ABSTRACT
The basic CNS neuropharmacology of naratriptan is reviewed here. Naratriptan is a second‐generation triptan antimigraine drug, developed at a time when CNS activity was thought not to be relevant to its therapeutic effect in migraine. It was, however, developed to be a more lipid‐soluble, more readily absorbed and less readily metabolized variant on preexisting triptans and these variations conferred on it a higher CNS profile. Naratriptan is a 5‐HT1B/1D receptor agonist with a highly selective action on migraine pain and nausea, without significant effect on other pain or even other trigeminal pain. Probable sites of therapeutic action of naratriptan include any or all of: the cranial vasculature; the peripheral terminations of trigeminovascular sensory nerves; the first‐order synapses of the trigeminovascular sensory system; the descending pain control system; and the nuclei of the thalamus. Naratriptan may prevent painful dilatation of intracranial vessels or reverse such painful dilatation. Naratriptan can prevent the release of sensory peptides and inhibit painful neurogenic vasodilatation of intracranial blood vessels. At the first order synapse of the trigeminal sensory system, naratriptan can selectively suppress neurotransmission from sensory fibers from dural and vascular tissue, while sparing transmission from other trigeminal fibers, probably through inhibition of neuropeptide transmitter release. In the periaqueductal gray matter and in the nucleus raphe magnus, naratriptan selectively activates inhibitory neurons which project to the trigeminal nucleus and spinal cord and which exert inhibitory influences on trigeminovascular sensory input. Naratriptan has also a therapeutic effect on the nausea of migraine, possibly exerting its action at the level of the nucleus tractus solitarius via the same mechanisms by which it inhibits trigeminovascular nociceptive input. The incidence of naratriptan‐induced adverse effects in the CNS is low and it is not an analgesic for pain other than that of vascular headache. In patients receiving selective serotonin uptake inhibitors (SSRIs) naratriptan may cause serotonin syndrome‐like behavioral side effects. The mechanism of action involved in the production of behavioral and other CNS side effects of naratriptan is unknown.
Keywords: Migraine, Naratriptan, Serotonin, Trigeminal, Trigeminovascular
Full Text
The Full Text of this article is available as a PDF (186.5 KB).
References
- 1. Andersen R, Krohg K. Pain as a major cause of postoperative nausea. Can Anaesth Soc J 1976;366–369. [DOI] [PubMed] [Google Scholar]
- 2. Anthony M, Hinterberger H, Lance JW. Plasma serotonin in migraine and stress. Arch Neurol 1967;16:544–552. [DOI] [PubMed] [Google Scholar]
- 3. Arbab MA, Delgado T, Wiklund L and Svendgaard NA. Brain stem terminations of the trigeminal and upper spinal ganglia innervation of the cerebrovascular system: WGA‐HRP transganglionic study. J Cereb Blood Flow Metab 1988;8:54–63. [DOI] [PubMed] [Google Scholar]
- 4. Arbab MA, Delgado Zygmunt TJ, Shiokawa Y, Svendgaard NA. Central projections of the sensory innervation to the middle cerebral artery in the squirrel monkey. Acta Neurochir (Wien) 1992;119:104–110. [DOI] [PubMed] [Google Scholar]
- 5. Arvieu L, Mauborgne A, Bourgoin S, et al. Sumatriptan inhibits the release of CGRP and substance P from the rat spinal cord. Neuroreport 1996;7:1973–1976. [DOI] [PubMed] [Google Scholar]
- 6. Bartsch T, Knight YE, Goadsby PJ. Activation of 5‐HT1B/1D receptor in the periaqueductal gray inhibits nociception. Ann Neurol 2004;56:371–381. [DOI] [PubMed] [Google Scholar]
- 7. Basbaum AI, Fields HL. Endogenous pain control mechanisms: Review and hypothesis. Ann Neurol 1978;4:451–462. [DOI] [PubMed] [Google Scholar]
- 8. Bates D, Ashford E, Dawson R, et al. Subcutaneous sumatriptan during the migraine aura. Neurology 1994;44:1537–1592. [DOI] [PubMed] [Google Scholar]
- 9. Boers P, Donaldson C, Zagami AS, Lambert GA. 5‐HT1A and 5‐HT1B/1D receptors are involved in the modulation of the trigeminovascular system of the cat: A microiontophoretic study. Neuropharmacology 2000;39:1833–1847. [DOI] [PubMed] [Google Scholar]
- 10. Boers P, Lowy A, Lambert GA, Angus‐Leppan H, Zagami AS. Effect of ergot alkaloids on cervical spinal cord neurons with craniovascular input. Soc Neurosci Abstr 1989;15:469. [Google Scholar]
- 11. Boers PM, Donaldson C, Zagami AS, Lambert GA. Naratriptan has a selective inhibitory effect on trigeminovascular neurones at central 5‐HT1A and 5‐HT1B/1D receptors in the cat: Implications for migraine therapy. Cephalalgia 2004;24:99–109. [DOI] [PubMed] [Google Scholar]
- 12. Bonaventure P, Voorn P, Luyten WH, Leysen JE. 5‐HT1B and 5‐HT1D receptor mRNA differential co‐localization with peptide mRNA in the guinea pig trigeminal ganglion. Neuroreport 1998;9:641–645. [DOI] [PubMed] [Google Scholar]
- 13. Bouchelet I, Cohen Z, Case B, Seguela P, Hamel E. Differential expression of sumatriptan‐sensitive 5‐hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels. Mol Pharmacol 1996;50:219–223. [PubMed] [Google Scholar]
- 14. Burgess SE, Gardell LR, Ossipov MH, et al. Time‐dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci 2002;22:5129–5136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Burstein R, Jakubowski M, Levy D. Anti‐migraine action of triptans is preceded by transient aggravation of headache caused by activation of meningeal nociception. Pain 2005;115:21–28. [DOI] [PubMed] [Google Scholar]
- 16. Buzzi MG, Carter WB, Shimuzu T, Heath H III, Moskowitz MA. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 1991;30:1193–1200. [DOI] [PubMed] [Google Scholar]
- 17. Buzzi MG, Moskowitz MA. Evidence for 5‐HT1B/1D receptors mediating the antimigraine effect of sumatriptan and dihydroergotamine. Cephalalgia 1991;11:165–168. [DOI] [PubMed] [Google Scholar]
- 18. Cameron AA, Khan IA, Westlund KN, Cliffer KD, Willis WD. The efferent projections of the periaqueductal gray in the rat: A Phaseolus vulgaris‐leucoagglutin study. II Descending projections. J Comp Neurol 1995;351:585–601. [DOI] [PubMed] [Google Scholar]
- 19. Castro ME, Pascual J, Romon T, del Arco C, del Olmo E, Pazos A. Differential distribution of [3H]sumatriptan binding sites (5‐HT1B, 5‐HT1D and 5‐HT1F receotirs) in human brain: Focus on brainstem and spinal cord. Neuropharmacology 1997;36:535–542. [DOI] [PubMed] [Google Scholar]
- 20. Charnay Y, Leger L, Vallet PG, et al. Mapping of 5‐HT1A receptor binding sites in the feline brain — a quantitative autoradiographic study using [3H]8‐OH‐DPAT. Biogenic Amines 1997;13:217–232. [Google Scholar]
- 21. Christensen BG, Griffin JH, Jenkins TE, Judice JK. Methods for identifying novel multimeric agents that modulate receptors. USA Patent Application No. 20,030,087,306, 2001.
- 22. Connor HE, Feniuk W, Beattie DT, et al. Naratriptan: Biological profile in animal models relevant to migraine. Cephalalgia 1997;17:145–152. [DOI] [PubMed] [Google Scholar]
- 23. Couture R, Cuello AC. Studies on the trigeminal antidromic vasodilatation and plasma extravasation in the rat. J Physiol 1984;346:273–285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Cumberbatch MJ, Hefti FF, Hill RG, Hargreaves RJ. Drug‐induced modulation of dural nociceptive neurotransmission. Soc Neurosci Abstr 1997;23:1540. [Google Scholar]
- 25. Cumberbatch MJ, Hill RG, Hargreaves RJ. Differential effects of naratriptan on spinal vs. trigeminal nociceptive responses. Cephalalgia 1997;17:381. [DOI] [PubMed] [Google Scholar]
- 26. Cumberbatch MJ, Hill RG, Hargreaves RJ. Rizatriptan has central antinociceptive effects against durally evoked responses. Eur J Pharmacol 1997;328:37–40. [DOI] [PubMed] [Google Scholar]
- 38. Dodick D, Lipton RB, Martin V, et al. Consensus statement: cardiovascular safety profile of triptans (5‐HT1B/1D agonists) in the acute treatment of migraine. Headache J Head Face Pain 2004;44:414–425. [DOI] [PubMed] [Google Scholar]
- 28. Cumberbatch MJ, Hill RG, Hargreaves RJ. The effects of 5‐HT1A, 5‐HT1B and 5‐HT1D receptor agonists on trigeminal nociceptive neurotransmission in anaesthetized rats. Eur J Pharmacol 1998;362:43–46. [DOI] [PubMed] [Google Scholar]
- 29. Curran DA, Hinterberger H, Lance JW. Total plasma serotonin 5‐hydroxyindoleacetic acid and p‐hydroxym‐methoxymandelic acid excretion in normal and migrainous subjects. Brain 1965;88:997–1010. [DOI] [PubMed] [Google Scholar]
- 30. Cutrer FM, Schoenfeld D, Limmroth V, Panahian N, Moskowitz MA. Suppression by the sumatriptan analogue, CP‐122,288 of c‐fos immunoreactivity in trigeminal nucleus caudalis induced by intracisternal capsaicin. Br J Pharmacol 1995;114:987–992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Daher JB, de Melo MD, Tonussi CR. Evidence for a spinal serotonergic control of the peripheral inflammation in the rat. Life Sci 2005;76:2349–2359. [DOI] [PubMed] [Google Scholar]
- 32. Dalessio DJ. Wolff's Headache and other head pain. New York : Oxford University Press, 1980. [Google Scholar]
- 33. Dashwood MR, Gibley MP, Jordan D, Ramage AG. Autoradiographic localisation of 5‐HT1A binding sites in the brainstem of the cat. Br J Pharmacol 1988;94:386P. [Google Scholar]
- 34. Davis KD, Dostrovsky JO. Activation of trigeminal brain‐stem nociceptive neurons by dural artery stimulation. Pain 1986;25:395–401. [DOI] [PubMed] [Google Scholar]
- 35. Davis KD, Dostrovsky JO. Responses of feline trigeminal spinal tract nucleus neurons to stimulation of the middle meningeal artery and sagittal sinus. J Neurophysiol 1988;59:648–666. [DOI] [PubMed] [Google Scholar]
- 36. De Vries P, Villalon CM, Saxena PR. Pharmacological aspects of experimental headache models in relation to acute antimigraine therapy. Eur J Pharmacol 1999;375:61–74. [DOI] [PubMed] [Google Scholar]
- 37. Deleu D, Hanssens Y. Current and emerging second‐generation triptans in acute migraine therapy: A comparative review. J Clin Pharmacol 2000;40:687–700. [DOI] [PubMed] [Google Scholar]
- 27. Cumberbatch MJ, Hill RG, Hargreaves RJ. Differential effects of the 5‐HT1B/1D receptor agonist naratriptan on trigeminal vs. spinal nociceptive responses. Cephalalgia 1998;18:659–663. [DOI] [PubMed] [Google Scholar]
- 39. Dodick D, Martin V. Triptans and CNS side‐effects: Pharmacokinetic and metabolic mechanisms. Cephalalgia 2004;24:417–424. [DOI] [PubMed] [Google Scholar]
- 40. Domenech T, Beleta J, Palacios JM. Characterization of human serotonin 1D and 1B receptors using [3H]‐GR‐125743, a novel radiolabelled serotonin 5‐HT1D/1B receptor antagonist. Naunyn Schmiedeberg's Arch Pharmacol 1997;356:328–334. [DOI] [PubMed] [Google Scholar]
- 41. Donaldson C, Boers PM, Hoskin KL, Zagami AS, Lambert GA. The role of 5‐HT1B and 5‐HT1D receptors in the selective inhibitory effect of naratriptan on trigeminovascular neurons. Neuropharmacology 2002;42:374–385. [DOI] [PubMed] [Google Scholar]
- 42. Dostrovsky JO, Sessle BJ, Hu JW. Presynaptic excitability changes produced in brainstem endings of tooth pulp afferents by raphe and other central and peripheral influences. Brain Res 1981;218:141–160. [DOI] [PubMed] [Google Scholar]
- 43. Dostrovsky JO, Shah Y, Gray BG. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and non‐nociceptive neurons. J Neurophysiol 1983;49:948–960. [DOI] [PubMed] [Google Scholar]
- 44. Dowson A. Can oral 311C90, a novel 5‐HT1D agonist, prevent migraine headache when taken during an aura Eur Neurol 1996;36 (Suppl 2): 28–31. [DOI] [PubMed] [Google Scholar]
- 45. Durham PL, Russo AF. Regulation of calcitonin gene‐related peptide secretion by a serotonergic antimigraine drug. J Neurosci 1999;19:3423–3429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Edmeads J. What is migraine? Controversy and stalemate in migraine pathophysiology. J Neurol 1991;238 (Suppl 1): 52–55. [DOI] [PubMed] [Google Scholar]
- 47. Edwards JG, Anderson I. Systematic review and guide to selection of selective serotonin reuptake inhibitors. Drugs 1999;57:507–533. [DOI] [PubMed] [Google Scholar]
- 48. Ellrich J, Andersen OK, Messlinger K, Arendt‐Nielsen L. Convergence of meningeal and facial afferents onto trigeminal brainstem neurons: An electrophysiological study in rat and man. Pain 1999;82:229–237. [DOI] [PubMed] [Google Scholar]
- 49. Ellrich J, Messlinger K, Chiang CY, Hu JW. Modulation of neuronal activity in the nucleus raphe magnus by the 5‐HT1‐receptor agonist naratriptan in rat. Pain 2001;90:227–231. [DOI] [PubMed] [Google Scholar]
- 50. Ener RA, Meglathery SB, van Decker WA, Gallagher RM. Serotonin syndrome and other serotonergic disorders. Pain Med 2003;4:63–74. [DOI] [PubMed] [Google Scholar]
- 51. Evans DC, O'Connor D, Lake BG, Evers R, Allen C, Hargreaves R. Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human p‐glycoprotein. Drug Metab Dispos 2003;31:861–869. [DOI] [PubMed] [Google Scholar]
- 52. Feldman PD. Electrophysiological effects of serotonin in the solitary tract nucleus of the rat. Naunyn Schmiedeberg's Arch Pharmacol 1994;349:447–454. [DOI] [PubMed] [Google Scholar]
- 53. Ferrari MD, Goadsby PJ, Roon KI, Lipton RB. Triptans (serotonin, 5‐HT1B/1D agonists) in migraine: Detailed results and methods of a meta‐analysis of 53 trials. Cephalalgia 2002;22:633–658. [DOI] [PubMed] [Google Scholar]
- 54. Fields HL, Bry J, Hentall I, Zorman G. The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J Neurosci 1983;3:2545–2552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Fischer MJM, Koulchitsky S, Messlinger K. The nonpeptide calcitonin gene‐related peptide receptor antagonist BIBN4096BS lowers the activity of neurons with meningeal input in the rat spinal trigeminal nucleus. J Neurosci 2005;25:5877–5883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Fox AW. Comparative tolerability of oral 5‐HT1B/1D agonists. Headache 2000;40:521–527. [PubMed] [Google Scholar]
- 57. Fox AW, Keywood C, Sheftell FD, Spierings ELH, Winner P. Comparison of therapeutic gain with therapeutic ratio for the assessment of selective 5‐HT1B/1D agonist efficacy in migraine. Headache J Head Face Pain 2002;42:680–688. [DOI] [PubMed] [Google Scholar]
- 58. Gao KM, Chen DO, Genzen JR, Mason P. Activation of serotonergic neurons in the raphe magnus is not necessary for morphine analgesia. J Neurosci 1998;18:1860–1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Gnecchi‐Ruscone T, Bernard X, Pierre P, et al. Effect of naratriptan on myocardial blood flow and coronary vasodilator reserve in migraineurs. Neurology 2000;55:95–9. [DOI] [PubMed] [Google Scholar]
- 60. Goadsby PJ. Serotonin 5‐HT1B/1D receptor agonists in migraine: Comparative pharmacology and its therapeutic implications. CNS Drugs 1998;10:271–286. [Google Scholar]
- 61. Goadsby PJ. Neurovascular headache and a midbrain vascular malformation: Evidence for a role of the brainstem in chronic migraine. Cephalalgia 2002;22:107–111. [DOI] [PubMed] [Google Scholar]
- 62. Goadsby PJ, Edvinsson L. Sumatriptan reverses the changes in calcitonin gene‐related peptide seen in the headache phase of migraine. Cephalalgia 1991;11(Suppl 1): 3–4. [Google Scholar]
- 63. Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: Studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 1993;33:48–56. [DOI] [PubMed] [Google Scholar]
- 64. Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of man and the cat during activation of the trigeminovascular system. Ann Neurol 1988;23:193–196. [DOI] [PubMed] [Google Scholar]
- 65. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 1990;28:183–187. [DOI] [PubMed] [Google Scholar]
- 66. Goadsby PJ, Gundlach AL. Localization of [3H]dihydroergotamine‐binding sites in the cat central nervous system: Relevance to migraine. Ann Neurol 1991;29:91–94. [DOI] [PubMed] [Google Scholar]
- 67. Goadsby PJ, Hoskin KL. Differential effects of low dose CP 122,288 and eletriptan on Fos expression due to stimulation of the superior sagittal sinus in cat. Pain 1999;82:15–22. [DOI] [PubMed] [Google Scholar]
- 68. Goadsby PJ, Knight Y. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5‐hydroxytryptamine (5‐HT1B/1D) receptors. Br J Pharmacol 1997;122:918–922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Goadsby PJ, Knight YE. Direct evidence for central sites of action of zolmitriptan (311C90): An autoradio‐graphic study in cat. Cephalalgia 1997;17:153–158. [DOI] [PubMed] [Google Scholar]
- 70. Goldstein DJ, Roon KI, Offen WW, et al. Selective serotonin 1F (5‐HT1F) receptor agonist LY334370 for acute migraine: A randomised controlled trial. Lancet 2001;358:1230–1234. [DOI] [PubMed] [Google Scholar]
- 71. Gonzalez G, Onofrio BM, Kerr FWL. Vasodilator system for the face. J Neurosurg 1975;42:696–703. [DOI] [PubMed] [Google Scholar]
- 72. Goodwin GM, De Souza RJ, GA R, Attenuation by electroconvulsive shock and antidepressant drugs of the 5‐HT1A receptor‐mediated hypothermia and serotonin syndrome produced by 8‐OH‐DPAT in the rat. Psychopharmacology 1987;91:500–505. [DOI] [PubMed] [Google Scholar]
- 73. Gupta P, Scatchard J, Napier C, McHarg A, Wallis R. Characterisation of the contractile activity of eletriptan at the canine vascular 5‐HT1B receptor. Eur J Pharmacol 1999;367:283–290. [DOI] [PubMed] [Google Scholar]
- 74. Gupta VK. Triptans to abort neurological symptoms of prodrome of migraine: Fact or fiction Headache 2005;45:615. [DOI] [PubMed] [Google Scholar]
- 75. Haas DC, Kent PF, Friedman DI. Headache caused by a single lesion of multiple sclerosis in the periaqueductal gray area. Headache 1993;33:452–455. [DOI] [PubMed] [Google Scholar]
- 76. Hajos M, Obal F Jr, Jancso G, Obal F. Capsaicin impairs preoptic serotonin‐sensitive structures mediating hypothermia in rats. Neurosci Lett 1985;54:97–102. [DOI] [PubMed] [Google Scholar]
- 77. Hamel E, Fan E, Linville D, Ting V, Villemure JG, Chia LS. Expression of mRNA for the serotonin 5‐hydroxytryptamine 1D beta receptor subtype in human and bovine cerebral arteries. Mol Pharmacol 1993;44:242–246. [PubMed] [Google Scholar]
- 78. Harper AM, MacKenzie ET, McCulloch J, Pickard JD. Migraine and the blood‐brain barrier. Lancet 1977;1:1034–1036. [DOI] [PubMed] [Google Scholar]
- 79. Hegerl U, Juckel G. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: A new hypothesis. Biol Psychiatry 1993;33:173–187. [DOI] [PubMed] [Google Scholar]
- 80. Hentall ID, Andresen MJ, Taguchi K. Serotonergic, cholinergic and nociceptive inhibition or excitation of raphe magnus neurons in barbiturate‐anesthetized rats. Neuroscience 1993;52:303–310. [DOI] [PubMed] [Google Scholar]
- 81. Hentall ID, Fields HL. Segmental and descending influences on intraspinal thresholds of single C‐fibers. J Neurophysiol 1979;42:1527–37. [DOI] [PubMed] [Google Scholar]
- 82. Hoffmann O, Keilwerth N, Bille MB, et al. Triptans reduce the inflammatory response in bacterial meningitis. J Cereb Blood Flow Metab 2002;22:988–996. [DOI] [PubMed] [Google Scholar]
- 83. Hokfelt T, Arvidsson U, Cullheim S, et al. Multiple messengers in descending serotonin neurons: Localization and functional implications. J Chem Neuroanat 2000;18:75–86. [DOI] [PubMed] [Google Scholar]
- 84. Hood S, Birnie D, Swan L, et al. Effects of subcutaneous naratriptan on systemic and pulmonary haemodynamics and coronary artery diameter in humans. J Cardiovasc Pharmacol 1999;34:89–94. [DOI] [PubMed] [Google Scholar]
- 85. Hoskin KL. A comparison of the effects of dihydroergotamine and sumatriptan on c‐fos expression in the trigeminal nucleus of the cat. Vol. 15 Cephalagia; Toronto : 1995. [Google Scholar]
- 86. Hoskin KL. The use of the fos technique to investigate the physiology and pharmacology of trigeminovascular sensation. Ph.D. thesis. Sydney : Department of Medicine, University of New South Wales, 2005. [Google Scholar]
- 87. Hoskin KL, Donaldson C, Zagami AS, Lambert GA. The 5‐hydroxytryptamine1B/1D/1F receptor agonists eletriptan and naratriptan inhibit trigeminovascular input to the nucleus tractus solitarius in the cat. Brain Res 2004;998:91–99. [DOI] [PubMed] [Google Scholar]
- 88. Hoskin KL, Kaube H, Goadsby PJ. Mechanical distension of the superior sagittal sinus evokes c‐Fos expression in trigeminal neurons — Towards a better model of migraine. Vol. 15, Suppl 14 Cephalagia. Toronto : Int. Headache Soc., 1995:104. [Google Scholar]
- 89. Hoskin KL, Kaube H, Goadsby PJ. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c‐Fos and electrophysiological study. Brain 1996;119:249–256. [DOI] [PubMed] [Google Scholar]
- 90. Hoskin KL, Kaube H, Goadsby PJ. Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain 1996;119:1419–1428. [DOI] [PubMed] [Google Scholar]
- 91. Hoskin KL, Zagami AS, Goadsby PJ. Stimulation of the middle meningeal artery leads to Fos expression in the trigeminocervical nucleus: A comparative study of monkey and cat. J Anat 1999;194:579–588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. Hou M, Kanje M, Longmore J, Tajti J, Uddman R, Edvinsson L. 5‐HT(1B) and 5‐HT(1D) receptors in the human trigeminal ganglion: co‐localization with calcitonin gene‐related peptide, substance P, nitric oxide synthase. Brain Res 2001;909:112–120. [DOI] [PubMed] [Google Scholar]
- 93. Humphrey PP, Feniuk W, Marriott AS, Tanner RJ, Jackson MR, Tucker ML. Preclinical studies on the antimigraine drug, sumatriptan. Eur Neurol 1991;31:282–290. [DOI] [PubMed] [Google Scholar]
- 94. Humphrey PP, Feniuk W, Perren MJ. Anti‐migraine drugs in development: Advances in serotonin receptor pharmacology. Headache 1990;30:12–16. [DOI] [PubMed] [Google Scholar]
- 95. Humphrey PP, Feniuk W, Perren MJ, Connor HE, Oxford AW. The pharmacology of the novel 5‐HT1‐like receptor agonist, GR43175. Cephalalgia 1989;9 (Suppl 9): 23–33. [DOI] [PubMed] [Google Scholar]
- 96. Humphrey PP, Goadsby PJ. The mode of action of sumatriptan is vascular? A debate. Cephalalgia 1994;14:401–410. [DOI] [PubMed] [Google Scholar]
- 97. Humphrey PPA, Feniuk W, Perren MJ, Beresford IJ, Skingle M, Whalley ET. Serotonin and migraine. Ann NY Acad Sci 1990;600:587–598. [DOI] [PubMed] [Google Scholar]
- 98. Iversen HK, Olesen J. Headache induced by nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs. Cephalalgia 1996;16:412–418. [DOI] [PubMed] [Google Scholar]
- 99. Jancso N, Jancso‐Gabor A, Szolcsanyi J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol 1967;31:138–151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100. Jenkins D, Langmead C, Parsons A, Strijbos P. Characterisation of calcitonin gene‐related peptide release from trigeminal nucleus slices ex vivo. Headache 2002;42:391. [DOI] [PubMed] [Google Scholar]
- 101. Jeong CY, Choi JI, Yoon MH. Roles of serotonin receptor subtypes for the antinociception of 5‐HT in the spinal cord of rats. Eur J Pharmacol 2004;502:205–211. [DOI] [PubMed] [Google Scholar]
- 102. Jhee SS, Shiovitz T, Crawford AW, Cutler NR. Pharmacokinetics and pharmacodynamics of the triptan antimigraine agents: A comparative review. Clin Pharmacokinet 2001;40:189–205. [DOI] [PubMed] [Google Scholar]
- 103. John GW, Pauwels PJ, Perez M, et al. F 11356, a novel 5‐hydroxytryptamine (5‐HT) derivative with potent, selective, and unique high intrinsic activity at 5‐HT1B/1F receptors in models relevant to migraine. J Pharmacol Exp Ther 1999;290:83–95. [PubMed] [Google Scholar]
- 104. Johnson KW, Schaus JM, Durkin MM, et al. 5‐HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. Neuroreport 1997;8:2237–2240. [DOI] [PubMed] [Google Scholar]
- 105. Jorum E, Shyu BC. Course and mode of action of descending system conveying nucleus raphe magnus induced inhibition of flexion reflex in rats. Acta Physiol Scand 1987;131:489–497. [DOI] [PubMed] [Google Scholar]
- 106. Kaube H, Keay KA, Hoskin KL, Bandler R, Goadsby PJ. Expression of c‐Fos‐like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 1993;629:95–102. [DOI] [PubMed] [Google Scholar]
- 107. Keay KA, Bandler R. Vascular head pain selectively activates ventrolateral periaqueductal gray in the cat. Neurosci Lett 1998;245:58–60. [DOI] [PubMed] [Google Scholar]
- 108. Kelman L. The premonitory symptoms (Prodrome): A tertiary care study of 893 migraineurs. Headache J Head Face Pain 2004;44:865–872. [DOI] [PubMed] [Google Scholar]
- 109. Kempsford RD, NBaiile P, Fuseau E. Oral naratriptan tablets (2.5 – 10 mg) exhibit dose‐proportional pharmacokinetics. Cephalalgia 1997;17:408. [Google Scholar]
- 110. Kia HK, Brisorgueil MJ, Hamon M, Calas A, Verge D. Ultrastructural localization of 5‐hydroxytryptamine(1a) receptors in the rat brain. J Neurosci Res 1996;46:697–708. [DOI] [PubMed] [Google Scholar]
- 111. Kia HK, Miquel M‐C, Brisorgueil M‐J, et al. Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J Comp Neurol 1996;365:289–305. [DOI] [PubMed] [Google Scholar]
- 112. Kimball RW, Friedman AP, Vallejo E. Effect of serotonin in migraine patients. Neurology 1960;10:107–111. [DOI] [PubMed] [Google Scholar]
- 113. Knight YE, Edvinsson L, Goadsby PJ. Blockade of calcitonin gene‐related peptide release after superior sagittal sinus stimulation in cat: A comparison of avitriptan and CP 122,288. Neuropeptides 1999;33:41–46. [DOI] [PubMed] [Google Scholar]
- 114. Knight YE, Goadsby PJ. The periaqueductal grey matter modulates trigeminovascular input: A role in migraine Neuroscience 2001;106:793–800. [DOI] [PubMed] [Google Scholar]
- 115. Knyihar‐Csillik E, Tajti J, Samsam M, Sary G, Slezak S, Vecsei L. Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c‐fos in the caudal trigeminal nucleus in an experimental migraine model. J Neurosci Res 1997;48:449–464. [PubMed] [Google Scholar]
- 116. Lambert G, Michalicek J. Effect of antimigraine drugs on dural blood flows and resistances and the responses to trigeminal stimulation. Eur J Pharmacol 1996;311:141–151. [DOI] [PubMed] [Google Scholar]
- 117. Lambert GA, Boers PM, Hoskin K, Donaldson C, Zagami AS. Suppression by eletriptan of the activation of trigeminovascular sensory neurons by glyceryl trinitrate. Brain Res 2002;953:181–188. [DOI] [PubMed] [Google Scholar]
- 118. Lambert GA, Bogduk N, Duckworth JW, Lance JW. Trigeminal correlates of cranio‐vascular sensation. Proc Australian Physiol Pharmacol Soc 1979;10(2): 231P. [Google Scholar]
- 119. Lambert GA, Duckworth JW. Comparative effects of ergotamine and DHE on craniovascular sensation and reactivity. Proc Australian Soc Clin Exp Pharmacologists 1986;232. [Google Scholar]
- 120. Lambert GA, Hoskin K, Donaldson C, et al. Inhibitory influences of nucleus raphe magnus on the responses of trigeminovascular second‐order neurons and the role of 5‐HT1B/1D receptors. Cephalalgia 2001;21:400. [Google Scholar]
- 121. Lambert GA, Lowy AJ, Boers PM, Angus‐Leppan H, Zagami AS. The spinal cord processing of input from the superior sagittal sinus: Pathway and modulation by ergot alkaloids. Brain Res 1992;597:321–330. [DOI] [PubMed] [Google Scholar]
- 122. Lambert GA, Michalicek J, Tan D, Angus‐Leppan H, Boers P. Effects of sumatriptan on afferent and efferent mechanisms of trigeminal sensation. Soc Neurosci Abstr 1991;17:474. [Google Scholar]
- 123. Lambert GA, Shimomura T, Boers P, Gordon V, Donaldson C, Zagami AS. Serotonin infusions inhibit sensory input from the dural vasculature. Cephalalgia 1999;19:639–650. [DOI] [PubMed] [Google Scholar]
- 124. Lambert GA, Zagami A, Lance JW. Physiology and pharmacology of cervical spinal cord elements activated by stimulation of the dura mater. Soc Neurosci Abstr 1986;12:230. [Google Scholar]
- 125. Lambert GA, Zagami AS, Bogduk N, Lance JW. Cervical spinal cord neurons receiving sensory input from the cranial vasculature. Cephalalgia 1991;11:75–85. [DOI] [PubMed] [Google Scholar]
- 126. Lambert GA, Zagami AS, Lance JW. Effect of ergotamine on spinal cord processing of sensory information from the cranial vasculature. Soc Neurosci Abstr 1988;14:695. [Google Scholar]
- 127. Lance JW. Pathophysiology of migraine. In: Moossy J, Reinmuth OM, Eds. Cerebrovascular Diseases Twelfth Research (Princeton Conference). New York : 1981;3–13.
- 128. Lance JW, Goadsby PJ. Mechanism and management of headache. 6th Edition London : Butterworth Scientific, 1999. [Google Scholar]
- 129. Lane R, Baldwin D. Selective serotonin reuptake inhibitor‐induced serotonin syndrome: Review. J Clin Psychopharmacol 1997;17:208–221. [DOI] [PubMed] [Google Scholar]
- 130. Lauritzen M. Cortical spreading depression in migraine. Cephalalgia 2001;21:757–760. [DOI] [PubMed] [Google Scholar]
- 131. Leone M, Attanasio A, Croci D, et al. 5‐HT1A receptor hypersensitivity in migraine is suggested by the mchlorophenylpiperazine test. Neuroreport 1998;9:2605–2608. [DOI] [PubMed] [Google Scholar]
- 132. Letienne R, Verscheure Y, John GW. Investigation of the effects of naratriptan, rizatriptan, and sumatriptan on jugular venous oxygen saturation in anesthetized pigs: Implications for their mechanism of acute antimigraine action. J Pharmacol Exp Ther 2003;307:168–174. [DOI] [PubMed] [Google Scholar]
- 133. Lin Q, Cervero F, Schmelz M. Pathophysiology of neurogenic inflammation In: Committee SP, Ed. 11th World Congress on Pain. Sydney : Int. Ass. for the Study of Pain, 2005;534. [Google Scholar]
- 134. Liveling E. On megrim, sick‐headache and some allied disorders. London : Churchill, 1873. [Google Scholar]
- 135. Longmore J, Shaw D, Smith D, et al. Differential distribution of 5‐HT1D‐ and 5‐HT1B‐immunoreactivity within the human trigemino‐cerebrovascular system: Implications for the discovery of new antimigraine drugs. Cephalalgia 1997;17:833–842. [DOI] [PubMed] [Google Scholar]
- 136. Luciani R, Carter D, Mannix L, Hemphill M, Diamond M, Cady R. Prevention of migraine during prodrome with naratriptan. Cephalalgia 2000;20:122–126. [DOI] [PubMed] [Google Scholar]
- 137. Maassen Van Den Brink A, Reekers M, Bax WA, Ferrari MD, Saxena PR. Coronary side‐effect potential of current and prospective antimigraine drugs. Circulation 1998;98:25–30. [DOI] [PubMed] [Google Scholar]
- 138. Manaker S, Verderame HM. Organization of serotonin 1A and 1B receptors in the nucleus of the solitary tract. J Comp Neurol 1990;301:535–553. [DOI] [PubMed] [Google Scholar]
- 139. Marfurt CF, Rajchert DM. Trigeminal primary afferent projections to “non‐trigeminal” areas of the rat central nervous system. J Comp Neurol 1991;303:489–511. [DOI] [PubMed] [Google Scholar]
- 140. Markowitz S, Saito K, Moskowitz MA. Neurogenically mediated plasma extravasation in dura mater; effect of ergot alkaloids. A possible mechanism of action in vascular headaches. Cephalalgia 1988;8:83–91. [DOI] [PubMed] [Google Scholar]
- 141. Martin GR. Inhibition of the trigemino‐vascular system with 5‐HT1D agonist drugs — selectively targeting additional sites of action. Eur Neurol 1996;36:13–18. [DOI] [PubMed] [Google Scholar]
- 142. Martin GR, Robertson AD, MacLennan SJ, et al. Receptor specificity and trigemino‐vascular inhibitory actions of a novel 5‐HT1B/1D receptor partial agonist, 311C90 (zolmitriptan). Br J Pharmacol 1997;121:157–164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143. McMahon MS, Norregaard TV, Beyerl BD, Borges LF, Moskowitz MA. Trigeminal afferents to cerebral arteries and forehead are not divergent axon collaterals in cat. Neurosci Lett 1985;60:63–68. [DOI] [PubMed] [Google Scholar]
- 144. Messlinger K, Ellrich J. Meningeal nociception: Electrophysiological studies related to headache and referred pain. Microscopy Res Techn 2001;53:129–137. [DOI] [PubMed] [Google Scholar]
- 145. Messlinger K, Hotta H, Pawlak M, Schmidt RF. Effects of the 5‐HT1 receptor agonists, sumatriptan and CP93,129, on dural arterial flow in the rat. Eur J Pharmacol 1997;332:173–181. [DOI] [PubMed] [Google Scholar]
- 146. Michalicek J, Lambert GA, Gordon V. Reactions of the middle meningeal artery of the cat to neural and humoral stimulation. Cephalalgia 1996;16:27–36. [DOI] [PubMed] [Google Scholar]
- 147. Mitsikostas DD, del Rio MS, Moskowitz MA, Waeber C. Both 5‐HT1B and 5‐HT1F receptors modulate c‐fos expression within rat trigeminal nucleus caudalis. Eur J Pharmacol 1999;369:271–277. [DOI] [PubMed] [Google Scholar]
- 148. Moret C, Briley M. 5‐HT autoreceptors in the regulation of 5‐HT release from guinea pig raphe nucleus and hypothalamus. Neuropharmacology 1997;36:1713–1723. [DOI] [PubMed] [Google Scholar]
- 149. Moskowitz M. The neurobiology of vascular head pain. Ann Neurol 1984;16:157–168. [DOI] [PubMed] [Google Scholar]
- 150. Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c‐fos protein‐like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 1993;13:1167–1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151. Nehal AK, Whitehouse M, Ramachandran C, et al. Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Mol Pharm 2004;1:85–96. [DOI] [PubMed] [Google Scholar]
- 152. Nelson J. Patenting of serotonin modulators. Exp Opin Ther Patents 1999;9:813–830. [Google Scholar]
- 153. Newman L, Mannix LK, Landy S, et al. Naratriptan as short‐term prophylaxis of menstrually associated migraine: A randomized, double‐blind, placebo‐controlled study. Headache 2001;41:248–256. [DOI] [PubMed] [Google Scholar]
- 154. Newman‐Tancredi A, Conte C, Chaput C, et al. Agonist activity of antimigraine drugs at recombinant human 5‐HT1A receptors: Potential implications for prophylactic and acute therapy. Naunyn Schmiedeberg's Arch Pharmacol 1997;355:682–688. [DOI] [PubMed] [Google Scholar]
- 155. Nilsson T, Longmore J, Shaw D, Olesen IJ, Edvinsson L. Contractile 5‐HT1B receptors in human cerebral arteries: Pharmacological characterization and colocalization with immunocytochemistry. Br J Pharmacol 1998;128:1133–1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156. Nozaki K, Boccalini P, Moskowitz MA. Expression of c‐fos‐like immunoreactivity in brainstem after meningeal irritation by blood in the subarachnoid space. Neuroscience 1992;49:669–680. [DOI] [PubMed] [Google Scholar]
- 157. Nozaki K, Moskowitz MA, Boccalini P. CP‐93, 129, sumatriptan, dihydroergotamine block c‐fos expression within rat trigeminal nucleus caused by chemical stimulation of the meninges. Br J Pharmacol 1992;106:409–4l5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158. O'Connor TP, van der Kooy D. Pattern of intracranial and extracranial projections of trigeminal ganglion cells. J Neurosci 1986;6:2200–2207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159. Olesen J, Diener HC, Schoenen J, Hettiarachchi J. No effect of eletriptan administration during the aura phase of migraine. Eur J Neurol 2004;11:671–677. [DOI] [PubMed] [Google Scholar]
- 160. O'Shaughnessy CT, Connor HE, Feniuk W. Extracellular recordings of membrane potential from guineapig isolated trigeminal ganglion: Lack of effect of sumatriptan. Cephalalgia 1993;13:175–179. [DOI] [PubMed] [Google Scholar]
- 161. Oxford AW, Sutina D, Owen MR. Indole derivatives. Glaxo Group Limited, U.S.A. Pat. #4,997,841, 1988.
- 162. Pascual J. Worsening of transformed migraine with naratriptan as prophylactic treatment. Headache 2000;40:610–611. [DOI] [PubMed] [Google Scholar]
- 163. Pascual J, del Arco C, Romón T, del Olmo E, Castro E, Pazos A. Autoradiographic distribution of [3H]sumatriptan‐binding sites in post‐mortem human brain. Cephalalgia 1996;16:317–322. [DOI] [PubMed] [Google Scholar]
- 164. Pascual J, Munoz P. Correlation between lipophilicity and triptan outcomes. Headache J Head Face Pain 2005;45:3–6. [DOI] [PubMed] [Google Scholar]
- 165. Pauwels PJ, Tardif S, Palmier C, Wurch T, Colpaert FC. How efficacious are 5‐HT1B/D receptor ligands: An answer from GTP gamma S binding studies with stably transfected C6‐glial cell lines. Neuropharmacology 1997;36:499–512. [DOI] [PubMed] [Google Scholar]
- 166. Peatfield RC. Migraine: Which triptan Hosp Med 1999;60:277–280. [DOI] [PubMed] [Google Scholar]
- 167. Pierce PA. Dual effect of the serotonin agonist sumatriptan on peripheral neurogenic inflammation. Regional Anesth 1996;21:219–225. [PubMed] [Google Scholar]
- 168. Pratt GD, Bowery NG. The 5‐HT3 receptor ligand, [3H]BRL43694 binds to pre‐synaptic sites in the nucleus tractus solitarius of the rat. Neuropharmacology 1989;28:1367–1376. [DOI] [PubMed] [Google Scholar]
- 169. Rapoport AM, Tepper SJ. All triptans are not the same. J Headache Pain 2001;2:S87–S92. [Google Scholar]
- 170. Raskin NH, Hosobuchi Y, Lamb S. Headache may arise from perturbation of brain. Headache 1987;27:416–420. [DOI] [PubMed] [Google Scholar]
- 171. Raval P, Bingham S, Aiyar N, et al. Trigeminal nerve ganglion stimulation‐induced neurovascular reflexes in the anaesthetized cat: Role of endothelin(B) receptors in carotid vasodilatation. Br J Pharmacol 1999;126:485–493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172. Ray BS, Wolff HG Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg 1940;41:813–856. [Google Scholar]
- 173. Razzaque Z, Heald MA, Pickard JD, et al. Vasoconstriction in human isolated middle meningeal arteries: Determining the contribution of 5‐HT1B‐ and 5‐HT1F‐receptor activation. Br J Clin Pharmacol 1999;47:75–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174. Rebeck GW, Maynard KI, Hyman BT, Moskowitz MA. Selective 5‐HT1D alpha serotonin receptor gene expression in trigeminal ganglia: Implications for antimigraine drug development. Proc Natl Acad Sci USA 1994;91:3666–3669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175. Roon KI, Maassen Van Den Brink A, Ferrari MD, Saxena PR. Bovine isolated middle cerebral artery contractions to antimigraine drugs. Naunyn Schmiedeberg's Arch Pharmacol 1999;360:591–596. [DOI] [PubMed] [Google Scholar]
- 176. Roon KI, Sandor PS, Schoonman GG, et al. Auditory evoked potentials in the assessment of central nervous system effects of antimigraine drugs. Cephalalgia 1999;19:880–885. [DOI] [PubMed] [Google Scholar]
- 177. Sheftell FD, Rapoport AM, Coddon DR. Naratriptan in the prophylaxis of transformed migraine. Headache 1999;39:506–510. [DOI] [PubMed] [Google Scholar]
- 178. Shepheard SL, Williamson DJ, Williams J, Hill RG, Hargreaves RJ. Comparison of the effects of sumatriptan and the NK1 antagonist CP‐99,994 on plasma extravasation in dura mater and c‐fos mRNA expression in trigeminal nucleus caudalis of rats. Neuropharmacology 1995;34:255–261. [DOI] [PubMed] [Google Scholar]
- 179. Sicuteri F. Prophylactic and therapeutic properties of UML 491 in migraine. Intern Arch Allergy 1959;15:300–307. [DOI] [PubMed] [Google Scholar]
- 180. Sicuteri F. Migraine — a central biochemical dysnociception. Headache J Head Face Pain 1976;16:145–159. [DOI] [PubMed] [Google Scholar]
- 181. Sicuteri F, Testi A, Anselmi B. Increase of 5‐HIAA excretion during migraine attack. Intern Arch Allergy 1961;19:55–58. [Google Scholar]
- 182. Slassi A, Isaac M, Arora J. Novel serotonergic and non‐serotonergic migraine headache therapies. Exp Opin Ther Patents 2001;11:625–649. [Google Scholar]
- 183. Spira PJ, Mylecharane EJ, Lance JW. The effects of humoral agents and antimigraine drugs on the cranial circulation of the monkey. Res Clin Studies Headache 1976;4:37–75. [PubMed] [Google Scholar]
- 184. Steiger HJ, Tew JM, Keller JT. The sensory representation of the dura mater in the trigeminal ganglion of the cat. Neurosci Lett 1982;31:231–236. [DOI] [PubMed] [Google Scholar]
- 185. Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene‐related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol 2004;142:1171–1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186. Storer RJ, Goadsby PJ. Microiontophoretic application of serotonin (5‐HT)1B/1D agonists inhibits trigeminal cell firing in the cat. Brain 1997;120:2171–2177. [DOI] [PubMed] [Google Scholar]
- 187. Strassman A, Mason P, Moskowitz M, Maciewicz R. Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res 1986;379:242–250. [DOI] [PubMed] [Google Scholar]
- 188. Strassman AM, Mineta Y, Vos BP. Distribution of fos‐like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 1994;14:3725–3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189. Tepper S, Allen C, Sanders D, Greene A and Boccuzzi S. Coprescription of triptans with potentially interacting medications: A cohort study involving 240 – 268 patients. Headache J Head Face Pain 2003;43:44–48. [DOI] [PubMed] [Google Scholar]
- 190. Ter Horst GJ, Meijler WJ, Korf J, Kemper RH. Trigeminal nociception‐induced cerebral Fos expression in the conscious rat. Cephalalgia 2001;21:963–975. [DOI] [PubMed] [Google Scholar]
- 191. Tfelt‐Hansen P, De Vries P, Saxena PR. Triptans in migraine — A comparative review of pharmacology, pharmacokinetics and efficacy. Drugs 2000;60:1259–1287. [DOI] [PubMed] [Google Scholar]
- 192. Trulson MELJB. Behavioral evidence for the rapid release of CNS serotonin by PCA, fenfluramine. Eur J Pharmacol 1976;36:149–154. [DOI] [PubMed] [Google Scholar]
- 193. . U.S.A. Food and Drug Administration. Amerge (Naratriptan) Tablets (approval). http://www.fda.gov/cder/foi/nda/98/20763Amerge.htm, 1998.
- 194. Valentin JP, Bonnafous R, John GW. Contractile responses evoked by dihydroergotamine, naratriptan and sumatriptan in the canine isolated coronary artery. Fund Clin Pharmacol 1998;12:152–157. [DOI] [PubMed] [Google Scholar]
- 195. VanDenBrink AM, Reekers M, Bax WA, Ferrari MD, Saxena PR. Coronary side‐effect potential of current and prospective antimigraine drugs. Circulation 1998;98:25–30. [DOI] [PubMed] [Google Scholar]
- 196. Vanegas H, Dubner R, Gebhart GF. Descending control of pain during persistent peripheral damage: Is it inhibitory or facilitatory. 11th World Congress of Pain. Sydney : IASP, 2005;276. [Google Scholar]
- 197. Veloso F, Kumar K, Toth C. Headache secondary to deep brain implantation. Headache 1998;38:507–515. [DOI] [PubMed] [Google Scholar]
- 198. Waeber C, Moskowitz MA. 5‐Hydroxytryptamine1A, 5‐Hydroxytryptamine1B receptors stimulate [35S]Guanosine‐5′‐O‐(3‐thio)triphosphate binding to rodent brain sections as visualized by in vitro autoradiography. Mol Pharmacol 1997;52:623–631. [DOI] [PubMed] [Google Scholar]
- 199. Wainscott DB, Johnson KW, Phebus LA, Schaus JM, Nelson DL. Human 5‐HT1F receptor‐stimulated [35S]GTPγS binding: correlation with inhibition of guinea pig dural plasma protein extravasation. Eur J Pharmacol 1998;352:117–124. [DOI] [PubMed] [Google Scholar]
- 200. Wang W, Timsit‐Berthier M, Schoenen J. Intensity dependence of auditory evoked potentials is pronounced in migraine: An indication of cortical potentiation and low serotonergic transmission Neurology 1996;46:1404–1409. [DOI] [PubMed] [Google Scholar]
- 201. Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med 1995;1:658–660. [DOI] [PubMed] [Google Scholar]
- 202. Wellington K, Jarvis B. Spotlight on rizatriptan in migraine. CNS Drugs 2002;16:715–720. [DOI] [PubMed] [Google Scholar]
- 203. Welsh JH. Serotonin: History of a discovery. Comp Biochem Physiol 1988;91:21–24. [DOI] [PubMed] [Google Scholar]
- 204. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL. Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat — intravital microscope studies. Cephalalgia 1997;17:525–531. [DOI] [PubMed] [Google Scholar]
- 205. Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 1997;14:2–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206. Yevich JP. Antimigraine agents: July 1995 – December 1996. Exp Opin Ther Patents 1997;7:511–521. [Google Scholar]
- 207. , YuX‐M Hua M , Mense S. The effects of intracerebroventricular injection of naloxone, phentolamine and methysergide on the transmission of nociceptive signals in rat dorsal horn neurons with convergent cutaneous‐deep input. Neuroscience 1991;44:715–723. [DOI] [PubMed] [Google Scholar]
- 208. Zagami AS, Lambert GA. Craniovascular application of capsaicin activates nociceptive thalamic neurones in the cat. Neurosci Lett 1991;121:187–190. [DOI] [PubMed] [Google Scholar]
- 209. Zimmermann K, Reeh PW, Averbeck B. S(+)‐flurbiprofen but not 5‐HT1 agonists suppress basal and stimulated CGRP, PGE(2) release from isolated rat dura mater. Pain 2003;103:313–320. [DOI] [PubMed] [Google Scholar]
