMA): A review of its possible persistent psychological effects. Psychopharmacology (Berl) 2000;152:230–248. [DOI] [PubMed] [Google Scholar]
- 111. Mortensen OV, Kristensen AS, Rudnick G, Wiborg O. Molecular cloning, expression and characterization of a bovine serotonin transporter. Brain Res Mol Brain Res 1999;71:120–126. [DOI] [PubMed] [Google Scholar]
- 112. Nader MA, Hoffmann SM, Barrett JE. Behavioral effects of (±)3,4‐methylenedioxyamphetamine (MDA) and (±)3,4‐methylenedioxymethamphetamine (MDMA) in the pigeon: Interactions with noradrenergic and serotonergic systems. Psychopharmacology 1989;98:183–188. [DOI] [PubMed] [Google Scholar]
- 113. Nichols DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J Psychoactive Drugs 1986;18:305–313. [DOI] [PubMed] [Google Scholar]
- 114. Nichols DE, Lloyd DH, Hoffman AJ, Nichols MB, Yim GK. Effects of certain hallucinogenic amphetamine analogues on the release of [3H] serotonin from rat brain synaptosomes. J Med Chem 1982;25:530–535. [DOI] [PubMed] [Google Scholar]
- 115. Nichols DE, Oberlender R. Structure‐activity relationships of MDMA and related compounds: Anew class of psychoactive agents? In: Peroutka SJ, Ed. Ecstasy: the clinical, pharmacological amd neurotoxicological effects of the drug MDMA. Boston : Kluwer, 1990;105–131. [Google Scholar]
- 116. Nichols DE, Oberlender R. Structure‐activity relationships of MDMA and related compounds: A new class of psychoactive drugs Ann NY Acad Sci 1990;600:613–623. [DOI] [PubMed] [Google Scholar]
- 117. Nowoczyn N. Designer‐Drogen In: Gölz J, Ed. Moderne Suchtmedizin. Stuttgart New York : Thieme, 1998;B 4.4 1–12. [Google Scholar]
- 118. Oberlender R, Nichols DE. Drug discrimination studies with MDMA and amphetamine. Psychopharmacology 1988;95:71–76. [DOI] [PubMed] [Google Scholar]
- 119. Oberlender R, Nichols DE. (+)‐N‐methyl‐1–(1,3‐benzodioxol‐5‐yl)‐2‐butanamine as a discriminative stimulus in studies of 3,4‐methylenedioxy‐methamphetamine‐like behavioral activity. J Pharmacol Exp Ther 1990;255:1098–1106. [PubMed] [Google Scholar]
- 120. O'Leary G, Nargiso J, Weiss RD. 3,4‐methylenedioxymethamphetamine (MDMA): A Review. Curr Psychiatry Rep 2001;3:477–483. [DOI] [PubMed] [Google Scholar]
- 121. O'Loinsigh ED, Boland G, Kelly JP, O'Boyle KM. Behavioural, hyperthermic and neurotoxic effects of 3,4‐methylenedioxymethamphetamine analogues in the Wistar rat. Prog Neuropsychopharmacol Biol Psychiatry 2001;25:621–638. [DOI] [PubMed] [Google Scholar]
- 122. Parrott AC. Human psychopharmacology of Ecstasy (MDMA): A review of 15 years of empirical research. Hum Psychopharmacol 2001;16:557–577. [DOI] [PubMed] [Google Scholar]
- 123. Parrott AC. Recreational Ecstasy/MDMA, the serotonin syndrome, and serotonergic neurotoxicity. Pharmacol Biochem Behav 2002;71:837–844. [DOI] [PubMed] [Google Scholar]
- 124. Parrott AC, Lasky J. Ecstasy (MDMA) effects upon mood and cognition: Before, during and after a Saturday night dance. Psychopharmacology (Berl) 1998;139:261–268. [DOI] [PubMed] [Google Scholar]
- 125. Paulus MP, Geyer MA. The effects of MDMA and other methylenedioxy‐substituted phenylalkylamines on the structure of rat locomotor activity. Neuropsychopharmacology 1992;7:15–31. [PubMed] [Google Scholar]
- 126. Peroutka SJ, Newman H, Harris H. Subjective effects of 3,4‐methylenedioxymethamphetamine in recreational users. Neuropsychopharmacology 1988;1:273–277. [PubMed] [Google Scholar]
- 127. Peroutka SJ. Ecstasy: The clinical, pharmacological and neurotoxicological effects of MDMA. Boston : Kluwer, 1990. [Google Scholar]
- 128. Pierce PA, Peroutka SJ. Ring‐substituted amphetamine interactions with neurotransmitter receptor binding sites in human cortex. Neurosci Lett 1988;95:208–212. [DOI] [PubMed] [Google Scholar]
- 129. Pisternick W, Kovar KA, Ensslin H. High‐performance thin‐layer chromatographic determination of N‐ethyl‐3,4‐methylenedioxyamphetamine and its major metabolites in urine and comparison with high‐performance liquid chromatography. J Chromatogr B Biomed Sci Appl 1997;688:63–69. [DOI] [PubMed] [Google Scholar]
- 130. Raikos N, Tsoukali H, Psaroulis D, Vassiliadis N, Tsoungas M, Njau SN. Amphetamine derivative related deaths in northern Greece. Forensic Sci Int 2002;128:31–34. [DOI] [PubMed] [Google Scholar]
- 131. Ramamoorthy Y, Tyndale RF, Sellers EM. Cytochrome P450 2D6.1 and cytochrome P450 2D6.10 differ in catalytic activity for multiple substrates. Pharmacogenetics 2001;11:477–487. [DOI] [PubMed] [Google Scholar]
- 132. Ramamoorthy Y, Yu AM, Suh N, Haining RL, Tyndale RF, Sellers EM. Reduced (+/‐)‐3,4‐methylenedioxymethamphetamine (“Ecstasy”) metabolism with cytochrome P450 2D6 inhibitors and pharmacogenetic variants in vitro . Biochem Pharmacol 2002;63:2111–2119. [DOI] [PubMed] [Google Scholar]
- 133. Ricaurte G, Bryan G, Strauss I, Seiden I, Schuster C. Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals. Science 1985;229:986–988. [DOI] [PubMed] [Google Scholar]
- 134. Ricaurte GA, Finnegan KF, Nichols DE, DeLanney LE, Irwin I, Langston JW. 3,4‐Methylenedioxyethyl‐amphetamine (MDE), a novel analogue of MDMA, produces long‐lasting depletion of serotonin in the rat brain. Eur J Pharmacol 1987;137:265–268. [DOI] [PubMed] [Google Scholar]
- 135. Ricaurte GA, McCann UD. Neurotoxic amphetamine analogues: Effects in monkeys and implications for humans. Ann NY Acad Sci 1992;648:371–382. [DOI] [PubMed] [Google Scholar]
- 136. Ricaurte GA, McCann UD. Assessing long‐term effects of MDMA (Ecstasy). Lancet 2001;358:1831–1832. [DOI] [PubMed] [Google Scholar]
- 137. Ricaurte GA, McCann UD, Szabo Z, Scheffel U. Toxicodynamics and long‐term toxicity of the recreational drug, 3,4‐methylenedioxymethamphetamine (MDMA, ‘Ecstasy’). Toxicol Lett 2000;112–113:143–146. [DOI] [PubMed] [Google Scholar]
- 138. Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD. Severe dopaminergic neurotoxicity in primates after a common recreational dose regimen of MDMA (“ecstasy”). Science 2002;297:2260–2263. (retracted). [DOI] [PubMed] [Google Scholar]
- 139. Ropero‐Miller JD, Goldberger BA. Recreational drugs. Current trends in the 90s. Clin Lab Med 1998;18:727–746. [PubMed] [Google Scholar]
- 140. Rothman RB, Baumann MH. Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol Ther 2002;95:73–88. [DOI] [PubMed] [Google Scholar]
- 141. Rothman RB, Baumann MH, Dersch CM, et al. Amphetamine‐type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 2001;39:32–41. [DOI] [PubMed] [Google Scholar]
- 142. Ruangyuttikarn W, Moody DE. Comparison of three commercial amphetamine immunoassays for detection of methamphetamine, methylenedioxyamphetamine, methylenedioxymethamphetamine, and methylenedioxyethylamphetamine. J Anal Toxicol 1988;12:229–233. [DOI] [PubMed] [Google Scholar]
- 143. Sadzot B, Baraban JM, Glennon RA, et al. Hallucinogenic drug interactions at human brain 5‐HT2 receptors: Implications for treating LSD‐induced hallucinogenesis. Psychopharmacology 1989;98:495–499. [DOI] [PubMed] [Google Scholar]
- 144. Sannerud CA, Kaminski BJ, Griffiths RR. Intravenous self‐injection of four novel phenethylamines in baboons. Behav Pharmacol 1996;7:315–323. [DOI] [PubMed] [Google Scholar]
- 145. Saunders N. Ecstasy and neurodegeneration. No evidence of neurotoxicity exists. BMJ 1996;313:423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146. Schechter MD. MDMA as a discriminative stimulus: Isomeric comparisons. Pharmacol Biochem Behav 1987;27:41–44. [DOI] [PubMed] [Google Scholar]
- 147. Schechter MD. Serotonergic‐dopaminergic mediation of 3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Biochem Behav 1988;31:817–824. [DOI] [PubMed] [Google Scholar]
- 148. Schechter MD. Effect of serotonin depletion by p‐chlorophenylalanine upon discriminative behaviours. Gen Pharmacol 1991;22:889–893. [DOI] [PubMed] [Google Scholar]
- 149. Schechter MD. ‘Candyflipping’: Synergistic discriminative effect of LSD and MDMA. Eur J Pharmacol 1998;341:131–134. [DOI] [PubMed] [Google Scholar]
- 150. Schmidt CJ. Acute administration of methylenedioxymethamphetamine: Comparison with the neurochemical effects of its N‐desmethyl and N‐ethyl analogs. Eur J Pharmacol 1987;136:81–88. [DOI] [PubMed] [Google Scholar]
- 151. Schmidt CJ, Taylor VL. Direct central effects of acute methylenedioxymethamphetamine on serotonergic neurons. Eur J Pharmacol 1988;156:121–131. [DOI] [PubMed] [Google Scholar]
- 152. Schmidt CJ, Taylor VL. Reversal of the acute effects of 3,4‐methylenedioxymethamphetamine by 5‐HT uptake inhibitors. Eur J Pharmacol 1990;181:133–136. [DOI] [PubMed] [Google Scholar]
- 153. Schmidt WJ, Mayerhofer A, Meyer A, Kovar KA. Ecstasy counteracts catalepsy in rats, an anti‐parkinsonian effect Neurosci Lett 2002;330:251–254. [DOI] [PubMed] [Google Scholar]
- 154. Schreckenberger M, Gouzoulis‐Mayfrank E, Sabri O, et al. “Ecstasy”‐induced changes of cerebral glucose metabolism and their correlation to acute psychopathology. An 18‐FDG PET study. Eur J Nucl Med 1999;26:1572–1579. [DOI] [PubMed] [Google Scholar]
- 155. Schwab M, Seyringer E, Brauer RB, Hellinger A, Griese EU. Fatal MDMA intoxication. Lancet 1999;353:593–594. [DOI] [PubMed] [Google Scholar]
- 156. Series HG, Molliver ME. Immunocytochemical evidence for serotonergic neurotoxicity of N‐ethyl‐methylenedioxyamphetamine (MDE). Exp Neurol 1994;128:50–58. [DOI] [PubMed] [Google Scholar]
- 157. Setola V, Hufeisen SJ, Grande‐Allen KJ, et al. 3,4‐methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine‐like proliferative actions on human cardiac valvular interstitial cells in vitro . Mol Pharmacol 2003;63:1223–1229. [DOI] [PubMed] [Google Scholar]
- 158. Shulgin A, Shulgin A. PiKHAL. A chemical love story. Berkeley , CA : Transform Press, 1991. [Google Scholar]
- 159. Shulgin AT. Psychotomimetic drugs: Structure‐activity relationships In: Iversen LL, Iversen SD, Snyder SH, Eds. Handbook of psychopharmacology. New York : Plenum, 1978;243–333. [Google Scholar]
- 160. Shulgin AT. The background and chemistry of MDMA. J Psychoactive Drugs 1986;18:291–304. [DOI] [PubMed] [Google Scholar]
- 161. Shulgin AT, Nichols DE. Characterization of three new psychotomimetics In: Stillman RC, Willette RE, Eds. The psychopharmacology of hallucinogenes. New York : Pergamon Press, 1978;74–83. [Google Scholar]
- 162. Shulgin AT, Sargent T, Naranjo C. Structure‐activity relationships of one‐ring psychotomimetics. Nature 1969;221:537–541. [DOI] [PubMed] [Google Scholar]
- 163. Simonsen KW, Kaa E. [Designer drugs in Jutland]. Ugeskr Laeger 2001;163:2248–2252. [PubMed] [Google Scholar]
- 164. Smilkstein MJ, Smolinske SC, Rumack BH. A case of MAO inhibitor/MDMA interaction: Agony after ecstasy. J Toxicol Clin Toxicol 1987;25:149–159. [DOI] [PubMed] [Google Scholar]
- 165. Sondermann N, Kovar KA. Screening experiments of ecstasy street samples using near infrared spectroscopy. Forensic Sci Int 1999;106:147–156. [DOI] [PubMed] [Google Scholar]
- 166. Spitzer M, Franke B, Walter H, et al. Enantio‐selective cognitive and brain activation effects of N‐ethyl‐3,4‐methylenedioxyamphetamine in humans. Neuropharmacology 2001;41:263–271. [DOI] [PubMed] [Google Scholar]
- 167. Sternbach H. The serotonin syndrome. Am J Psychiatry 1991;148:705–713. [DOI] [PubMed] [Google Scholar]
- 168. Stone DM, Johnson M, Hanson GR, Gibb JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N‐methylated and N‐ethylated derivatives. Eur J Pharmacol 1987;134:245–248. [DOI] [PubMed] [Google Scholar]
- 169. Stone DM, Stahl DC, Hanson GR, Gibb JW. The effects of 3,4‐methylenedioxymethamphetamine (MDMA) and 3,4‐methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 1986;128:41–48. [DOI] [PubMed] [Google Scholar]
- 170. Stout PR, Horn CK, Klette KL. Rapid simultaneous determination of amphetamine, methamphetamine, 3,4‐methylenedioxyamphetamine, 3,4‐methylenedioxymethamphetamine, and 3,4‐methylenedioxyethyl‐amphetamine in urine by solid‐phase extraction and GC‐MS: A method optimized for high‐volume laboratories. J Anal Toxicol 2002;26:253–261. [DOI] [PubMed] [Google Scholar]
- 171. Sulzer D, Maidment NT, Rayport S. Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 1993;60:527–535. [DOI] [PubMed] [Google Scholar]
- 172. Tehan B, Hardern R, Bodenham A. Hyperthermia associated with 3,4‐methylenedioxyethamphetamine (‘Eve’). Anaesthesia 1993;48:507–510. [DOI] [PubMed] [Google Scholar]
- 173. Tossmann P, Boldt S, Tensil MD. The use of drugs within the techno party scene in European metropolitan cities. Eur Addict Res 2001;7:2–23. [DOI] [PubMed] [Google Scholar]
- 174. Tsatsakis AM, Michalodimitrakis MN, Patsalis AN. MDEA related death in Crete: A case report and literature review. Vet Hum Toxicol 1997;39:241–244. [PubMed] [Google Scholar]
- 175. Tucker GT, Lennard MS, Ellis SW, et al. The demethylenation of methylenedioxymethamphetamine (“ecstasy”) by debrisoquine hydroxylase (CYP2D6). Biochem Pharmacol 1994;47:1151–1156. [DOI] [PubMed] [Google Scholar]
- 176. Vaiva G, Boss V, Bailly D, Thomas P, Lestavel P, Goudemand M. An “accidental” acute psychosis with ecstasy use. J Psychoactive Drugs 2001;33:95–98. [DOI] [PubMed] [Google Scholar]
- 177. Vollenweider‐Scherpenhuyzen MFI, Vollenweider FX. . Der Drogennotfall. Anaesthesist 1998;47:946–955. [DOI] [PubMed] [Google Scholar]
- 178. Weinmann W, Bohnert M. Lethal monointoxication by overdosage of MDEA. Forensic Sci Int 1998;91:91–101. [DOI] [PubMed] [Google Scholar]
- 179. Wichems CH, Hollingsworth CK, Bennett BA. Release of serotonin induced by 3,4‐methylenedioxymethamphetamine (MDMA) and other substituted amphetamines in cultured fetal raphe neurons: Further evidence for calcium‐independent mechanisms of release. Brain Res 1995;695:10–18. [DOI] [PubMed] [Google Scholar]
- 180. Winstock AR, Griffiths P, Stewart D. Drugs and the dance music scene: A survey of current drug use patterns among a sample of dance music enthusiasts in the UK. Drug Alcohol Depend 2001;64:9–17. [DOI] [PubMed] [Google Scholar]
- 181. World Health Organization . Amphetamine like stimulants. Report from the WHO meeting on amphetamines, MDMA and other psychostimulants. November 1996. Geneva : WHO, 1996;6. [Google Scholar]
- 182. Wu D, Otton SV, Inaba T, Kalow W, Sellers EM. Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol 1997;53:1605–1612. [DOI] [PubMed] [Google Scholar]
- 183. Zhao H, Brenneisen R, Scholer A, et al. Profiles of urine samples taken from Ecstasy users at Rave parties: Analysis by immunoassays, HPLC, and GC‐MS. J Anal Toxicol 2001;25:258–269. [DOI] [PubMed] [Google Scholar]
- 184. Zhou JF, Chen P, Zhou YH, Zhang L, Chen HH. 3,4‐Methylenedioxymethamphetamine (MDMA) abuse may cause oxidative stress and potential free radical damage. Free Radic Res 2003;37:491–497. [DOI] [PubMed] [Google Scholar]
