Abstract
Recanalization and neuroprotection have been mainly targeted for the specific treatment of acute ischemic stroke. Free radicals play a crucial role in brain ischemic injury by exacerbating membrane damage through peroxidation of unsaturated fatty acids of cell membrane, leading to neuronal death and brain edema. Free radicals have been implicated in stroke pathophysiology as pivotal contributors to cell injury. Edaravone (3‐methyl‐1‐phenyl‐2‐pyrazolin‐5‐one) is a novel potent free radical scavenger that has been clinically used to reduce the neuronal damage following ischemic stroke. Edaravone exerts neuroprotective effects by inhibiting endothelial injury and by ameliorating neuronal damage in brain ischemia. Edaravone provides the desirable features of NOS: it increases eNOS (beneficial NOS for rescuing ischemic stroke) and decreases nNOS and iNOS (detrimental NOS). Post‐ reperfusion brain edema and hemorrhagic events induced by thrombolytic therapy may be reduced by edaravone pretreatment. Increased productions of superoxide and NO in the brain after reperfusion and a concomitant surge in oxygen free radicals with increased NO during recirculation lead to formation of peroxynitrite, a superpotent radical. Edaravone, which inhibits oxidation and enhances NO production derived from increased eNOS expression, may improve and conserve cerebral blood flow without peroxynitrite generation during reperfusion. Clinical experience with edaravone suggests that this drug has a wide therapeutic time window. The combination therapy (a thrombolytic plus edaravone) is likely to target brain edema, reduce stroke death and improve the recovery from neurological deficits in stoke patients.
Keywords: Brain ischemia, Edaravone, eNOS, Neuroprotection, Radical scavenger
Full Text
The Full Text of this article is available as a PDF (107.2 KB).
REFERENCES
- 1. Abe K, Yuki S, Kogure K. String attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke 1988;19: 480–485. [DOI] [PubMed] [Google Scholar]
- 2. Amemiya S, Kamiya T, Nito C, et al. Anti‐apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur J Pharmacol 2005;516: 125–130. [DOI] [PubMed] [Google Scholar]
- 3. Chan PH, Fishman RA, Longar S, Chen S, Yu A. Cellular and molecular effects of polyunsaturated fatty acids in brain ischemia and injury. Prog Brain Res 1985;63: 227–235. [DOI] [PubMed] [Google Scholar]
- 4. Chan PH, Schmidley JW, Fishman RA, Longar SM. Brain injury, edema, and vascular permeability changes induced by oxygen derived free radicals. Neurology 1984;34: 315–320. [DOI] [PubMed] [Google Scholar]
- 5. Dalkara T, Endres M, Moskowitz MA. Mechanisms of NO neurotoxicity. Prog Brain Res 1998;118: 231–239. [DOI] [PubMed] [Google Scholar]
- 6. Dickhout JG, Hossain GS, Pozza PJ, Zhou J, Lhotak S, Austin RC. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium. Implication in atherogenesis. Arterioscler Thromb Vasc Biol 2005;25: 2623–2629. [DOI] [PubMed] [Google Scholar]
- 7. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4‐hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11: 81–128. [DOI] [PubMed] [Google Scholar]
- 8. Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J. Free Radicals in cerebral ischemia. Stroke 1978;9: 445–447. [DOI] [PubMed] [Google Scholar]
- 9. Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J Nutr 2003;133: 3275S–3284S. [DOI] [PubMed] [Google Scholar]
- 10. Gidday JM, Park TS, Shah AR, Gonzales ER. Modulation of basal and postischemic leukocyte‐endothelial adherence by nitric oxide. Stroke 1998;29: 1423–1429. [DOI] [PubMed] [Google Scholar]
- 11. Gursoy‐Ozdemir Y, Bolay H, Saribas O, Dalkara T. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke 2000;31: 1974–1980. [DOI] [PubMed] [Google Scholar]
- 12. Gursoy‐Ozdemir Y, Can A, Dalkara T. Reperfusion‐induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 2004;35: 1449–1453. [DOI] [PubMed] [Google Scholar]
- 13. Hacke W, Brott T, Caplan L, et al. Thrombolysis in acute ischemic stroke: Controlled trials and clinical experience. Neurology 1999;53: S3–S14. [PubMed] [Google Scholar]
- 14. Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, Von Kummer, R. Malignant middle cerebral artery territory infarction: Clinical course and prognostic sign. Arch Neurol 1996;56: 309–315. [DOI] [PubMed] [Google Scholar]
- 15. Halliwell B. Reactive oxygen species and the central nervous system. JNeurochem 1992;59: 1609–1623. [DOI] [PubMed] [Google Scholar]
- 16. Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 2005;39: 51–70. [DOI] [PubMed] [Google Scholar]
- 17. Hossmann KA. Viability threshold and the penumbra of focal ischemia. Ann Neurol 1994;54: 271–284. [DOI] [PubMed] [Google Scholar]
- 18. Huang Z, Huang PL, Ma J, et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro‐L‐arginine. J Cereb Blood Flow Metab 1996;16: 981–987. [DOI] [PubMed] [Google Scholar]
- 19. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994;265: 1883–1885. [DOI] [PubMed] [Google Scholar]
- 20. Kawai H, Nakai H, Suga M, Yuki S, Watanabe T, Saito K. Effects of a novel free radical scavenger, MCI‐186, on ischemia brain damage in rat distal middle cerebral artery occlusion model. J Pharmacol Exp Ther 1997;281: 921–927. [PubMed] [Google Scholar]
- 21. Kogure K, Watson BD, Busto R, Abe K. Potentiation of lipid peroxides by ischemia in rat brain. Neurochem Res 1982;7: 437–454. [DOI] [PubMed] [Google Scholar]
- 22. Kontos HA. George E Brown memorial lecture. Oxygen radicals in cerebral vascular injury. Circ Res 1985;57: 508–516. [DOI] [PubMed] [Google Scholar]
- 23. Kumar R, Krause GS, Yoshida H, Mori K, DeGracia DJ. Dysfunction of the unfolded protein response during global brain ischemia and reperfusion. J Cereb Blood Flow Metab 2003;23: 462–471. [DOI] [PubMed] [Google Scholar]
- 24. Lee JM, Grabb MC, Zipfel G, Choi DW. Brain tissue responses to ischemia. J Clin Invest 2000;106: 723–731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Lewen A, Marz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma 2000;17: 871–890. [DOI] [PubMed] [Google Scholar]
- 26. Li Y, Chopp M, Jiang N, Zhang ZG, Zaloga C. Induction of DNA fragmentation after 10 to 120 min of focal cerebral ischemia in rats. Stroke 1995;26: 1252–1258. [DOI] [PubMed] [Google Scholar]
- 27. Liu S, Liu M, Peterson S, Miyake M, Vallyathan V, Liu KJ. Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke. J Neurosci Res 2003;71: 882–888. [DOI] [PubMed] [Google Scholar]
- 28. Morimoto T, Globus MY, Busto R, Martinez E, Ginsberg MD. Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbra cortex following transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 1996;16: 92–99. [DOI] [PubMed] [Google Scholar]
- 29. Nishi H, Watanabe T, Sakurai H, Yuki S, Ishibashi A. Effect of MCI‐186 on brain edema in rats. Stroke 1989;20: 1236–1240. [DOI] [PubMed] [Google Scholar]
- 30. Otani H, Togashi H, Jesmin S, et al. Temporal effects of edaravone, a free radical scavenger, on transient ischemia‐induced neuronal dysfunction in the rat hippocampus. Eur J Pharmacol 2005;512: 129–137. [DOI] [PubMed] [Google Scholar]
- 31. Qi X, Okuma Y, Hosoi T, Nomura Y. Edaravone protects against hypoxia/ischemia‐induced endoplasmic reticulum dysfunction. J Pharmacol Exp Ther 2004;311: 388–393. [DOI] [PubMed] [Google Scholar]
- 32. Rodrigo R, Rivera G. Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine. Free Radic Biol Med 2002;33: 409–422. [DOI] [PubMed] [Google Scholar]
- 33. Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke 1997;28: 1283–1288. [DOI] [PubMed] [Google Scholar]
- 34. Schmidley JW. Free radicals in central nervous system ischemia. Stroke 1990;21: 1086–1090. [DOI] [PubMed] [Google Scholar]
- 35. Steinberg D. Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation 1997;95: 1062–1071. [DOI] [PubMed] [Google Scholar]
- 36. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low‐density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320: 915–924. [DOI] [PubMed] [Google Scholar]
- 37. The Edaravone Acute Brain Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI‐186), on acute brain infarction. Cerebrovasc Dis 2003;15: 222–229. [DOI] [PubMed] [Google Scholar]
- 38. Toyoda K, Fujii K, Kamouchi M, et al. Free radical scavenger, edaravone, in stroke with internal carotid artery occlusion. J Neurol Sci 2004;221: 11–17. [DOI] [PubMed] [Google Scholar]
- 39. Tsujita K, Shimomura H, Kawano H, et al. Effect of edaravone on reperfusion injury in patients with acute myocardial infarction. Am J Cardiol 2004;94: 481–484. [DOI] [PubMed] [Google Scholar]
- 40. Watanabe T, Morita I, Nishi H, Murota S. Preventive effect of MCI‐186 on 15—HPRTE induced vascular endothelial cell injury in vitro. Prostagland Leukot Essent Fatty Acids 1988;33: 81–87. [DOI] [PubMed] [Google Scholar]
- 41. Watanabe T, Yuki S, Egawa M, Nishi H. Protective effects of MCI‐186 on cerebral ischemia: Possible involvement of free radical scavenging and antioxidant actions. J Pharmacol Exp Ther 1994;268: 1597–1604. [PubMed] [Google Scholar]
- 42. Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans Trends Cardiovasc Med 2001;11: 93–102. [DOI] [PubMed] [Google Scholar]
- 43. Yamamoto Y, Kuwahara T, Watanabe K, Watanabe K. Antioxidant activity of 3‐methyl‐1‐phenyl‐2‐pyrazo‐lin‐5‐one. Redox Report 1996;2: 333–338. [DOI] [PubMed] [Google Scholar]
- 44. Yamamoto T, Yuki S, Watanabe T, Mitsuoka M, Saito K, Kogure K. Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia. Brain Res 1997;762: 240–242. [DOI] [PubMed] [Google Scholar]
- 45. Yoshida H, Sasaki K, Namiki Y, Sato N, Tada N. Edaravone, a novel radical scavenger, inhibits oxidative modification of low‐density lipoprotein (LDL) and reverses oxidized LDL‐mediated reduction in the expression of endothelial nitric oxide synthase. Atherosclerosis 2005;179: 97–102. [DOI] [PubMed] [Google Scholar]
- 46. Zhang N, Komine‐Kobayashi M, Tanaka R, Liu M, Mizuno Y, Urabe T. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 2005;36: 2220–2225. [DOI] [PubMed] [Google Scholar]
- 47. Zhang F, Xu S, Iadecola C. Time dependence of effect of nitric oxide synthase inhibition on cerebral ischemic damage. J Cereb Blood Flow Metab 1995;15: 595–601. [DOI] [PubMed] [Google Scholar]
- 48. Zhang W, Sato K, Hayashi T, et al. Extension of ischemic therapeutic time window by a free radical scavenger, edaravone, reperfused with tPA in rat brain. Neurol Res 2004;26: 342–348. [DOI] [PubMed] [Google Scholar]
