Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;11(3):317–334. doi: 10.1111/j.1527-3458.2005.tb00049.x

Clinical Potential of GABAB Receptor Modulators

Jennifer Ong 1,, David I B Kerr 1
PMCID: PMC6741760  PMID: 16389296

ABSTRACT

Metabotropic γ‐aminobutyric acidB (GABAB) receptors for the major inhibitory transmitter GABA, together with metabotropic glutamate (mGLuRs) receptors, the extracellular calcium‐sensing receptors (CaSRs), some V2R pheromone receptors and T1R taste receptors, belong to the family of 3 G‐protein‐coupled receptors (GPCRs). GABAB receptors are known to control neuronal excitability and modulate synaptic neurotransmission, playing a very important role in many physiological activities. These receptors are widely expressed and distributed in the nervous system and have been implicated in a variety of neurodegenerative and pathophysiological disorders including epilepsy, spasticity, chronic pain, depression, schizophrenia and drug addiction. To form a functional receptor entity, GABAB receptors must exist as a heterodimer consisting of GABAB1 and GABAB2 receptor subtypes with two 7‐transmembrane proteins, and these subunits arise from distinct genes. The GABAB1 subunit binds the endogenous ligand within its extracellular N‐terminus, whilst the GABAB2 subunit is not only essential for the correct trafficking of the GABAB1 subunit to the cell surface, but is also responsible for the interaction of the receptor with its cognate G‐protein. Allosteric modulation has recently been recognized as an alternative pharmacological approach to gain selectivity in drug action. It is now generally accepted that modulators acting at the allosteric sites provide a novel perspective for the development of subtype‐selective agents acting at GPCRs. These agents interact with allosteric binding sites quite separate from the highly conserved agonist binding region. In this review, we present a new class of phenylalkylamines, based on the lead compound fendiline, that are potent positive potentiators of GABAB receptor‐mediated function and discuss their putative clinical applications. It is proposed that these new modulators may have therapeutic value in GABAB receptor pharmacology and are capable of selectively modifying GABAB receptor function. The allosteric modulators are offering an attractive and novel means to identify new leads, that are devoid of side effects associated with GABAB receptor agonists, and may, therefore, represent a major advance in the drug discovery process.

Keywords: 3‐Cl,4‐MeO‐fendiline; Allosteric modulators; Arylalkylamines; Baclofen; Fendiline; GABAB receptors

Full Text

The Full Text of this article is available as a PDF (119.2 KB).

References

  • 1. Addolorato G, Caputo F, Capristo E, Colombo G, Gessa GL, Gasbarrini G. Ability of baclofen in reducing alcohol craving and intake: II. Preliminary clinical evidence. Alcoholism Clin Exp Res 2000;24:67–71. [PubMed] [Google Scholar]
  • 2. Addolorato G, Caputo F, Capristo E, et al. Rapid suppression of alcohol withdrawal syndrome by baclofen. Am J Med 2002;112:226–229. [DOI] [PubMed] [Google Scholar]
  • 3. Addolorato G, Caputo F, Capristo E, et al. Baclofen efficacy in reducing alcohol craving and intake: A preliminary double‐blind randomised controlled study. Alcohol Alcoholism 2002;37:504–508. [DOI] [PubMed] [Google Scholar]
  • 4. Ashby CR Jr, Rohatgi R, Ngosuwan J, et al. Implication of the GABAB receptor in gamma vinyl‐GABA's inhibition of cocaine‐induced increases in nucleus accumbens dopamine. Synapse 1999;31:151–153. [DOI] [PubMed] [Google Scholar]
  • 5. Bayer R, Mannhold R. Fendiline: Areview of its basic pharmacological and clinical properties. Pharmatherapeutica 1987;5:103–106. [PubMed] [Google Scholar]
  • 6. Bein HJ. Pharmacological differentiation of muscle relaxants In: Spasticity‐A Topical Survey. Wien : Birkmayer W. Huber, 1972;76–82. [Google Scholar]
  • 7. Bergamini L, Riccio A, Bergamasco B. Un farmaco ad azione antispastica della muscolatura striata. Sperimentazione clinica di un derivato del GABA. Minerva Med 1966;57:2723–2729. [PubMed] [Google Scholar]
  • 8. Bettler B, Kaupmann K, Mosbacher J, Gassmann, M. Molecular structure and physiological functions of GABAB receptors. Physiol Rev 2004;84:835–867. [DOI] [PubMed] [Google Scholar]
  • 9. Beuten J, Ma JZ, Payne TJ, et al. Single‐ and multilocus allelic variants within the GABAB receptor subunit 2 (GABAB2) gene are significantly associated with nicotine dependence. Am J Hum Genet 2005;76:859–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Bexis, S , Ong J, White J. Modification of naloxone‐induced withdrawal symptoms by baclofen in morphine‐dependent rats. Life Sci 2001;70:395–401. [DOI] [PubMed] [Google Scholar]
  • 11. Bexis S, Phillis BD, Ong J, White JM, Irvine RJ. Baclofen prevents MDMA‐induced rise in core body temperature in rats. Drug Alcohol Depend 2004;74:89–96. [DOI] [PubMed] [Google Scholar]
  • 12. Binet V, Brajon C, Le Corre L, Acher F, Pin J‐P, Prezeau L. The heptahelical domain of GABAB2 is activated directly by CGP‐7930, a positive allosteric modulator of the GABAB receptor. J Biol Chem 2004;279:29085–29091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Bowery NG, Bettler B, Froestl W, et al. International union of pharmacology. XXXIII. Mammalian γ‐amino‐butyric acidB receptors: Structure and function. Pharmacol Rev 2002;54:247–264. [DOI] [PubMed] [Google Scholar]
  • 14. Bowery NG, Hudson AL, Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 1987;20:365–383. [DOI] [PubMed] [Google Scholar]
  • 15. Brambilla P, Perez J, Barale F, Schettini G, Soares JC. GABAergic dysfunction in mood disorders. Mol Psychiatry 2003;8:721–737. [DOI] [PubMed] [Google Scholar]
  • 16. Braun M, Wendt A, Buschard K, et al. GABAB receptor activation inhibits exocytosis in rat pancreatic β‐cells by G‐protein‐dependent activation of calcineurin. J Physiol 2004;559 (2): 397–409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Brebner K, Ahn S, Phillips AG Attenuation of d‐amphetamine self‐administration by baclofen in the rat: Behavioral and neurochemical correlates. Psychopharmacology 2005;177:409–417. [DOI] [PubMed] [Google Scholar]
  • 18. Brebner K, Childress AR, Roberts DCS. A potential role for GABAB agonists in the treatment of psychostimulant addiction. Alcohol Alcoholism 2002;37:478–484. [DOI] [PubMed] [Google Scholar]
  • 19. Brebner K, Phelan R, Roberts DCS. Effect of baclofen on cocaine self‐administration in rats reinforced under fixed‐ratio and progressive‐ratio schedules. Psychopharmacology 2000;148:314–321. [DOI] [PubMed] [Google Scholar]
  • 20. Brice NL, Varadi A, Ashcroft SJH, Molnar E. Metabotropic glutamate and GABAB receptors contribute to the modulation of glucose‐stimulated insulin secretion in pancreatic beta cells. Diabetologia 2002;45:242–252. [DOI] [PubMed] [Google Scholar]
  • 21. Carai MAM, Colombo G, Froestl W, Gessa GL. In vivo effectiveness of CGP‐7930, a positive allosteric modulator of the GABAB receptor. Eur J Pharmacol 2004;504:213–216. [DOI] [PubMed] [Google Scholar]
  • 22. Chen Y, Phillps K, Minton G, Sher E. GABAB receptor modulators potentiate baclofen‐induced depression of dopamine neuron activity in the rat ventral tegmental area. Br J Pharmacol 2005;144:926–932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Cheng J‐S, Chou K‐J, Want J‐L, et al. Fendiline mobilizes intracellular Ca2+ in Chang liver cells. Clin Exp Pharmacol Physiol 2001;28:729–733. [DOI] [PubMed] [Google Scholar]
  • 24. Christopoulos A. Allosteric binding sites on cell‐surface receptors: Novel targets for drug discovery. Nat Rev Drug Discovery 2002;1:198–210. [DOI] [PubMed] [Google Scholar]
  • 25. Ciano PD, Everitt BJ. The GABAB receptor agonist baclofen attenuates cocaine‐ and heroin‐seeking behavior by rats. Neuropsychopharmacology 2003;28:510–518. [DOI] [PubMed] [Google Scholar]
  • 26. Colombo G, Addolorato G, Agabio R, et al. Role of GABAB receptor in alcohol dependence: Reducing effect of baclofen on alcohol intake and alcohol motivational properties in rats and amelioration of alcohol withdrawal syndrome and alcohol craving in human alcoholics. Neurotox Res 2004;6:403–414. [DOI] [PubMed] [Google Scholar]
  • 27. Colombo G, Serra S, Brunetti G, Vacca G, Carai MA, Gessa GL. Suppression by baclofen of alcohol deprivation effect in Sardinian alcohol‐preferring (sP) rats. Drug Alcohol Depend 2003;70:105–108. [DOI] [PubMed] [Google Scholar]
  • 28. Colombo G, Vacca G, Serra S, Brunetti G, Carai MA, Gessa GL. Baclofen suppresses motivation to consume alcohol in rats. Psychopharmacology 2003;167:221–224. [DOI] [PubMed] [Google Scholar]
  • 29. Cousins MS, Roberts DCS, de Wit H. GABAB receptor agonists for the treatment of drug addiction: A review of recent findings. Drug Alcohol Depend 2002;65:209–220. [DOI] [PubMed] [Google Scholar]
  • 30. Cryan JF, Kaupmann K. Don't worry 'B' happy: A role for GABAB receptors in anxiety and depression. Trends Pharmacol Sci 2005;26:36–43. [DOI] [PubMed] [Google Scholar]
  • 31. Cryan JF, Kelly PH, Chaperon F, et al. Behavioral characterization of the novel GABAB receptor‐positive modulator GS39783 (N'N'‐dicyclopentyl‐2‐methylsulfanyl‐5‐nitro‐pyrimidine‐4,6‐diamine): Anxiolytic‐like activity without side effects associated with baclofen or benzodiazepines. J Pharmacol Exp Ther 2004;310:952–963. [DOI] [PubMed] [Google Scholar]
  • 32. Fadda P, Scherma M, Fresu A, Coliu M, Fratta W. Baclofen antagonizes nicotine‐, cocaine‐, and morphineinduced dopaminie release in the nucleus accumbens of rat. Synapse 2003;50:1–6. [DOI] [PubMed] [Google Scholar]
  • 33. Fattore L, Cossu G, Martellotta C, Frata W. Baclofen antagonizes intravenous self‐administration of nicotine in mice and rats. Alcohol Alcoholism 2002;37:495–498. [DOI] [PubMed] [Google Scholar]
  • 34. Furtinger S, Pirker S, Czech T, Baumgartner C, Sperk G. Increased expression of γ‐aminobutyric acid B receptors in the hippocampus of patients with temporal lobe epilepsy. Neurosci Lett 2003;352:141–145. [DOI] [PubMed] [Google Scholar]
  • 35. Gassmann, M , Shaban H, Vigot R, et al. Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)‐deficient mice. J Neurosci 2004;24:6086–6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Gray JA, Goodwin GM, Heal DJ, Green AR. Hypothermia induced by baclofen, a possible index of GABAB receptor function in mice, is enhanced by antidepressant drugs and ECS. Br J Pharmacol 1987;92:863–870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Humeniuk RE, Ong J, Kerr DIB, White JM. Characterisation of GABAB ligands in vivo. Gen Pharmacol 1995;26:417–424. [DOI] [PubMed] [Google Scholar]
  • 38. Ishikawa M, Mizukami K, Iwakiri M, Asada T. Immunohistochemical and immunoblot analysis of γ‐aminobutryc acid B receptor in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Neurosci Lett 2005;383:272–277. [DOI] [PubMed] [Google Scholar]
  • 39. Iwakiri M, Mizukami K, Ikonomovic MD, et al. Changes in hippocampal GABAB R1 subunit expression in Alzheimer's patients: Association with Braak staging. Acta Neuropathol (Berl) 2005;109:467–474. [DOI] [PubMed] [Google Scholar]
  • 40. Jacobson LH, Cryan JF. Differential sensitivity to the motor and hypothermic effects of the GABAB receptor agonist baclofen in various mouse strains. Psychopharmacology 2005;179:688–699. [DOI] [PubMed] [Google Scholar]
  • 41. Jan CR, Tseng CJ, Chen WC. Fendiline increases [Ca2+]i in Madin Darby canine kidney (MDCK) cells by releasing internal Ca2+ followed by capacitative Ca2+ entry. Life Sci 2000;66:1053–1062. [DOI] [PubMed] [Google Scholar]
  • 42. Jan CR, Yu CC, Huang JK. Dual effect of the antianginal drug fendiline on bladder female transitional carcinoma cells: Mobilization of intracellular Ca2+ and induction of cell death. Pharmacology 2001;62:218–223. [DOI] [PubMed] [Google Scholar]
  • 43. Jan CR, Lee KC, Chou KJ, et al. Fendiline, an anti‐anginal drug, increases intracellular Ca2+ in PC3 human prostate cancer cells. Cancer Chemother Pharmacol 2001;48:37–41. [DOI] [PubMed] [Google Scholar]
  • 44. Johnson BA, Swift RM, Addolorato G, Ciraulo DA, Myrick H. Safety and efficacy of GABAergic medications for treating alcoholism. Alcoholism Clin Exp Res 2005;29:248–254. [DOI] [PubMed] [Google Scholar]
  • 45. Kaplan GB, McRoberts RL III, Smokler JH. Baclofen as adjunctive treatment for a patient with cocaine dependence and schizoaffective disorder. J Clin Psychopharmacol 2004;24:574–575. [DOI] [PubMed] [Google Scholar]
  • 46. Kerr DIB, Ong J. Metabotropic GABAB receptors: New challenges in drug design. Curr Med Chem CNS Agents 2001;1:27–42. [Google Scholar]
  • 47. Kerr DIB, Ong J. Potentiation of metabotropic GABAB receptors by L‐amino acids and dipeptides in rat neocortex. Eur J Pharmacol 2003;468:103–108. [DOI] [PubMed] [Google Scholar]
  • 48. Kerr DIB, Ong J, Puspawati NM, Prager RH. Arylakylamines are a novel class of positive allosteric modulators at GABAB receptors in rat neocortex. Eur J Pharmacol 2002;451:69–77. [DOI] [PubMed] [Google Scholar]
  • 49. Kerr DIB, Ong J, Puspawati NM, Prager RH. Allosteric modulation: A new perspective in GABAB receptor pharmacology. Curr Topics Pharmacol 2004;8:17–29. [Google Scholar]
  • 50. Knoflach F, Mutel V, Jolidon S, et al. Positive allosteric modulators of metabotropic glutamate 1 receptor: Characterization, mechanism of action, and binding site. Proc Natl Acad Sci USA 2001;98:13402–13407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Krystal JH, Sanacora G, Blumberg H, et al. Glutamate and GABA systems as targets for novel antidepressant and mood‐stabilizing treatments. Mol Psychiatry 2002;7:S71–S80. [DOI] [PubMed] [Google Scholar]
  • 52. Kukovetz WR, Brunner F, Beubler E, et al. Single dose pharmacokinetics of fendiline in humans. Eur J Drug Metab Pharmaco inet 1982;7:105–110. [DOI] [PubMed] [Google Scholar]
  • 53. Leite‐Morris KA, Fukudome EY, Shoeb MH, Kaplan GB. GABAB receptor activation in the ventral tegmental area inhibits the acquisition and expression of opiate‐induced motor sensitisation. J Pharmacol Exp Ther 2004;308:667–678. [DOI] [PubMed] [Google Scholar]
  • 54. Ling W, Shoptaw S, Majewska D. Baclofen as a cocaine anti‐craving medication: A preliminary clinical study. Neuropsychopharmacology 1998;18:403–404. [DOI] [PubMed] [Google Scholar]
  • 55. Luckhoff A, Bohnert M, Busse R. Effects of the calmodulin antagonists fendiline and calmidazolium on aggregation, secretion of ATP, and internal calcium in washed human platelets. Naunyn Schmiedeberg s Arch Pharmacol 1991;343:96–101. [DOI] [PubMed] [Google Scholar]
  • 56. Markou A, Koob GF. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 1991;4:17–26. [PubMed] [Google Scholar]
  • 57. Marshall FH. Is the GABA‐B heterodimer a good drug target Mol Neurosci 2005;26:169–176. [DOI] [PubMed] [Google Scholar]
  • 58. McDonald AJ, Mascagni F, Muller JF. Immunocytochemcial localization of GABA R1 receptor subunits in the basolateral amygdala. Brain Res 2004;1018:147–158. [DOI] [PubMed] [Google Scholar]
  • 59. Mizukami, K , Ishikawa M, Hidaka S, Iwakiri M, Sasaki M, Iritani S. Immunohistochemical localization of GABAB receptor in the entorhinal cortex and inferior temporal cortex of schizophrenic brain. Prog NeuroPsychopharmacol Biol Psych 2002;26:393–396. [DOI] [PubMed] [Google Scholar]
  • 60. Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putter H, Cryan JF. Genetic and pharmacological evidence of a role for GABAB receptors in the modulation of anxiety‐ and antidepressant‐like behavior. Neuropsychopharmacology 2004;29:1050–1062. [DOI] [PubMed] [Google Scholar]
  • 61. Mondadori C, Jaekel J, Preiswerk G. CGP‐36742: The first orally active GABAB blocker improves the cognitive performance of mice, rats and rhesus monkeys. Behav Neural Biol 1991;60:62–68. [DOI] [PubMed] [Google Scholar]
  • 62. Mondadori C, Moebius HJ, Borkowski J. The GABAB receptor antagonist 36742 and the nootropic oxiracetam facilitate the formation of long‐term memory. Behav Brain Res 1996;77:223–225. [DOI] [PubMed] [Google Scholar]
  • 63. Nakagawa Y, Takashima T. The GABAB receptor antagonist CGP‐36742 attenuates the baclofen‐ and scopolamine‐induced deficit in Morris water maze task in rats. Brain Res 1997;766:101–106. [DOI] [PubMed] [Google Scholar]
  • 64. Nawrath H, Klein G, Rupp J, Wegener JW, Shainberg A. Open state block by fendiline of L‐type Ca2+ channels in ventricular myocytes from rat heart. J Pharmacol Exp Ther 1998;285:546–552. [PubMed] [Google Scholar]
  • 65. Nemeth EF. Calcimimetic and calcilytic drugs: Just for parathyroid cells Cell Calcium 2004;35:283–289. [DOI] [PubMed] [Google Scholar]
  • 66. Nemeth EF, Steffey ME, Hammerland LG, et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 1998;95:4040–4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Olianas MC, Ambu R, Garau L, Onali P. Allosteric modulation of GABAB receptor function in human frontal cortex. Neurochem Int 2005;46:149–158. [DOI] [PubMed] [Google Scholar]
  • 68. Ong J, Parker DAS, Marino V, Kerr DIB, Puspawati NM, Prager RH. 3‐Chloro,4‐methoxyfendiline is a potent GABAB receptor potentiator in rat neocortical slices. Eur J Pharmacol 2005;507:35–42. [DOI] [PubMed] [Google Scholar]
  • 69. Orosz F, Christova TY Ovadi J Functional in vitro test of calmodulin antagonism: Effect of drugs on interaction between calmodulin and glycotic enzymes. Mol Pharmacol 1998;33:678–682. [PubMed] [Google Scholar]
  • 70. Paterson NE, Froestl W, Markou A. The GABAB receptor agonists baclofen and CGP‐44532 decreased nicotine self‐administration in the rat. Psychopharmacology 2004;172:179–186. [DOI] [PubMed] [Google Scholar]
  • 71. Pearce SHS, Thakker RV. The calcium‐sensing receptor: Insights into extracellular calcium homeostasis in health and disease. J Endocrinol 1997;154:371–378. [DOI] [PubMed] [Google Scholar]
  • 72. Phillis BD, Ong J, White J, Bonnielle C. Modification of amphetamine‐induced responses by baclofen in rats detected using telemetry. Psychopharmacology 2001;153:277–284. [DOI] [PubMed] [Google Scholar]
  • 73. Pin J‐P, Galvez T, Prezeau L. Evolution, structure, and activation mechanism of family 3/C G‐proteincoupled receptors. Pharmacol Ther 2003;98:325–354. [DOI] [PubMed] [Google Scholar]
  • 74. Pin J‐P, Kniazeff J, Binet V, et al. Activation mechanism of the heterodimeric GABAB receptor. Biochem Pharmacol 2004;68:1565–1572. [DOI] [PubMed] [Google Scholar]
  • 75. Princivalle AP, Duncan JS, Thorn M, Bowery NG. GABAB1a, GABAB1b and GABAB2 mRNA variants expression in hippocampus resected from patients with temporal lobe epilepsy. Neuroscience 2003;122:975–984. [DOI] [PubMed] [Google Scholar]
  • 76. Prosser HM, Gill CH, Hirst WD, et al. Epileptogenesis and enhanced prepulse inhibition in GABAB1‐deficient mice. Mol Cell Neurosci 2001;17:1059–1070. [DOI] [PubMed] [Google Scholar]
  • 77. Queva C, Bremner‐Danielsen M, Edlund A, et al. Effects of GABA agonists on body temperature regulation in GABA+ mice. Br J Pharmacol 2003;140:315–322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Ranaldi R, Poeggel K. Baclofen decreases methamphetamine self‐administration in rats. Neuro Report 2002;13:1107–1109. [DOI] [PubMed] [Google Scholar]
  • 79. Regenthal R, Krueger M, Koeppel C, Preiss R. Drug levels: Therapeutic and toxic serum/plasma concentrations of common drugs. J Clin Monit Comput 1999;15:529–544. [DOI] [PubMed] [Google Scholar]
  • 80. Roberts DCS. Preclinical evidence for GABAB agonists as pharmacotherapy for cocaine addiction. Physiol Behav 2005;80:18–20. [DOI] [PubMed] [Google Scholar]
  • 81. Roberts DCS, Andrews MM, Vickers GJ. Baclofen attenuates the reinforcing effects of cocaine in rats. Neuropsychopharmacology 1996;15:417–423. [DOI] [PubMed] [Google Scholar]
  • 82. Roberts DCS, Brebner K, Vincler M, Lynch WJ. Patterns of cocaine self‐administration in rats produced by various access conditions under a discrete trials procedure. Drug Alcohol Depend 2002;67:291–299. [DOI] [PubMed] [Google Scholar]
  • 83. Sanger GJ, Munonyara ML, Dass N, Prosser H, Pangalos MN, Parsons ME. GABAB receptor function in the ileum and urinary bladder of wildtype and GABAB1 subunit null mice. Auton Autacoid Pharmacol 2002;22:147–154. [DOI] [PubMed] [Google Scholar]
  • 84. Schuler V, Luscher C, Blanchet C, et al. Epilepsy, hyperalgesia, impaired memory, and loss of pre‐ and postsynaptic GABAB responses in mice lacking GABAB(1) . Neuron 2001;31:47–58. [DOI] [PubMed] [Google Scholar]
  • 85. Shoaib M, Swanner LS, Beyer CE, Goldberg SR, Schindler CW. The GABAB agonist baclofen modifies cocaine self‐administration in rats. Behav Pharmacol 1998;9:195–206. [PubMed] [Google Scholar]
  • 86. Shoptaw S, Yang X, Rotheram‐Fuller EJ, et al. Randomized placebo controlled trial of baclofen for cocaine dependence: Preliminary effects for individuals with chronic patterns of cocaine use. J Clin Psychiatry 2003;64:1440–1448. [DOI] [PubMed] [Google Scholar]
  • 87. Slattery DA, Markou A, Froestl W, Cryan JF. The GABAB receptor‐positive modulator GS‐39783 and the GABAB receptor agonist baclofen attenuate the reward‐facilitating effects of cocaine: Intracranial self‐stimulation studies in the rat. Neuropsychopharmacology 2005;1–8. [DOI] [PubMed] [Google Scholar]
  • 88. Smith MA, Yancey DL, Morgan D, Liu Y, Froestl W, Roberts DCS. Effects of positive allosteric modulators of the GABAB receptor on cocaine self‐administration in rats. Psychopharmacology 2004;173:105–111. [DOI] [PubMed] [Google Scholar]
  • 89. Sofuoglu M, Kosten TR. Novel approaches to the treatment of cocaine addiction. CNS Drugs 2005;19:13–25. [DOI] [PubMed] [Google Scholar]
  • 90. Spedding M, Kenny B, Chatelain P. New drug binding sites in Ca2+ channels. Trends Pharmacol Sci 1995;16:139–142. [DOI] [PubMed] [Google Scholar]
  • 91. Thuault S, Brown JT, Sheardown SA, et al. The GABAB2 subunit is critical for the trafficking and function of native GABAB receptors. Biochem Pharmacol 2004;68:1655–1666. [DOI] [PubMed] [Google Scholar]
  • 92. Tonini M, Giorgio RD, De Ponti F. Progress with novel pharmacological strategies for gastro‐oesophageal reflux disease. Drugs 2004;64:347–361. [DOI] [PubMed] [Google Scholar]
  • 93. Tripathi O, Schreibmayer W, Tritthart HA. Fendiline inhibits L‐type calcium channels in guinea‐pig ventricular myocytes: A whole‐cell patch clamp study. Br J Pharmacol 1993;108:865–869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Urwyler S, Gjoni T, Kaupmann K, Pozza MF, Mosbacher J. Selected amino acids, dipeptides and arylalkylamine derivatives do not act as allosteric modulators at GABAB receptors. Eur J Pharmacol 2004;483:147–153. [DOI] [PubMed] [Google Scholar]
  • 95. Urwyler S, Mosbacher J, Lingenhoehl K, et al. Positive allosteric modulation of native and recombinant γ‐aminobutyric acidB receptors by 2,6‐di‐tert‐butyl‐4‐(3‐hydroxy‐2,2‐dimethyl‐propyl)‐phenol (CGP‐7930) and its aldehyde analog CGP‐13503. Mol Pharmacol 2001;60:963–971. [PubMed] [Google Scholar]
  • 96. Urwyler S, Pozza MF, Lingenhoehl K, et al. N, N'‐Dicyclopentyl‐2‐methylsulfanyl‐5‐nitro‐pyrimidine‐4,6‐diamine (GS‐39783) and structurally related compounds: Novel allosteric enhancers of γ‐aminobutyric acidB receptor function. J Pharmacol Exp Ther 2003;307:322–330. [DOI] [PubMed] [Google Scholar]
  • 97. Vacher CM, Bettler B. GABAB receptors as potential therapeutic targets. Curr Drug Target CNS Neurol Dis 2003;2:248–259. [DOI] [PubMed] [Google Scholar]
  • 98. Wang J‐L, Cheng J‐S, Chan R‐C, et al. The anti‐anginal drug fendiline increases intracellular Ca2+ levels in MG63 human osteosarcoma cells. Toxicol Lett 2001;119:227–233. [DOI] [PubMed] [Google Scholar]
  • 99. Weyhenmeyer R, Fenzl E, Apecechea M, et al. Tolerance and pharmacokinetics of oral fendiline. Arzneimittelforschung 1987;37:58–62. [PubMed] [Google Scholar]
  • 100. Xi ZX, Stein EA. Baclofen inhibits heroin self‐administration behavior and mesolimbic dopamine release. J Pharmacol Exp Ther 1999;290:1369–1374. [PubMed] [Google Scholar]
  • 101. Zhang Q, Lehmann A, Rigda R, Dent J, Holloway RH. Control of transient lower oesophageal sphincter relaxations and reflux by the GABA‐B agonist baclofen in patients with gastro‐oesophageal reflux disease. Gut 2005;50:19–24. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES