ABSTRACT
CRF1 antagonists DMP696 and DMP904 were designed as drug development candidates for the treatment of anxiety and depression. Both compounds display nanomolar affinity for human CRF1 receptors, and exhibit >1000‐fold selectivity for CRF1 over CRF2 receptors and over a broad panel of other proteins. DMP696 and DMP904 block CRF‐stimulated adenylyl cyclase activity in cortical homogenates and cell‐lines expressing CRF1 receptors. Both compounds inhibit CRF‐stimulated ACTH release from rat pituitary corticotropes. Binding and functional studies indicate that DMP696 and DMP904 behave as noncompetitive full antagonists. DMP696 and DMP904 exhibit anxiolytic‐like efficacy in several rat anxiety models. In the defensive withdrawal test, both compounds reduce exit latency with lowest effective doses of 3 and 1 mg/kg, respectively. The anxiolytic‐like effect is maintained over 14 days of repeated dosing. In the context of a novel environment used in this test, DMP696 and DMP904 reverse mild stress‐induced increases in plasma CORT secretion but at doses 3‐4‐fold greater than those required for anxiolytic‐like efficacy. DMP696 and DMP904 are ineffective in three depression models including the learned helplessness paradigm at doses up to 30 mg/kg. At lowest anxiolytic‐like doses, DMP696 and DMP904 occupy >50% CRF1 receptors in the brain. The in vivo IC50 values (plasma concentrations required for occupying 50% CRF1 receptors) estimated based upon free, but not total, plasma concentrations are an excellent correlation with the in vitro IC50 values. Neither compound produces sedation, ataxia, chlordiazepoxide‐like subjective effects or adverse effects on cognition at doses 10‐fold higher than anxiolytic‐like doses. Neither compound produces physiologically significant changes in cardiovascular, respiratory, gastrointestinal or renal functions at anxiolytic‐like doses. DMP696 and DMP904 have favorable pharmacokinetic profiles with good oral bioavailabilities. The overall pharmacological properties suggest that both compounds may be effective anxiolytics with low behavioral side effect liabilities.
Keywords: Anxiety, Corticotropin‐releasing factor (CRF), CRF Antagonists, Depression, DMP696, DMP904
Full Text
The Full Text of this article is available as a PDF (227.3 KB).
REFERENCES
- 1. Arai M, Assil IQ, Abou‐Samra AB. Characterization of three corticotropin‐releasing factor receptors in catfish: A novel third receptor is predominantly expressed in pituitary and urophysis. Endocrinology 2001;142:446–454. [DOI] [PubMed] [Google Scholar]
- 2. Arborelius L, Skelton KH, Thrivikraman KV, Plotsky PM, Schulz DW, Owens MJ. Chronic administration of the selective corticotropin‐releasing factor 1 receptor antagonist CP‐154,526: Behavioral, endocrine and neurochemical effects in the rat. J Pharmacol Exp Ther 2000;294:588–597. [PubMed] [Google Scholar]
- 3. Arolfo MP, Brioni JD. Diazepam impairs place learning in the Morris water maze. Behav Neural Biol 1991;55:131–136. [DOI] [PubMed] [Google Scholar]
- 4. Arvantis AG, Gilligan PJ, Chorvat RJ, et al. Non‐peptide corticotropin‐releasing hormone antagonists: Syntheses and structure‐activity relationships of 2‐anilinopyrimidines and ‐triazines. J Med Chem 1999;42:805–818. [DOI] [PubMed] [Google Scholar]
- 5. Bakthavatchalam R, Arvanitis AG, Gilligan PJ, et al. The discovery of DMP695: An orally active corticotropin‐releasing hormone (CRF1) receptor antagonist. ACS National Meeting, Boston , MA , 1998; MEDI 134. [Google Scholar]
- 6. Bale TL, Contarino A, Smith GW, et al. Mice deficient for corticotropin‐releasing hormone receptor‐2 display anxiety‐like behaviour and are hypersensitive to stress. Nat Genet 2000;24:410–414. [DOI] [PubMed] [Google Scholar]
- 7. Bale TL, Vale WW. Increased depression‐like behaviors in corticotropin‐releasing factor receptor‐2‐deficient mice: Sexually dichotomous responses. J Neurosci 2003;23:5295–5301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Bale TL, Vale WW. CRF and CRF receptors: Role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004;44:525–557. [DOI] [PubMed] [Google Scholar]
- 9. Behan DP, Heinrichs SC, Troncoso JC, et al. Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer's disease. Nature 1995;378:284–287. [DOI] [PubMed] [Google Scholar]
- 10. Blank T, Nijholt I, Grammatopoulos DK, Randeva HS, Hillhouse EW, Spiess J. Corticotropin‐releasing factor receptors couple to multiple G‐proteins to activate diverse intracellular signaling pathways in mouse hippocampus: Role in neuronal excitability and associative learning. J Neurosci 2003;23:700–707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Bornstein SR, Webster EL, Torpy DJ, et al. Chronic effects of a nonpeptide corticotropin‐releasing hormone type I receptor antagonist on pituitary‐adrenal function, body weight, and metabolic regulation. Endocrinology 1998;139:1546–1555. [DOI] [PubMed] [Google Scholar]
- 12. Broadbear JH, Winger G, Rivier JE, Rice KC, Woods JH. Corticotropin‐releasing hormone antagonists, astressin B and antalarmin: Differing profiles of activity in rhesus monkeys. Neuropsychopharmacology 2004;3:1112–1121. [DOI] [PubMed] [Google Scholar]
- 13. Buffett‐Jerrott SE, Stewart SH. Cognitive and sedative effects of benzodiazepine use. Curr Pharm Des 2002;8:45–58. [DOI] [PubMed] [Google Scholar]
- 14. Campbell BM, Morrison JL, Walker EL, Merchant KM. Differential regulation of behavioral, genomic, and neuroendocrine responses by CRF infusions in rats. Pharmacol Biochem Behav 2004;77:447–455. [DOI] [PubMed] [Google Scholar]
- 15. Chaki S, Okuyama S, Nakazato A, et al. In vitro pharmacological profile of nonpeptide CRF1 receptor antagonists, CRA1000 and CRA1001. Eur J Pharmacol 1999;371:205–211. [DOI] [PubMed] [Google Scholar]
- 16. Chaki S, Nakazato A, Kennis L, et al. Anxiolytic‐ and antidepressant‐like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Eur J Pharmacol 2004;485:145–158. [DOI] [PubMed] [Google Scholar]
- 17. Chen C, Dagnino R Jr, De Souza EB, et al. Design and synthesis of a series of non‐peptide high‐affinity human corticotropin‐releasing factor 1 receptor antagonists. J Med Chem 1996;39:4358–4360. [DOI] [PubMed] [Google Scholar]
- 18. Chen YL, Mansbach RS, Winter SM, Brooks E, Collins J, Corman ML. Synthesis and oral efficacy of a 4‐(butylethylamino)pyrrolo[2,3‐d]pyrimidine: A centrally active corticotropin‐releasing factor 1 receptor antagonist. J Med Chem 1997;40:1749–1754. [DOI] [PubMed] [Google Scholar]
- 19. Contarino A, Dellu F, Koob GF, et al. Reduced anxiety‐like and cognitive performance in mice lacking the corticotropin‐releasing factor receptor 1. Brain Res 1999;835:1–9. [DOI] [PubMed] [Google Scholar]
- 20. Coste SC, Kesterson RA, Heldwein KA, et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin‐releasing hormone receptor‐2. Nat Genet 2000;24:403–409. [DOI] [PubMed] [Google Scholar]
- 21. Curran HV, Bond A, O'Sullivan G, et al. Memory functions, alprazolam and exposure therapy: A controlled longitudinal study of agoraphobia with panic disorder. Psychol Med 1994;24:969–976. [DOI] [PubMed] [Google Scholar]
- 22. Dautzenberg FM, Hauger RL. The CRF peptide family and their receptors: Yet more partners discovered. Trends Pharmacol Sci 2002;23:71–77. [DOI] [PubMed] [Google Scholar]
- 23. De Souza EB, Whitehouse PJ, Kuhar MJ, Price DL, Vale WW. Reciprocal changes in corticotropin‐releasing factor (CRF)‐like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer's disease. Nature 1986;319:593–595. [DOI] [PubMed] [Google Scholar]
- 24. Deak T, Nguyen KT, Ehrlich AL, et al. The impact of the nonpeptide corticotropin‐releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress. Endocrinology 1999;140:79–86. [DOI] [PubMed] [Google Scholar]
- 25. Detke MJ, Rickels M, Lucki I; Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 1995;121:66–72. [DOI] [PubMed] [Google Scholar]
- 26. Ducottet C, Griebel G, Belzung C. Effects of the selective nonpeptide corticotropin‐releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:625–631. [DOI] [PubMed] [Google Scholar]
- 27. Farrokhi C, Blanchard DC, Griebel G, et al. Effects of the CRF1 antagonist SSR125543Aon aggressive behaviors in hamsters. Pharmacol Biochem Behav 2004;77:465–469. [DOI] [PubMed] [Google Scholar]
- 28. File SE, Andrews N. Anxiolytic‐like effects of 5‐HT1A agonists in drug‐naive and in benzodiazepine‐experiencedrats. Behav Pharmacol 1994;5:99–102. [DOI] [PubMed] [Google Scholar]
- 29. Gilligan PJ, Robertson DW, Zaczek R. Corticotropin releasing factor (CRF) receptor modulators: Progress and opportunities for new therapeutic agents. J Med Chem 2000;43:1641–1660. [DOI] [PubMed] [Google Scholar]
- 30. Gilligan PJ, Baldauf C, Cocuzza A, et al. The discovery of 4‐(3‐pentylamino)‐2,7‐dimethyl‐8‐(2‐methyl‐4‐methoxyphenyl)‐pyrazolo‐[1,5‐a]‐pyrimidine: A corticotropin‐releasing factor (hCRF1) antagonist. Bioorg Med Chem 2000;8:181–189. [DOI] [PubMed] [Google Scholar]
- 31. Gorissen ME, Curran HV, Eling PA. Proactive interference and temporal context encoding after diazepam intake. Psychopharmacology (Berl) 1998;138:334–343. [DOI] [PubMed] [Google Scholar]
- 32. Griebel G, Perrault G, Sanger DJ. Characterization of the behavioral profile of the non‐peptide CRF receptor antagonist CP‐154,526 in anxiety models in rodents. Comparison with diazepam and buspirone. Psychopharmacology 1998;138:55–66. [DOI] [PubMed] [Google Scholar]
- 33. Griebel G, Simiand J, Steinberg R, et al. 4‐(2‐Chloro‐4‐methoxy‐5‐methylphenyl)‐N‐[(1S)‐2‐cyclopropyl‐1‐(3‐fluoro‐4‐methylphenyl)ethyl]5‐methyl‐N‐(2‐propynyl)‐1,3‐thiazol‐2‐amine hydrochloride (SSR125543A), a potent and selective corticotrophin‐releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress‐related disorders. J Pharmacol Exp Ther 2002;301:333–345. [DOI] [PubMed] [Google Scholar]
- 34. Gully D, Geslin M, Serva L, et al. 4‐(2‐Chloro‐4‐methoxy‐5‐methylphenyl)‐N‐[(1S)‐2‐cyclopropyl‐1‐(3‐fluoro‐4‐methylphenyl)ethyl]5‐methyl‐N‐(2‐propynyl)‐1,3‐thiazol‐2‐amine hydrochloride (SSR125543A): A potent and selective corticotrophin‐releasing factor(1) receptor antagonist. I. Biochemical and pharmacological characterization. J Pharmacol Exp Ther 2002;301:322–332. [DOI] [PubMed] [Google Scholar]
- 35. Gutman DA, Owens MJ, Skelton KH, Thrivikraman KV, Nemeroff CB. The corticotropin‐releasing factor 1 receptor antagonist R121919 attenuates the behavioral and endocrine responses to stress. J Pharmacol Exp Ther 2003;304:874–880. [DOI] [PubMed] [Google Scholar]
- 36. Habib KE, Weld KP, Rice KC, et al. Oral administration of a corticotropin‐releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Acad Sci USA 2000;97:6079–6084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Harro J, Tonissaar M, Eller M. The effects of CRA 1000, anon‐peptide antagonist of corticotropin‐releasing factor receptor type 1, on adaptive behaviour in the rat. Neuropeptides 2001;35:100–109. [DOI] [PubMed] [Google Scholar]
- 38. He L, Gilligan PJ, Zaczek R, et al. 4‐(1,3‐Dimethoxyprop‐2‐ylamino)‐2,7‐dimethyl‐8‐(2,4‐dichlorophenyl)pyrazolo[1,5‐a]‐1,3,5‐triazine: A potent, orally bioavailable CRF(1) receptor antagonist. J Med Chem 2000;43:449–456. [DOI] [PubMed] [Google Scholar]
- 39. Heinrichs SC, De Souza EB. Corticotropin‐releasing factor antagonists, binding‐protein and receptors: Implications for central nervous system disorders. Baillieres Best Pract Res Clin Endocrinol Metab 1999;4:541–554. [DOI] [PubMed] [Google Scholar]
- 40. Heinrichs SC, De Souza EB, Schulteis G, Lapsansky JL, Grigoriadis DE. Brain penetrance, receptor occupancy and antistress in vivo efficacy of a small molecule corticotropin releasing factor type I receptor selective antagonist. Neuropsychopharmacology 2002;2:194–202. [DOI] [PubMed] [Google Scholar]
- 41. Held, K. , Kunzel, H. , Ising, M. , et al. Treatment with the CRH1‐receptor antagonist R121919 improves sleep EEG in patients with depression. J Psychiatr Res 2004;38:129–136. [DOI] [PubMed] [Google Scholar]
- 42. Hikichi T, Akiyoshi J, Yamamoto Y, Tsutsumi T, Isogawa K, Nagayama H. Suppression of conditioned fear by administration of CRF receptor antagonist CP‐154,526. Pharmacopsychiatry 2000;33:189–193. [DOI] [PubMed] [Google Scholar]
- 43. Ho SP, Takahashi LK, Livanov V, et al. Attenuation of fear conditioning by antisense inhibition of brain corticotropin releasing factor‐2 receptor. Brain Res Mol Brain Res 2001;89:29–40. [DOI] [PubMed] [Google Scholar]
- 44. Hogan JB, Hodges DB Jr, Lelas S, Gilligan PJ, McElroy JF, Lindner MD. Effects of CRF‐1 Receptor Antagonists and Benzodiazepines on Performance in the Morris Water Maze. Psychopharmacology 2005: In press. [DOI] [PubMed] [Google Scholar]
- 45. Holmes A, Heilig M, Rupniak NM, Steckler T, Griebel G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003;24:580–588. [DOI] [PubMed] [Google Scholar]
- 46. Holsboer F. Corticotropin‐releasing hormone modulators and depression. Curr Opin Invest Drugs 2003;4:46–50. [PubMed] [Google Scholar]
- 47. Imaki T, Katsumata H, Miyata M, Naruse M, Imaki J, Minami S. Expression of corticotropin‐releasing hormone type 1 receptor in paraventricular nucleus after acute stress. Neuroendocrinology 2001;73:293–301. [DOI] [PubMed] [Google Scholar]
- 48. Jasnow AM, Banks MC, Owens EC, Huhman KL. Differential effects of two corticotropin‐releasing factor antagonists on conditioned defeat in male Syrian hamsters (Mesocricetus auratus). Brain Res 1999;846:122–128. [DOI] [PubMed] [Google Scholar]
- 49. Kaschow JW, Baker D, Geracioti TD Jr. Corticotropin‐releasing hormone in depression and post‐traumatic stress disorder. Peptides 2001;22:845–851. [DOI] [PubMed] [Google Scholar]
- 50. Keck ME, Welt T, Wigger A, et al. The anxiolytic effect of the CRH(1) receptor antagonist R121919 depends on innate emotionality in rats. Eur J Neurosci 2001;2:373–380. [DOI] [PubMed] [Google Scholar]
- 51. Keck ME, Welt T, Muller MB, Landgraf R, Holsboer F. The high‐affinity non‐peptide CRH1 receptor antagonist R121919 attenuates stress‐induced alterations in plasma oxytocin, prolactin, and testosterone secretion in rats. Pharmacopsychiatry 2003;36:27–31. [DOI] [PubMed] [Google Scholar]
- 52. Kehne JH, Coverdale S, McCloskey TC, Hoffman DC, Cassella JV. Effects of the CRF(1) receptor antagonist, CP 154,526, in the separation‐induced vocalization anxiolytic test in rat pups. Neuropharmacology 2000;8:1357–1367. [DOI] [PubMed] [Google Scholar]
- 53. Kehne J, De Lombaert S. Non‐peptidic CRF1 receptor antagonists for the treatment of anxiety, depression and stress disorders. Curr Drug Target CNS Neurol Disord 2002;1(5):467–493. [DOI] [PubMed] [Google Scholar]
- 54. Keller C, Bruelisauer A, Lemaire M, Enz A. Brain pharmacokinetics of a nonpeptidic corticotropin‐releasing factor antagonist. Drug Metab Disp 2002;30:173–176. [DOI] [PubMed] [Google Scholar]
- 55. Kikusui T, Takeuchi Y, Mori Y. Involvement of corticotropin‐releasing factor in the retrieval process of fear‐conditioned ultrasonic vocalization in rats. Physiol Behav 2000;71:323–328. [DOI] [PubMed] [Google Scholar]
- 56. Kishimoto T, Radulovic J, Radulovic M, et al. Deletion of crhr2 reveals an anxiolytic role for corticotropin‐releasing hormone receptor‐2. Nat Genet 2000;24:415–419. [DOI] [PubMed] [Google Scholar]
- 57. Kostich WA, Chen A, Sperle K, Largent BL. Molecular identification and analysis of a novel human corticotropin‐releasing factor (CRF) receptor: The CRF2gamma receptor. Mol Endocrinol 1998;12:1077–1085. [DOI] [PubMed] [Google Scholar]
- 58. Kunzel HE, Zobel AW, Nickel T, et al. Treatment of depression with the CRH‐1‐receptor antagonist R121919: Endocrine changes and side effects. J Psychiatr Res 2003;37:525–533. [DOI] [PubMed] [Google Scholar]
- 59. Lancel M, Muller‐Preuss P, Wigger A, Landgraf R, Holsboer F. The CRH1 receptor antagonist R121919 attenuates stress‐elicited sleep disturbances in rats, particularly in those with high innate anxiety. J Psychiatr Res 2002;36:197–208. [DOI] [PubMed] [Google Scholar]
- 60. Lelas S, Zeller KL, Ward KA, McElroy JF. The anxiolytic CRF(1) antagonist DMP696 fails to function as a discriminative stimulus and does not substitute for chlordiazepoxide in rats. Psychopharmacology (Berl) 2003;166:408–415. [DOI] [PubMed] [Google Scholar]
- 61. Lelas, S , Wong, H , Li, Y. ‐W , et al. Anxiolytic effects of the CRF1 antagonist DMP904 administered acutely or chronically at doses occupying central CRF1 receptors in rats. J Pharmacol Exp Ther 2004;309:293–302. [DOI] [PubMed] [Google Scholar]
- 62. Li YW, Hill G, Wong H, et al. Receptor occupancy of nonpeptide corticotropin‐releasing factor 1 antagonist DMP696: Correlation with drug exposure and anxiolytic efficacy. J Pharmacol Exp Ther 2003;305:86–96. [DOI] [PubMed] [Google Scholar]
- 63. Lovenberg TW, Chalmers DT, Liu C, De Souza EB. CRF2α and CRF2β receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrinology 1995;136:4139–4142. [DOI] [PubMed] [Google Scholar]
- 64. Lundkvist J, Chai Z, Teheranian R, et al. A non peptidic corticotropin releasing factor receptor antagonist attenuates fever and exhibits anxiolytic‐like activity. Eur J Pharmacol 1996;309:195–200. [DOI] [PubMed] [Google Scholar]
- 65. Maciag CM, Dent G, Gilligan P, et al. Effects of a non‐peptide CRF antagonist (DMP696) on the behavioral and endocrine sequelae of maternal separation. Neuropsychopharmacology 2002;5:574–582. [DOI] [PubMed] [Google Scholar]
- 66. Mansbach RS, Brooks EN, Chen YL. Antidepressant‐like effects of CP‐154,526, a selective CRF1 receptor antagonist. Eur J Pharmacol 1997;323:21–26. [DOI] [PubMed] [Google Scholar]
- 67. McElroy JF, Ward KA, Zeller KL, et al. The CRF(1) receptor antagonist DMP696 produces anxiolytic effects and inhibits the stress‐induced hypothalamic‐pituitary‐adrenal axis activation without sedation or ataxia in rats. Psychopharmacology (Berl) 2002;165:86–92. [DOI] [PubMed] [Google Scholar]
- 68. McNaughton N, Morris RG. Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav Brain Res 1987;24:39–46. [DOI] [PubMed] [Google Scholar]
- 69. Millan MJ, Brocco M, Gobert A, Dorey G, Casara P, Dekeyne A. Anxiolytic properties of the selective, non‐peptidergic CRF(1) antagonists, CP154,526 and DMP695: A comparison to other classes of anxiolytic agents. Neuropsychopharmacology 2001;4:585–600. [DOI] [PubMed] [Google Scholar]
- 70. Million M, Grigoriadis DE, Sullivan S, et al. A novel water‐soluble selective CRF1 receptor antagonist, NBI 35965, blunts stress‐induced visceral hyperalgesia and colonic motor function in rats. Brain Res 2003;985:32–42. [DOI] [PubMed] [Google Scholar]
- 71. Muller MB, Zimmermann S, Sillaber I, et al. Limbic corticotropin‐releasing hormone receptor 1 mediates anxiety‐related behavior and hormonal adaptation to stress. Nat Neurosci 2003;6:1100–1107. [DOI] [PubMed] [Google Scholar]
- 72. Okuyama S, Chaki S, Kawashima N, et al. Receptor binding, behavioral, and electrophysiological profiles of nonpeptide corticotropin‐releasing factor subtype 1 receptor antagonists CRA1000 and CRA1001. J Pharmacol Exp Ther 1999;2:926–935. [PubMed] [Google Scholar]
- 73. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin‐releasing factor. Pharmacol Rev 1991;43:425–473. [PubMed] [Google Scholar]
- 74. Pellow S, Chopin P, File SE, Briley M. Validation of open: closed arm entries in an elevated plus‐maze as a measure of anxiety in the rat. J Neurosci Meth 1985;14:149–167. [DOI] [PubMed] [Google Scholar]
- 75. Potter E, Behan DP, Linton EA, Lowry PJ, Sawchenko PE, Vale WW. The central distribution of a corticotropin‐releasing factor (CRF)‐binding protein predicts multiple sites and modes of interaction with CRF. Proc Natl Acad Sci USA 1992;89:4192–4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76. Radulovic J, Ruhmann A, Liepold T, Spiess J. Modulation of learning and anxiety by corticotropin‐releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J Neurosci 1999;19:5016–5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77. Risbrough VB, Hauger RL, Pelleymounter MA, Geyer MA. Role of corticotropin releasing factor (CRF) receptors 1 and 2 in CRF‐potentiated acoustic startle in mice. Psychopharmacology (Berl) 2003;170:178–187. [DOI] [PubMed] [Google Scholar]
- 78. Rominger DH, Rominger CM, Fitzgerald LW, Grzanna R, Largent BL, Zaczek R. Characterization of [125I]sauvagine binding to CRH2 receptors: Membrane homogenate and autoradiographic studies. J Pharmacol Exp Ther 1998;1:459–468. [PubMed] [Google Scholar]
- 79. Sajdyk TJ, Schober DA, Gehlert DR, Shekhar A. Role of corticotropin‐releasing factor and urocortin within the basolateral amygdala of rats in anxiety and panic responses. Behav Brain Res 1999;100:207–215. [DOI] [PubMed] [Google Scholar]
- 80. Sanchez MM, Young LJ, Plotsky PM, Insel TR. Autoradiographic and in situ hybridization localization of corticotropin‐releasing factor 1 and 2 receptors in nonhuman primate brain. J Comp Neurol 1999;408:365–377. [PubMed] [Google Scholar]
- 81. Seymour PA, Schmidt AW, Schulz DW. The pharmacology of CP‐154,526, a non‐peptide antagonist of the CRH1 receptor: A review. CNS Drug Rev 2003;9:57–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82. Sherman AD, Sacquitne JL, Petty F. Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 1982;16:449–454. [DOI] [PubMed] [Google Scholar]
- 83. Schulz DW, Mansbach RS, Sprouse J, et al. CP‐154,526: A potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc Natl Acad Sci USA 1996;93:10477–10482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84. Skutella T, Probst JC, Renner U, Holsboer F, Behl C. Corticotropin‐releasing hormone receptor (type I) anti‐sense targeting reduces anxiety. Neuroscience 1998;85:795–805. [DOI] [PubMed] [Google Scholar]
- 85. Smith GW, Aubry JM, Dellu F, et al. Corticotropin releasing factor receptor 1‐deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998;20:1093–1110. [DOI] [PubMed] [Google Scholar]
- 86. Sramek JJ, Zarotsky V, Cutler NR. Generalised anxiety disorder: Treatment options. Drugs 2002;62:1635–1648. [DOI] [PubMed] [Google Scholar]
- 87. Steckler T, Holsboer F Corticotropin‐releasing hormone receptor subtypes and emotion. Biol Psychiatry 1999;46:1480–1508. [DOI] [PubMed] [Google Scholar]
- 88. Stenzel P, Kesterson R, Yeung W, Cone RD, Rittenberg MB, Stenzel‐Poore MP. Identification of a novel murine receptor for corticotropin‐releasing hormone expressed in the heart. Mol Endocrinol 1995;9:637–645. [DOI] [PubMed] [Google Scholar]
- 89. Stenzel‐Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW. Overproduction of corticotropin‐releasing factor in transgenic mice: A genetic model of anxiogenic behavior. J Neurosci 1994;14:2579–2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90. Stenzel‐Poore MP, Duncan JE, Rittenberg MB, Bakke AC, Heinrichs SC. CRH overproduction in transgenic mice: Behavioral and immune system modulation. Ann NY Acad Sci 1996;780:36–48. [DOI] [PubMed] [Google Scholar]
- 91. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985;85:367–370. [DOI] [PubMed] [Google Scholar]
- 92. Takahashi LK, Kalin NH, Vanden Burgt JA, Sherman JE. Corticotropin‐releasing factor modulates defensive‐withdrawal and exploratory behavior in rats. Behav Neurosci 1989;103:648–454. [DOI] [PubMed] [Google Scholar]
- 93. Takahashi LK Role of CRF(1) and CRF(2) receptors in fear and anxiety. Neurosci Biobehav Rev 2001;25:627–636. [DOI] [PubMed] [Google Scholar]
- 94. Takahashi LK, Ho SP, Livanov V, Graciani N, and Arneric SP. Antagonism of CRF(2) receptors produces anxiolytic behavior in animal models of anxiety. Brain Res 2001;902:135–142. [DOI] [PubMed] [Google Scholar]
- 95. Takamori K, Kawashima N, Chaki S, Nakazato A, Kameo K Involvement of corticotropin‐releasing factor subtype 1 receptor in the acquisition phase of learned helplessness in rats. Life Sci 2001;69:1241–1248. [DOI] [PubMed] [Google Scholar]
- 96. Takamori K, Kawashima N, Chaki S, Nakazato A, Kameo K. Involvement of the hypothalamus‐pituitary‐adrenal axis in antidepressant activity of corticotropin‐releasing factor subtype 1 receptor antagonists in the rat learned helplessness test. Pharmacol Biochem Behav 2001;69:445–449. [DOI] [PubMed] [Google Scholar]
- 97. Thiebot MH, Martin P, Puech AJ. Animal behavioural studies in the evaluation of antidepressant drugs. Br J Psychiatry 1992;15(Suppl):44–50. [PubMed] [Google Scholar]
- 98. Timpl P, Spanagel R, Sillaber I, et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin‐releasing hormone receptor 1. Nat Genet 1998;19:162–166. [DOI] [PubMed] [Google Scholar]
- 99. Vale W, Spies J, River C, Rivier J. Characterization of a 41‐residue ovine hypothalamic peptide that stimulates secretion of coticotropin and beta‐endorphin. Science 1981;213:1394–1397. [DOI] [PubMed] [Google Scholar]
- 100. Vale AL, Montgomery AM. Social interaction: Responses to chlordiazepoxide and the loss of isolationreared effects with paired‐housing. Psychopharmacology (Berl) 1997;133:127–132. [DOI] [PubMed] [Google Scholar]
- 101. Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP. In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin‐releasing hormone (CRH) receptor antagonist: Suppression of pituitary ACTH release and peripheral inflammation. Endocrinology 1996;137:5747–5750. [DOI] [PubMed] [Google Scholar]
- 102. Weninger SC, Dunn AJ, Muglia LJ, et al. Stress‐induced behaviors require the corticotropin‐releasing hormone (CRH) receptor, but not CRH. Proc Natl Acad Sci USA 1999;9:8283–8288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103. Wong ML, Webster EL, Spokes H, et al. Chronic administration of the non‐peptide CRH type 1 receptor antagonist antalarmin does not blunt hypothalamic‐pituitary‐adrenal axis responses to acute immobilization stress. Life Sci 1999;65:PL53–PL58. [DOI] [PubMed] [Google Scholar]
- 104. Yamano M, Yuki H, Yasuda S, Miyata K. Corticotropin‐releasing hormone receptors mediate consensus interferon‐alpha YM643‐induced depression‐like behavior in mice. J Pharmacol Exp Ther 2000;292:181–187. [PubMed] [Google Scholar]
- 105. Zanotti A, Arban R, Perazzolo M, Giusti P. Diazepam impairs place learning in native but not in maze‐experienced rats in the Morris water maze. Psychopharmacology (Berl) 1994;115:73–78. [DOI] [PubMed] [Google Scholar]
- 106. Zhang G, Huang N, Li YW, et al. Pharmacological characterization of a novel nonpeptide antagonist radioligand, (±)‐N‐[2‐methyl‐4‐methoxyphenyl]‐1‐(1‐(methoxymethyl) propyl)‐6‐methyl‐1H‐1,2,3‐triazolo[4,5‐c]pyridin‐4‐amine ([3H]SN003) for corticotropin‐releasing factor 1 receptors. J Pharmacol Exp Ther 2003;305:57–69. [DOI] [PubMed] [Google Scholar]
- 107. Zobel AW, Nickel T, Kunzel HE, et al. Effects of the high‐affinity corticotropin‐releasing hormone receptor 1 antagonist R121919 in major depression: The first 20 patients treated. J Psychiatr Res 2000;34:171–181. [DOI] [PubMed] [Google Scholar]
- 108. Zorrilla EP, Valdez GR, Nozulak J, Koob GF, Markou A. Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety‐like behavior and motor activation in the rat. Brain Res 2002;952:188–199. [DOI] [PubMed] [Google Scholar]
