Abstract
DM232 (unifiram) and DM235 (sunifiram) are potent cognition‐enhancers, which are four order of magnitude more potent than piracetam. These compounds, although not showing affinity in binding studies for the most important central receptors or channels, are able to prevent amnesia induced by modulation of several neurotransmission systems. These compounds are able to increase the release of acetylcholine from rat cerebral cortex, and, as far as unifiram is concerned, to increase the amplitude of fEPSP in rat hippocampal slices. In vitro experiments, performed on hippocampal slices, also supported the hypothesis of a role of the AMPA receptors for the cognition‐enhancing properties of unifiram and sunifiram.
Keywords: Alzheimer's disease, DM232, DM235, Mild cognitive impairment, Nootropic, Sunifiram, Unifiram
Full Text
The Full Text of this article is available as a PDF (149.5 KB).
REFERENCES
- 1. Allain H, Bertuè‐Ferrer D, Tribut O, Gauthier S, Michel B‐F, Drieu‐La Rochelle, C. Alzheimer's disease: The pharmacological pathway. Fund Clin Pharmacol 2003;17: 419–428. [DOI] [PubMed] [Google Scholar]
- 2. Anonymous Acd. Donepezil rivastigmine, galantamine and memantine for the treatment of Alzheimer's disease. Available at http://medicines.mhra.gov.uk. National Institute for Clinical Excellence; 2005. [Google Scholar]
- 3. Bacciottini L, Passani MB, Mannaioni PF, Blandina P. Interactions between histaminergic and cholinergic systems in learning and memory. Behav Brain Res 2001;124: 183–194. [DOI] [PubMed] [Google Scholar]
- 4. Coyle MJ. A cholinergic hypothesis for Alzheimer's disease In: Meyer L, Nordeberg GH, Eds. Learning and memory molecular bases. London : Pergamon Press, 1995;11–32. [Google Scholar]
- 5. Dewachter I, Van Leuven F. Secretases as targets for the treatment of Alzheimer's disease: The prospects. The Lancet Neurology 2002;1: 409–416. [DOI] [PubMed] [Google Scholar]
- 6. Dicou E, Rangon CM, Guimiot F, Spedding M, Gressens P. Positive allosteric modulators of AMPA receptors are neuroprotective against lesion induced by an NMDA agonist in neonatal mouse brain. Brain Res 2003;970: 221–225. [DOI] [PubMed] [Google Scholar]
- 7. Dominguez DI, De Strooper B. Novel therapeutic strategies provide the real test for the amyloid hypothesis of Alzheimer's disease. Trends Pharmacol Sci 2002;23: 324–330. [DOI] [PubMed] [Google Scholar]
- 8. Filliat P, Pernot‐Marino I, Baubichon D, Lallement G. Behaviuoral effect of NBQX, a competitive antagonist of the AMPA receptors. Pharmacol Biochem Behav 1998;59: 1087–1092. [DOI] [PubMed] [Google Scholar]
- 9. Francis PT. Glutamatergic systems in Alzheimer's disease. Int J Geriatr Psychiatry 2003;18: S15–S21. [DOI] [PubMed] [Google Scholar]
- 10. Froestl W, Maitre L. The families of cognition enhancers. Pharmacopsychiatry 1989;22: 54–100. [DOI] [PubMed] [Google Scholar]
- 11. Galeotti N, Ghelardini C, Pittaluga A, et al. AMPA‐receptor activation is involved in the antiamnesic effect of DM232 (unifiram) and DM235 (sunifiram). Naunyn Schmiedeberg's Arch Pharmacol 2003;368: 538–545. [DOI] [PubMed] [Google Scholar]
- 12. Ghelardini C, Galeotti N, Gualtieri F, et al. The novel nootropic compound DM232 (UNIFIRAM) ameliorates memory impairement in mice and rats. Drug Dev Res 2002;56: 23–32. [Google Scholar]
- 13. Ghelardini C, Galeotti N, Gualtieri F, et al. DM235 (sunifiram): A novel nootropic with potential as cognitive enhancer. Naunyn-Schmiedeberg's Arch Pharmacol 2002;365: 419–426. [DOI] [PubMed] [Google Scholar]
- 14. Giacobini E. Cholinergic function and Alzheimer's disease. Int J Geriatr Psychiatry 2003;18: S1–S5. [DOI] [PubMed] [Google Scholar]
- 15. Gilgun‐Sherki Y, Melamed E, Offen D. Antioxidant treatment in Alzhemer's disease. J Mol Neurosci 2003;21: 1–11. [DOI] [PubMed] [Google Scholar]
- 16. Golde TE, Eckman CB. Cholesterol modulation as an emerging strategy for the treatment of Alzheimer's disease. Drug Disc Today 2001;6: 1049–1055. [DOI] [PubMed] [Google Scholar]
- 17. Gong Y, Chang L, Viola KL et al. Alzheimer's disease‐affected brain: Presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 2003;100: 10417–10422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Gouliaev AH, Binau Moster, J , Vedso M, Senning A. Synthetic and analytical aspects of the chemistry of piracetam‐type substituted pyrrolidines. Areview. Org Prep Proceed Int 1995;27: 273–303. [Google Scholar]
- 19. Gouliaev AH, Senning A. Piracetam and other structurally related nootropics. Brain Res Rev 1994;19: 180–222. [DOI] [PubMed] [Google Scholar]
- 20. Gualtieri F, Guandalini L, Manetti D, Martini E, Romanelli MN. Cognition‐enhancing drugs in mild cognitive impairment (MCI) and Alzheimer's disease (AD): An update [1]. Med Chem Rev-Online 2005;2: 471–487. [Google Scholar]
- 21. Gualtieri F, Manetti D, Romanelli MN, Ghelardini C. Design and study of piracetam‐like nootropics, controversial members of the problematic class of cognition‐enhancing drugs. Curr Pharm Des 2002;8: 125–138. [DOI] [PubMed] [Google Scholar]
- 22. Hodgkiss JP, Kelly JS. Effect of FK960, a putative cognitive enhancer, on synaptic transmission in CA1 neurons of rat hippocampus. J Pharmacol Exp Ther 2001;297: 620–628. [PubMed] [Google Scholar]
- 23. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994;17: 31–108. [DOI] [PubMed] [Google Scholar]
- 24. Johnson SA, Simmon VF. Randomized, double‐blind, placebo‐controlled international clinical trials of the ampakine CX516 in elderly participants with mild cognitive impairment. J Mol Neurosci 2002;19: 197–200. [DOI] [PubMed] [Google Scholar]
- 25. Kawas CH. Early Alzheimer's disease. NEngl J Med 2003;349: 1056–1063. [DOI] [PubMed] [Google Scholar]
- 26. Kim M, Campeau S, Falls WA, Davis M. Infusion of the non‐NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear‐potentiated startle. Behav Neural Biol 1993;59: 5–8. [DOI] [PubMed] [Google Scholar]
- 27. Kuribara H, Higuchi Y, Takadoro S. Effects of central depressants on rota‐rod and traction performances in mice. Jpn J Pharmacol 1977;27: 117–126. [DOI] [PubMed] [Google Scholar]
- 28. Larson J, Lieu T, Petchpradub V, LeDuc B, Ngo H, Rogers GA, Lynch G. Facilitation of olfactory learning by amodulator of AMPA receptors. J Neurosci 1995;15: 8023–8030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Lin MT, Beal MF. The oxidative damage theory of aging. Clin Neurosci Res 2003;2: 305–315. [Google Scholar]
- 30. Manetti D, Ghelardini, C Bartolini et al. Design, synthesis and preliminary pharmacological evaluation of 1,4—diazabicyclo[4.3.0]nonan‐9‐ones as a new class of highly potent nootropic drugs. J Med Chem 2000;43: 1969–1974. [DOI] [PubMed] [Google Scholar]
- 31. Manetti D, Ghelardini C, Bartolini A, et al. Molecular simplification of 1,4‐diazabicyclo[4.3.0]nonan‐9‐ones gives piperazine derivatives that maintain high nootropic activity. JMed Chem 2000;43: 4499–4507. [DOI] [PubMed] [Google Scholar]
- 32. Manetti D, Martini E, Ghelardini C, et al. 4‐Aminopiperidine derivatives as a new class of potent cognition enhancing drugs. Bioorg Med Chem Lett 2003;13: 2303–2306. [DOI] [PubMed] [Google Scholar]
- 33. Martini E, Ghelardini C, Bertucci C, et al. Enantioselective synthesis and preliminary pharmacological evaluation of the enantiomers of unifiram (DM232), a potent cognition‐enhancing agent. Med Chem 2005;1: 473–480. [DOI] [PubMed] [Google Scholar]
- 34. Mason JM, Kokkoni N, Stott K, Doig AJ. Design strategies for anti‐amyloid agents. Curr Opin Struct Biol 2003;13: 526–532. [DOI] [PubMed] [Google Scholar]
- 35. Maurice T. Improving Alzheimer's disease‐related cognitive deficit with ó1 receptor agonists. Drug News Perspect 2002;15: 617–625. [DOI] [PubMed] [Google Scholar]
- 36. McGeer EG, McGeer PL. Clinically tested drugs for Alzheimer's disease. Exp Opin Inv Drug 2003;12: 1143–1151. [DOI] [PubMed] [Google Scholar]
- 37. Mondadori C, Preiswerk G, Jaekel J. Treatment with a GABAB receptor blocker improves the cognitive performance of mice, rats and rhesus monkeys. Pharmacol Commun 1992;2: 93–97. [Google Scholar]
- 38. Morris JC. Challenging assumptions about Alzheimer's disease: Mild cognitive impairment and the cholinergic hypothesis. Ann Neurol 2002;51: 143–144. [DOI] [PubMed] [Google Scholar]
- 39. Murray TK, Whalley K, Robinson CS, et al. LY503430, a novel α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid receptor potentiator with functional neuroprotective and neurotrophic effects in rodent models of Parkinson's disease. J Pharmacol Exp Ther 2003;306: 752–762. [DOI] [PubMed] [Google Scholar]
- 40. Myhrer T. Neurotransmitter systems involved in learning and memory in the rat. A meta‐analysis based on studies of four behavioral tasks. Brain Res Rev 2002;41: 268–287. [DOI] [PubMed] [Google Scholar]
- 41. Naftalin RJ, Cunningham P, Afzal‐Ahmed I. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D‐glucose transport. Br J Pharmacol 2004;142: 594–608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Novak L, Bregestovski P, Asher P, Herbert A, Prochantz A. Magnesium gates glutamate‐activated channels in mouse central neurones. Nature 1984;307: 462–465. [DOI] [PubMed] [Google Scholar]
- 43. O'Neill MF. Difficult times for Alzheimer's treatment. Drug Disc Today 2005;10: 1333–1335. [DOI] [PubMed] [Google Scholar]
- 44. Palmer AM. Pharmacotherapy for Alzheimer's disease. Progress and prospects. Trends Pharmacol Sci 2002;23: 426–433. [DOI] [PubMed] [Google Scholar]
- 45. Petersen RC. Mild cognitive impairment clinical trials. Nat Rev Drug Disc 2003;2: 646–653. [DOI] [PubMed] [Google Scholar]
- 46. Picciotto M, Zoli M. Nicotinic receptors in aging and dementia. J Neuro biol 2002;53: 641–655. [DOI] [PubMed] [Google Scholar]
- 47. Picken MM. The changing concepts of amyloid. Arch Pathol Lab Med 2001;125: 38–43. [DOI] [PubMed] [Google Scholar]
- 48. Pittaluga A, Bonfanti A, Arvigo D, Raiteri M. Aniracetam, 1‐BCP and cyclothiazide differentially modulate the function of NMDA and AMPA receptors mediating enhancement of noradrenaline release in rat hippocampal slices. Naunyn Schmiedeberg's Arch Pharmacol 1999;359: 272–279. [DOI] [PubMed] [Google Scholar]
- 49. Pittaluga A, Feligioni M, Ghersi C, Gemignani A, Raiteri M. Potentiation of NMDA receptor function through somatostatin release: A possible mechanism for the cognition‐enhancing activity of GABA(B) receptor antagonists. Neuropharmacology 2001;41: 301–310. [DOI] [PubMed] [Google Scholar]
- 50. Pittaluga A, Pattarini R, Raiteri M. Putative cognition enhancers reverse kynurenic acid antagonism at hip‐pocampal NMDA receptors. Eur J Pharmacol 1995;272: 203–209. [DOI] [PubMed] [Google Scholar]
- 51. Pittaluga A, Vaccari D, Raiteri M. The “kynurenate test,” a biochemical assay for putative cognition enhancers. J Pharmacol Exp Ther 1997;283: 82–90. [PubMed] [Google Scholar]
- 52. Power AE, Vazdarjanova A, McGaugh JL. Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Mem 2003;80: 178–193. [DOI] [PubMed] [Google Scholar]
- 53. Puglielli L, Tanzi RE, Kovacs DM. Alzheimer's disease: The cholesterol connection. Nat Neurosci 2003;6: 345–351. [DOI] [PubMed] [Google Scholar]
- 54. Quillfeldt JA, Schmitz PK, Walz R, et al. CNQX infused into entorhinal cortex blocks memory expression, and AMPA reverses the effect. Pharmacol Biochem Behav 1994;48: 437–440. [DOI] [PubMed] [Google Scholar]
- 55. Roses AD, Pangalos MN. Drug development and Alzheimer's disease. Am J Geriatr Psychiatry 2003;11: 123–130. [PubMed] [Google Scholar]
- 56. Sarter M, Bruno JP. Mild cognitive impairment and the cholinergic hypothesis. A very different take on recent data. Ann Neurol 2002;52: 384–385. [DOI] [PubMed] [Google Scholar]
- 57. Scapecchi S, Martelli C, Ghelardini C, Guandalini L, Martini E, Gualtieri F. 2‐Pyrrolidinone moiety is not critical for the cognition‐enhancing activity of piracetam‐like drugs. Farmaco 2003;58: 715–722. [DOI] [PubMed] [Google Scholar]
- 58. Scapecchi S, Martini E, Manetti D, et al. Structure‐activity relationship studies on unifiram (DM232) and sunifiram (DM235), two novel and potent cognition enhancing drugs. Bioorg Med Chem 2004;12: 71–85. [DOI] [PubMed] [Google Scholar]
- 59. Sheardown MJ. Muscarinic M1 receptor agonists and M2 receptor antagonists as therapeutic targets in Alzheimer's disease. Exp Opin Ther Pat 2002;12: 683–687. [Google Scholar]
- 60. Staubli U, Perez Y, Xu FB, et al. Centrally active modulators of glutamate receptors facilitate the induction of long‐term potentiation in vivo. Proc Natl Acad Sci USA 1994;91: 11158–11162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61. Staubli U, Rogers G, Lynch G. Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci USA 1994;91: 777–781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Terry AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer's disease‐related cognitive deficits: Recent challenges and their implications for novel drug development. JPharmacol Exp Ther 2003;306: 821–827. [DOI] [PubMed] [Google Scholar]
- 63. Vesey R, Birrel JM, Bolton C, et al. Cholinergic nicotinic systems in Alzheimer's disease — Prospects for pharmacological intervention. CNS Drugs 2002;16: 485–500. [DOI] [PubMed] [Google Scholar]
- 64. Weggen S, Eriksen JL, Sagi SA, et al. Evidence that nonsteroidal anti‐inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma‐secretase activity. J Biol Chem 2003;278: 31831–31837. [DOI] [PubMed] [Google Scholar]
- 65. Wolfe M. Therapeutic strategies for Alzheimer's disease. Nat Rev Drug Disc 2002;1: 859–866. [DOI] [PubMed] [Google Scholar]
- 66. Wolfe MS. Secretase targets for Alzheimer's disease: identification and therapeutic potential. J Med Chem 2001;44: 2039–2060. [DOI] [PubMed] [Google Scholar]
- 67. Yamada KA. Therapeutic potential of positive AMPA receptor modulators in the treatment of neurological disease. Exp Opin Inv Drug 2000;9: 765–778. [DOI] [PubMed] [Google Scholar]
- 68. Zarrinmayeh H, Bleakman D, Gates M, et al. [3H]N‐2‐(4‐(N‐benzamido)phenyl)propyl‐2‐propanesulfon‐amide: A novel AMPA receptor potentiator and radioligand. J Med Chem 2001;44: 302–304. [DOI] [PubMed] [Google Scholar]
- 69. Zaudig M. Mild cognitive impairment in the elderly. Curr Opin Psychiatry 2002;15: 387–393. [Google Scholar]
- 70. Zhou Y, Su Y, Li B, et al. Nonsteroidal anti‐inflammatory drugs can lower amyloidogenic Aβ42 by inhibiting Rho. Science 2003;302: 1215–1217. [DOI] [PubMed] [Google Scholar]